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SUMMARY

The korea Next DGerneration  Reactor(APR-1400) provides an [EWST
[ [Im-containment Hefueling Water Storage Tank) and SIVS(Safety Depressurization
and Vent System) including POSEVs(Pilot Operated Safety Relief Valve) and
spargers in order to erhance its safety, In case an accident of cpening the
POSEV oocurs, the steam with high pressure and temperature is discharged
through the spargers attached at the end of the pipings of the SDVS, Before
the steam is discharged, water and air existing inside the piping are
discharged, By experiments and analyses, it is well known that the discharged
air oscillates with low frequency and produces dynamic loads, which may cause
severe impacts on the [RWST structures,

This report contains pressure forcing function and time history of radius
of bubble clowd which are produced based on the wall pressures measured in the
unit cell test with a APR-1400 prototype sparger, The bubble clowd pressures
in the wnit cell test could not be measured directly, since the installation
of support for the sensors was extremely difficult due to the high pressure
loads of discharging fluid, So, the pressure of bubble clowd was estimated
using the measured wall pressures and the electrode analogy test results
performed inm ABE-Atom for the development of a BWR sparger, The major
parameters affecting the bubble cloud pressure are the maximum steam mass flux
in discharging pipe, the maximum pressure in discharging pipe during air
clearing, the sparger submergence depth, the bubble clowd volune, the bubble
cloud location, the pool temperature, the initial condition of discharging
pipe, the subsequence actuation and the cpening time of relief valve, The
parameters of the wnit cell test were compared with those of the APR-1400
design data and the bubble cloud pressure of APR-1400 was calculated by
introducing appropriate correction factors reflecting the differences, The
pressure forcing function of APR-1400 was generated by processing the bubble
cloud pressures of wnit cell test with ORIGIN version 6,1, The time history of
bubble radius was calculated based on the pressure forcing function,

The wall effects of the wnit cell test on the pressure forcing function
were analyred using Hayleigh-FPlesset eguation which was modified by adding a
term for the mirror image of bubble clowd, since the dimension of the [RWST
and the location of bubble cloud are different from those of the wit cell
test tank, The analysis results show that the pressures measured in the wnit
cell tark is larger than those in the [RWST, but the frequencies are lower,

The design data in this report are used for a lcad analysis of [EWST wall
and submerged structures by the AE,
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7hed7)e FebE B dEE7 2Hde| Y wiFtx| Az dEet 27
g PadEe €A Ha 4YAE AR s EEEg o] uj@Ee 4y
T el e HE F 242 UHEWEE UAY AAlelE Fo AUIte] JdHE
Alagich, WES BEF 6 ~ 8237 e e gleoe e FLEC)

1. 7 LA

rEfE e Auba] zizie] FrlEslE A debEle 27192 o 0.8
~ 1.5kgF =2 off4tHTL APR-14002] F7|ekE& 22037 #Me dHAAg
rEufpte] Helat W Helx dE A2 Y 9 dEsYel #7HeE o
ol 27 & ates hsdted afftel] YAEUE AT walE AYstach o
& #% 2719427 (air compressor )& E7|A 52 air chamber2} o2&},
=7 wEa E2xof ot FrHE Mol ¢ =5 sl FrIdSsATE
7147, AHe-AeWE(sv-101), Aays Feog FH¥Erh xHpHe|WHEe



Al TS 2 Moi=a, =2 Aei7|2] gyl 2 AFAe =
=5 dA= A

5 7S5 AFE

o] AE-2 +He|AF, water storage tank, feed pump, 77|, e
Wo gl osfges FEEch o] AES FARECIE SEEE &5 AMeEe
ol & 7td Bydtel f2o] F7)1E& T3 2l 2258 YW 228 7id
the 7led T

T80 Eoh 1.0 MPa o] 23 FI)E d4HOR 0,108 ks B T
@ Uk FFEErIS T2 Ee YEATEE ddE owd A R
o gt Ee] glon], o] Fitof ciyt AU 2 2.0 WPa o|ThL

6 AH AT

AZATE §37)712 AegERA(Ds)E ATt AHEEE §737]7)
e H3EApo] ot 2=, odEA, LA, €A, R, BUA Fes
R

eede AEis d3¥cfe HHEA7]E A oulti-connection box @}
control box® @AFAD, A FEHE MBS AFPees FHPY
Helae Ayt efHe) FHe4E& Yagch =3 g (PT-100, PT-211), 2}
ot (DP-201) B +#A(LT-101, LT-201, LT-601)= smart¥ 7|7|& AlE#igle
o], WAEE 4-20ma8 MEE eS| et Ao HAH 4= F
af7lofl4 1~5ve] AYNTE HW§EEe] AEHEFUA F ojites YdAFC)
=4k o 9l FrlEalrlel e A= APT-201, PT-202, PT-203, PT-205,
PT-206, PT-207)= signal delayd& =H=|#l3 w2 dhg-G =8 838517 281
strain gage ¥ YHAH7)E 2HE3dct

F7ojee] FrsEE fs WRe FEFE-201)E da#dct sdAe
czdH gl el & 97E Fdct FUAe d=2 signal conditioner
& AHgsldon, o WALREL] AT (0~-10V)= Wl P8 day 5
A&E A2 SHAE oYt FUAE AEGRAs 2455HE ISP B
=& Y AD converter& AHESHCHE SF2uUfels & 23712 @3cirt 4
5o glo] Wi SEEEE ¢ + d=5 soch

Dase] @ g & 68 Adeln, 1 $E2 ohE3 ok



p x i 42 Channels

> oy i 8 Channels
P Eheh k) : 1 Channel
> ¢ i 9 Channels
> 4% 3 Channels
> #a ! 1 Channel
P Limit 5/ ! 4 Channels

TEE A2y dy-dulod dAH 2F AK7)L 2|2 E Fig 2-50 243

"-“'E]-.

R

A 3 2 AeAz

APR-1400 d 72 71847 1E& B 271037 wa&s) 712y d9sieiy
ipressure forcing function)& AH4t#17] 2|FF wunit cell WS SmWEc),
Aol F7HAZIe 2 WA 1.50 Pl Fof dAsgdn sPeey
B #P ele 277t HE=H stach afg fo] Fr|akE 1.5kego] RAEHES
air chamber& S7) 82 Flebsped o 2bdaf = o] k] 7hE POSRY =Tk 4]
N 0.72E 32 = YR =8 o 20 TE {3 FUY =elH
123 2] BhEdHE +%3tch o2t TS JUZPE APR-1400 dA =33 F
Hdit He|rHs), FHH o438 HE Folild F7E4b7] €7 LHPT-206) 2 4
Zeidof A e] HeHDPT-1, DPT-2, DPT-3, DPT-4)o] glels|amglag Asbsior)
+Hg-§rh,

Table 2-12 128|2] Wyl cfs] s=2Tefse] P27 it o 2
ci&eE Aozl udehdch a2 e 2ol #AY H{AFLDPT-2,
DPT-4)e] k2 toff 2|23 AAFLIOPT-1, DPT-3)5ct 24 uelgic) 128
SHIUE WIY FAR BS Heolof #AY AFAFHOPT-12} DPT-3, DPT-22}
DPT-4)& 2] A EtRith Table 2-2= zpzpe] dfol cfzf 3 Haf by
Hah A = b slels Fobg w8l FFEs] 7018417 inlets] 2cof
o (PT-206)-& Uehfgch 128 A& HA A zhzte] Aol &3
¥ Fobre A8 Fdtda =3 Foil Aol cfsh 4712 g Aoy F
A FIME oF G o|Fte] ale|d 2ot PI-2062] WEUES 9.8 bards



uiebsith, Fig. 2-6 ~ Fig. 2-17 2 zizhe] dHoly §3E A7 FY A=
A A7) 22 Eel 2t 2UE ol?] ## 40 Hz o] e e Py
H A FHAD Hz low pass filtering) #E2HE =A|%F He|ch, ABB-Atome] BWR ¢l
SHEEeE AYUE ol 40 Hz o] de] T doE AAEden(6], £ d¥

AR il = BUY HHEE M

# 4 A 7|2 Hoj o g o) ¥ Sl

lnit cell W@l T AHE 7|2 Folo d23te 7|2e FL& 2H
FAe AE A=Fdoel)t dqE 2= st EA7L 2le] F¥Y AE A
=y 4 gy dEd a2 Ados FHY FUE 2 7R ddE oG
e W& gt o & 8] ABE-Atome] BWR F7|8217] HdE #lef o0
st g sl AY @2E o -g3tec

AHE-Atome| =HEET Studsvik YoM E 7|2 FUE =AY FHa)
e B 2lunit cell Aol AP vle} o] AUy HEY 7= 2ol
o|Ety] 4l=ldeol FH7L dW Feo] SAHE), HAHelM HHE A Hel 7)
FLoE 11308 H4{ o] HFsfAE A2 72 AHIEFLS cfAY A
7|8 sbat AE AZE o B 7|2 FUE FEECHT). ABE-Atome] H7|E-
A Ay daE 7IE FY ool AHEE 4 clgdd o238 SAe A
o] Mebuzl el =HE V=0 3 VP=07} 47| difelgch
Studsvik PPollH 2HEH 2 ZAo| 3.184m o] wo|7 6,67 HELER
A whEEe JlEe] 4iA2 0.297n FEE ofSEgirH4]. MrlE ska} dHe
WA Studsvik Y 22 1:33 &8 4Eden AHEH ;WAE AT
Studsvik A Peofls of HF 7| ginie] 1:3302 249 0,009m o|gic) Mr|E
At Aol =832 uielzh dsfd 4912 22} Studsvik dYoliM 2] s 4
Z diete] sigtEch ABB-AtomE H7|Ee| =EIFuietog2RE ztzb 100mm,
115, 2om, 130.3mm 3! 145 3mm (7|52 F4e| ARy zizd 3.3m, 3. 8n,
4.3m 3! 4. 8moff s{5H)g) Ao o H)E Al AYPE YA|FHeo Fig
2-18 ~ Fig. 2-2104 Eoix| uhzl o] ad <AL Agh: A7
source Mele] 0.71 ~ 0,74 H=o|ion wavcto R Pold4H Hel
o] Hxle AYE 2odrh WA UHEE A4 YR ELY RAN HES
Helvia gzig 4 gloo] A9 o offolf 2] gpe 7IE BYard o 0.7



~ 0.748f Mzeo|r}h ABB-Atomf] HH Hz} 7|2 FHE F7EA7] Beld #
Fow o 0.2n ~ 0.7 m FEe|HUTHTI.

Unit cell algie] =8 Z7|5ar] 237! zlo|7} 2. "TneA] ABR-Atomof+] -4l
Algtele | el 48 @S 22 el 33w, 380, 4.3m 3 4. 8m)of
H sigEle A2 gt Fig. 2-18 ~ Fig. 2-218] 378 Ak} A9 #Azjels
Hojfs #gh 27 e #laledl FastA A4 AYE He curved B
o 37 wfEel o|& #FZ el 2.Twoll ZA scaling o] xlE#ach Fig,
2-22%= ABB-Atom2] F7)E 4AE HAIE ovisle g T30 wnit cell dPef = -Ex
e #BY dolof w2 APz 7|22 gHg Ueld Aol B4HE 23 do]
712 A4S F71EA] BelM #1Zes 02w #lEPche FhEstda W
o oolzfel s Bebe 712 Foe 0.70f8 FHESAch Unit cell 4§ A-S
A=z o] ZMo| InEs U] 3 184m9) Studsvik QP Sz} o] ek =
Souf ofe] ZFlake] 1,50 keo B4 Studsvik HYPefss] Zr)ake] o 3o
£ aEss 71E7 27) ool o2t 2elFt Fig, 2-228 F-Ested S
ez FEFHHECE Unit cell JHL 42 2 Ao| Studsvik YJEL szHr}
ZHe A-f ol AE A4 gl Apxle] s, A A HETH
Aofs o 2 el FHH FHo|ZE ol unit cell AL 7|2 gelof of
2 wEe) edeu|rt 24 Hohe A& gojfich EYY unit cell YL
ZIZ7E 2 A5 A}7E b A Afe] Az, FlES 29 7| Eel
FHopxla webd Aol o & Fde] §HE |28 ol wnit cell YH
8] 7|1E oo cfft = He deu|7t =24 fHoke & 2olfich &, o
of 4 T wnit cell Y Studsvik WHL| 2e|2REH 2= Hie
Fig. 2-22of Uehd 22 E $|F L8 o|FA|7|l He|28 B43g] poly
ABE-Atom2| H7|E AbAb WY BAINE o E3tel = Fetste| et gighECL

Fig, 2-23 = Table 2-1 of 9li= 2|cj ¢l (max, positive pressure)of cf
Bted W9 U 7lE Fue #AE BoiErh dy el DPT-124 DPT-32
ofs 2. 475m ofef, DPT-2%} DPT-4= ol 3. 475m olzfe] H@of #|x|g
Ch Table 2-19fl4 Hed=]= DPT-48] cf arehd& vigle g 7|2 gi& 48t
(e Hdels F7e|7t 3.475ag] A @ Fozt 7|2 gods w707
o228 DPT-4 S38EE 0.78 e & 712 Feeg 4H3), DPT-1, DPT-2,
3 DPT-3 AL 7|2 FULE e & JfZof Ex)Fgch 2oy 2
= vhel o) o] 2 Yo Urhfxs S FHLE YR 22X DA
ale] o|l& Wt A2 ddghel YAE ¢ 4 2l
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ol FE| 2 Fig. 2-24= Table 2-1 of &= 2o S%imax, negative
pressure)of cfsdle] H@ bzt 7| E Fis #AE 2oiFEch 44| Table 2-1
of 4 Hojxle DPT-42] cf Fob& digles 7|2 Fag& #ha, DPT-1,
DPFT-2, % DPT-3 S§3IE 7|1 Fudee vhre A& J=of Ea|stdch g
ol B viel ge] o] TS e Uehixles L& 408 43e ne
A Al olE Wt A dAgel dAPE o 5 gt

Fig. 2-23 9 Fig. 2-2oll4 Bz o= Fobdisols HHE ZhE 71
I 7| EEc] dEE st o f@zbe @E Aot wigle] = 7] o Tl
unit cell 4¥ofs 7|2 2cf el DPT-dofs FHP ZhE 2}Esle] b E]
gict. 71 Acof Y& e dae ohEat #@ro

- Table 2-1¢f vtetgle 2b2be| WY caseofl A DPT-deflA S8 It SollA
Hehgke] Hefg! T =yich

- Uy FUE 0.7 Lpre] o] E FIE Aol deeg gio}

- 12748 7|2 Hef 4 T dFz 2E@aHE o

- AE =g a8dte 7|2 o Y& 4bE Yo

ol Walee dE F|E Ao ey AFIS 52.11 kPa o|H 2, EF
Hab= 5,43 kPa o|gich 95 46x2] AlEl=8 2239 41.25 kPa < ( APgas)max
< 62,97 kPa o|gich mhebd unit cell 4ge] 7)& #of otel( A2 65 kPa
£ zta#gct

HH k] A oldE UMER A3e] APsH Fabert HAe A
P& Holz gled ol Alzte] Azljtel olel F7] 7|27 #A 2AXZ
Adee 4gdtd FH Hel7t o= HWRl2E g FoA AW g
A3t o|He cfE Fobe 3 Haf Acof odgdat 5 oHsf Aol ool alely 4
e FAT ol A4E F el FETh Table 2-20f4 Hodx|Fo| 128
g 4dge) A7 Fobge 2 dAMolct AL ze|z} glech BteliM o)
7t MesEle =7 of-§ wer) ofof 7|2 w44 Fibee 99 B2y ot
2t BUY Bog gigksgrh J)E cf® Fobie DPT-4 Mofs Aby W
+ TIo¢] 3,23 H=8 bR stedc)
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Table 2-1 =2l Hef P U Heh Y
} DPT-1 DPT-3 DPT-2 DPT-4
2138 No.

(kPa) (kPa) (kPa) (kPa)

1 max. press. 27.61 26.26 30.22 29.92
min. press. -29.42 -29.33 -33.08 -33.45

5 max. press. 25.74 26.41 31.72 29.91
min. press. -29.44 -30.18 -34.24 -34.46

5 max. press. 25.58 27.06 30.00 30.80
min. press. =-27.74 -29.10 -32.58 -33.30

4 max. press. 32.52 31.61 36.25 36.51
min. press. -33.53 -32.87 -37.07 -37.34

5 max. press. 27.28 27.90 31.45 29.84
min. press. -28.58 -28.10 -31.33 -31.93

5 max. press. 37.98 37.26 43.56 42.33
min. press. -36.07 -36.20 -41.05 -40.93

. max. press. 27.57 27.63 32.43 35.08
min. press. -28.15 -28.33 -32.40 -32.57

3 max. press. 33.80 33.64 37.32 37.15
min. press. -35.22 -34.89 -39.68 -39.73

9 max. press. 27.44 25.82 33.04 30.64
min. press. -28.04 -28.10 -31.21 -31.90

10 max. press. 32.51 31.39 38.40 42.34
min. press. -34.78 -35.64 -39.19 -40.48

1 max. press. 28.56 31.14 33.63 34.17
min. press. -32.16 -31.86 -35.39 -35.97

19 max. press. 31.14 31.88 37.85 39.92
min. press. -34.08 -34.30 -38.24 -38.75

max. press. 29.81 29.83 34.66 34.88

Mean )

min. press. -31.43 -31.58 -35.46 -35.90

- 1Z -




Table 2-2 Hwe] chf Fubd @ 2720 YT U4

- 13 -

49 No DPT-1 | DPT-3 | DPT-2 | DPT-4 | PT-206
(kPa) (kPa) (kPa) (kPa) (barA)

1 3.28 3.29 3.37 3.31 8.90

2 3.05 3.15 3.13 3.53 9.89

3 3.08 3.29 3.10 3.10 8.57

4 3.14 3.22 3.21 3.24 10.42

5 3.19 3.30 3.21 3.26 9.43

6 3.22 3.15 3.13 3.10 8.38

t 3.29 3.21 3.37 3.21 8.53

3 3.25 3.19 3.24 3.18 11.78

9 3.26 3.27 3.37 3.27 9.80

10 3.23 3.05 3.03 3.16 11.28
11 3.13 3.35 3.11 3.15 10.09
12 3.16 3.17 3.31 3.27 10.89
Mean 3.19 3.22 3.22 3.23 9.80

Ao hE FohfE 3 N QRN Fods ek



Pilot Operated Safety
Relief Valve

—

Fig, 2-1 Schematic Diagram of a S0VS for APR-1400
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Load
Reduction
Ring

3,350

Unit: mm

1955

OO0 —5—

[eele
[eele
[e)ele
450
[eXole
[eeXe
[eXole

——

168

Fig, 2-2 Configuration of a Sparger
for APR-1400



| XV Nent-01,02

HY-MG-01 AC-MV-01
PER-AW 01 i
- ‘_?_ X " ‘ ‘I‘u":u:umn Break
N HV#I';FL‘“L———_-
Water Storagme " - HY 12
Tank sV-10 \ b

Air Comprssor

O

|
./. Quench Tank

Steam Generator

Sparger

Heating  Line '.

Fig, 2-3 Configuration of the Unit Cell Test Facility
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sight glass |

Sparger

/ Man hole

-l sensor arm

~a

325 SN £ —
205 |
inner ‘ (1.2)
ructure | ‘
900 \
- \

Fig.2-4 Location of Uynamic Pressure Sensors and Thermocouples

in the Duench Tank



HvV201 PT203

pTeo1  FE201 TE202 PT205 TE250
PT101 (B X e o R ) ®
TCi01 |@ TE201 i TE220 PT202 TE204
— Orifice TE203 HOV202
- . LT201 TC210
Air Chamber

@® TC211

PT206 |m@|
@ TC212
®| TC213
Pressurizer ®| Tc214

—]
®| TC215
Sparger o Tc216
PT207 0@ TC217
Fig, 2-5 Arrangement of the Instrumentations in the Unit Cell Test Loop
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Pre=zzure kPa]

Pressure [kPa]

T T
0 +.2 44

LIS, N N S DA LN [N EEL HEL A B N E N 1 1
2B ZE 30 3Z 34 38 35 +0 +2 4+ +8 +3 50

Tme fed

—rr 1 1rr°rr1rrrrr+rrr-rrr°rrr°rrr
Z2F ZE 30 32 34+ 35 3IE +0 +2 +4 45 +E2 50

Tme gec]

Fig. 2-6 o =qf 43 (Y 1, 9F ¢ JURE AjA=4eg DPT-1, DPT-2, DPT-3, DPT-4)
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Pressure [kPa]

-+0

+0 -

T T T T T T T T T T T
_ZA IZE 30 3Z 3+ 35 3E +0 +I 4 5

T I
+2 50

-+0 ]

LG I I EEL B NN N I HL A L N HL |
2R ZE 30 3Z 34 38 38 +0 +2 &4 +5 3 50

Thme fec

-+0

_20_

rrr1r 1111 111 "1 "1 T '
ZA ZE 30 32 3+ 35 3IE +0 +I ++ +5 +2 50

The Fec

Fig, 2-7 o Zq} &33] (4 2, 948 ¢ JURE A|A44o 8 DPT-1, DPT-2, DPT-3, DPT-4)



Preszure jPa]

Preszure [kPa]

-+0]

T T T T T 1
d5 32 +0 +IZ +4 5 +Z 50

| —— 0 HI Low) Pas= Fler on WHEIOOS1_D

r+1r 1111 r1rr1rrr-rrr-rrrrr-i-
2B ZE 30 3Z 34 35 3E +0 +2 +4¢ +5 +E 50

Tme fec

T
ZF 282 30 32 34+ 35 32 +0 &2 44 485 +3 50
Tme fec]

Fig, 2-8 9 Y &4 (dY 3, €F 9] JUSE A|AL22 DPT-1, DPT-2, DPT-3, DPT-4)
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Prezsure kPa]

Pressure [kPa]

|||||||||||||||||||||||||
2 ZB 30 32 3+ 35 3IE +0 +2 +4+ +5 +2 50

rr 111 11 "1 " rr 1 1" rrr
ZB ZE 30 3Z 34 38 35 +0 +2 4+ +8 +3 50

The fFec] Tme FEG]

Fig, 2-9 o 2o} &33] (oY 4, 4T ¢ JURE A|A44e 8 DPT-1, DPT-2, DPT-3, DPT-4)
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Pressure [kPa]

Z5 ZE 30 3Z 3+ 35 3E

- Z5 ZE 30 32 3+ 35 3= +0 +2 ++ +5 +Z 50
Tme Beg

Tme Feg

Fig. 2-10 o Fob &4 (¥ 5 HUF 3 JU5e] LA Late g pPT-1, DPT-2, DPT-3, DPT-4)

_23_



Pressure kPal

Preszsure [kPa]

=50

1 L LI 1 T LI 1 T LI 1 T LI L B 1 T 1
1 LI DL B | L LA DL | L L 1
25 28 30 37 3+ 35 35 «0 &2 e+ 86 «E 50 25 ZE 30 AT s 35 3IE 40 4T 44 5 +E 50

Tme fec] The pec

Fig. 2-11 & =of cfojg] (4¥ 6, €% ¢ 28y A Hd4ae 2 OPT-1, DPT-2, DPT-3, DPT-4)
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Preszure kPa)

Pressure [kPa]

-+0 3

1 " T 1T " 1T "1 1T T 1T 1T -0
24 ZB 30 32 3+ 35 32 +0 +2 +4 +5 +2 50

Tttt tror
ZA Z2 30 32 3+ 35 3E +0 +2 ++ 45 +2 50
Thhe FEC] Tme FEC]

Fig. 2-12 i 5o} &4z (g 7, 43 3 JURE A et g DPT-1, DPT-2, DPT-3, DPT-4)
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Pressure kPa]

Pressure [kPa]

2.E 23 JJ:I 32 31- 3.E 33 1-EI 1-2 1-1- 1E 13 5I:I

50,

50+

T rTrTrrTrrTrrTrrT 1Tttt
£ZH L2 30 3Z 3+ 35 3= +0 +I +4+ +5 +Z 50
Thme fec]

25 ZE2 30 3.2 3+ 3J5 32 +0 +2 ++ +5 +2 50
Thme fed]

Fig, 2-13 o Fq &3z (4 8, 4F 3] 2945 AjH%e 8 DPT-1, DPT-2, DPT-3, DPT-4)

_26_



-+0 ]

LU N L SN B LN N LA NN B R N T Y 1 B S e e e e e e T
ZH ZE 30 3F 34 35 3E 0 +Z ++ 45 +E 50 25 22 30 3.7 34 35 35 0 47 44 5 +2 =0

Tme fac] Tme fed]

Fig. 2-14 oo Taf Sz (4yd 9, HF 3] 2 5e «)Aake g DPT-1, DPT-2, DPT-3, DPT-4)
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Fooczzoocozzoozzzo| —— +O0Hz Lew Pass Fleron wBIIONTZ A |

+0

Pres=ure kPa]

'5” T T T T T T T T T T T T 1 ﬁu
gg 25 ZE 30 32 3.4 35 32 40 +Z w4 45 42 50

Pressure [kPa]

LE

T T T T T T T T T T —T T &[0
258 ZE 30 3% 3+ 358 3Z +0 I ++ +8 = 50
Thme pec

1T 71T 17T 17 17T ™1 771 7T 71T T T T T
25 22 30 32 3+ 35 3IE +0 +2 44 +5 +2 =0
Tme fec]

Fig. 2-15 H9d Tt &3a] (4 10, ¥5F 3 o %e] 4 A4+4ke g 0pT-1, DPT-2, DPT-3, DPT-4)
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Preszure kPa]

Pressure [kPa]

r 1 1 r 1 111 r*rr1r -1 rr°r
T
25 ZE 30 3Z 34 35 3E +0 +2 4+ +8 +2 50 25 T2 30 3.7 34 35 32 +0 +7 4 5 2 50O

Tme ped] Tme pec]

Fig, 2-16 & Sof &4z (Ay 11, $F ¢ o8e] aA2take g DpT-1, DPT-2, DOPT-3, DPT-4)
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Pressure kPa]

-5u T T T T T T T T T T T T 1 '5”
ZF ZE 30 32 3.4 35 32 40 42 44 45 42 50

50, 50 -,

Foooooooooooss = o[ —— 40 Hz Low Paes Flller on vBIEAO0H7Z_C |

+0——

Pressure [kPa]

T T T T T T T T T T T T T T ] -0
LI L L L L L L L L
28 ZZ 30 32 34 35 3F 0 «Z 44 +5 +F 50 ZE ZE 30 32 3+ 35 3E +0 +Z w4 45 +2 S50

Tme fec] Tmea FEC]

Fig. 2-17 oo =q} &3] (4 12, 4% ¢ 28 A|4ekog DPT-1, DPT-2, DPT-3, DPT-4)
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Run no IE~ Calibration tank | _SES 01~ 162
/' 05 -0¢ Potentlal distribution with § 18-electrcde

&t 2,0 volt. 770 /8

R
WAL
—
i

RPN

~y PO

——

g
R

Fi 2-18 Electrode Analogy Test (Electrode 100, 0 mm above

T

the lTank Hottom)

41



Run no IE- ! Calibration tank
L.03 -~ Oy Potential distribution with § 18-electrode
: at 2.0 volt.

s B
N

%

s

b /

D,
i

/

LN & y : Ceg o ? Q o

\}: ) \\ i & 3 . _Cj ) Q 3 S
[ - o P E—— "
Fig, 2-19 Electrode Analogy Test (Electrode 115, 2 mm above

the Tank Hottom)
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Run no . Calibration tank RVE 92 -0 52

! IE-P10 . Measurement of the potential distribution Figure 2.9 .
1 . near the tak wall, ..
... The clow electrode/at 2.0 volt _ ‘
= EAgheati et R — N
R D -
: : : - .1?-.—-

. fm fhedght

PR Sy

~ T ' y . — —_ -
’_’ . L] Y > a4
- A oSN W Q.. - .. S.. o .

potential

Volt

Proba - ¢

Fig. 2-20 Electrode Analogy Test (Electrode 130.3 mm above
the Tank Bottom)
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Table 3-1 APR-1400 #| % Zcf o=ls Ts}7] g8t 2=+

29
A APR-1400 w2 A 2=
f (123 ) AT
a3 Ao
1580 N/A N/A
Z719%% (kg/m’s)
271 8rE=A] vl
F=s] e 0.9 0.98 1.0
gy (MPa)
Z71% ] R o
1247 ] 2.7 2.7 1.0
(m)
2z o) A
o I 15 15 1.0
Z1E7FA 9] A7 (m)
Z71% (Ibm) 33 331 1.0
Sz 5L (°C) 10 - 489 20 1.0
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Explain briefly the ABB Atom tests for the development of I type
sparger regarding developmental history.

Atom presented OH slide material on the development history, starting
with the Wirgassen incident in 1971 (Germany), where during steady
state operation the inadvertent opening of one safety relief valve (SRV)
caused rather severe damage to the containment, a large suppression pool
leak. This incident convinced the industry of the necessity to develop
means to mitigate the condensation oscillation effects in blowdown
situations.

Atom has conducted a large amount of blowdown experiments, at various
test facilities in Sweden, in laboratory tests both at reduced scale and in
full scale, and in several full scale tests at Swedish and Finnish reactor
sites, see attached list.

KAERI: What is the merit of a sparger instead of a straight pipe?

Atom: The strong steam burst creates powerful condensation oscillation
(CO) phenomena. With the sparger one has in principle eliminated CO,
and the pressure oscillation amplitude during air clearing in the pool

has been reduced strongly.

KAERI: Atom performed a large number (about 300) laboratory tests
and a rather smaller amount of full scale tests. With the experience
gained by Atom, is it necessary for KAERI to perform full scale tests,
or is it sufficient to rely on the KAREI lab.tests?

This question will be treated in a later session with a review of the
KAERI test facility.

Atom used electric analogy tests to solve the Laplace equation since it
was clearly verified from theoretical studies that the observed pressure

fileld is analoguous to an electric potential field.

KAERI: KAERI have tried to measure the pressure at the source, i.e.
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4.

the gas cloud outside the pipe outlet, but with poor success. Has Atom

tried to do the same?

Atom: Atom has not measured the pressure at the source, only at the
bottom and around the containment walls and inside the pipe. The
source pressure was calculated from the wall pressure, using also the
electric analogy tests. Submergence depth was an important parameter.
Calculating the source term is considered to be a rather straightforward

matter.

Explain briefly the ABB-Atom tests for the development of I type
sparger regarding test category and purpose.

The purpose was to reduce the magnitude of the forcing function. This

item is covered in the previous section.

Explain briefly the ABB-Atom tests for the development of I type

sparger regarding operating experience of sparger in the real plant.

There is now a wealth of experience of SRV actuations with the Atom
sparger design. There have been more than 200 - 300 years of plant
operation and there are 2 3 SRV actuations per plant and year. The
experience gained is thus from 500 - 1000 actuations so far. The
experience is very satisfactory with no adverse effects on the spargers or

from the spargers.

There is in principle one sparger design in all of the eleven BWR plants
built by Atom. The only existing difference is a smaller pipe diameter in
the older plants (125 mm) than in the later plants (150 mm). The hole

size is the same in both, but the number of holes differs.

ABB-Atom generated the System 80+ forcing function based on
ABB-Atom tests with using correction factors. Initially, what brought
you to consider the development of PWR sparger based on BWR
tests. Note that generally the operation conditions of the PWR are
different from those of BWRs.

It is true that the operational pressure will be quite different. But in the
sparger the conditions will be in principle the same if the correct
number of spargers are chosen. The outflow from the sparger is choked

and there will be same steam mass flow density. With four spargers per
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blowdown train in the Atom BWR the mass flow density is 1200 -1700
kg/m2s, and with six spargers per train in 80+ the mass flow density
is 1580 kg/m’s. The Studsvik tests were performed with a mass flow
density of 1300 and 1700 kg/m’s. This gives in principle the same

conditions in the sparger inlet line and also in the sparger.

There is more air mass due to longer piping in System 80+, which must

be taken into consideration.

Explain ABB-Atom methodology in the generation of System 80+
forcing function regarding how to draw out the parameters affecting

bubble cloud pressure.

The conditions in the Studsvik tests and 80+ are not the same. This
necessitates correction factors to be employed. Atom presented the slide

SRV discharge tests at Studsvik, see attachment, the major content of
which is the  Parameter Investigation . This is mainly the same as in
the report RVE 92-056, section 2.4. A list is given there with seven key

parameters.The list is considered to be quite complete.

There must be a sufficiently large water volume around the spargers, or
rather, a water surface area, named EWSA. The distance between
spargers should not be less than 1 m, and the distance between spargers
and the walls should not be less than 0,6 m, but departures from this
can easily be accommodated by compensating closeness with larger

submergence depth, as is the case in Forsmark.

Explain ABB-Atom methodology in the generation of System 80+
forcing function regarding how to determine the correction factor

and its reasoning.

The correction factors are derived from a combination of the electric
analogy tests and the steam blowdown tests. The Studsvik tests cover the

range of steam mass flow density from 1300 kg/m’s to 1700 kg/m’s.

Mass flow density is a function of pipe diameter squared and the
condensation effect is a function of pipe diameter. Therefore, in a pipe

the condensation effect will increase with smaller diameter.

In the KAERI test facility the steam discharge pipe has a much smaller



diameter (2 ") than the sparger pipe (6 "). The mass flow denities are
roghly 500 kg/m’s in the sparger and 4500 kg/m’s in the discharge pipe.
This can pose a problem with using a relevant mass flow density for the
KAERI correction factor. This problem will be addressed in a later

session.

Explain ABB-Atom methodology in the generation of System 80+
forcing function regarding how to generate the normalized forcing

function.

The curve in KAERIs documentation is a typical curve, taken directly
from the experimental measurements. Data were taken from the test
series 155 - 175. There were 6 transducers per test along the vessel
bottom and walls, i.e. there are about 120 curves for the forcing
function. There is principally the same normalized curve in each of the

120 samples, but with different absolute values.

The test conditions were not identical in each test. The same spargers
were used, and the same mass flow density, but the conditions in the
pipe were varied due to changes in initial conditions. The test set-up
allowed a change in the steam/air content to be made. In this way
simulations of various leakage rates through the valves were made
possible. From Fig. 2.8 in RVE 92-056 it can be seen that there is not

a very strong dependency on temperature and steam content.

Explain briefly the Figs. 2.6 and 2.7 in RVE 92-056
Reference i1s made to section 2.3.2 in RVE 92-056.

In the process of utilizing the analogy between the pressure field and the
electric potential field concepts a set of curves over relative potential
(relative pressure) as functions of submergence depth in the pool are
produced. Among this set of curves the curve that best fits the measured
pressure values at different locations in the pool is chosen to correspond

to the correct location of the center of the gas cloud.

The radius of the bubble cloud is taken from the amount of gas present
in the pipe before blowdown. The relevant parameters are gas mass,
temperature and pressure (atmospheric, hydrostatic and bubble pressure;

the bubble pressure is being guessed initially, 3 bar, say). This gives the

- Th -



9.

10.

bubble reference volume (reference diameter), for positive pressure

amplitude.

In the Studsvik test, the radius of bubble cloud is estimated to be
0.297 m based on the compressed volume 0.11 m3. The pipe volume
of the Studsvik test facility is 0.496 m3. What is the basis of the
compressed volume of 0.11 m3

Reference is made to section 3.3.1 in RVE 92-056.

The initial bubble pressure is given a rather large value of 3 bar. This
is just a reference value, corresponding to a set of specific initial
conditions (roughly 50 % gas and 50 % steam).

In the Studsvik test, the radius of bubble cloud is estimated to be
0,297 m based on the compressed volume 0,11 m’. The pipe volume
of the Studsvik test facility is 0,496 m’. What about using the air

mass ratio instead of the bubble cloud radius ratio

Reference is made to Appendix 2, page 6, in RVE 92-056.

The correction factor for IRWST can be determined either from the air
mass ratio or the bubble cloud radius ratio, with reference to the cubic
relation between volume and radius. The correction factor can be

adjusted accordingly, when the final air mass is known.

11. In the Studsvik test, the radius of bubble cloud is estimated to be

0,297 m based on the compressed volume 0,11 m’. The pipe volume
of the Studsvik test facility is 0,496 m’. What is the reason of
larger bubble cloud pressure in case of larger air bubble radius

Reference is made to section 2.4.4, second sub-section, in RVE 92-056.

The normalized bubble pressure is chosen as the maximum positive
pressure, corresponding to the smallest bubble cloud. A larger air mass
in the pipe is thus compensated by increased bubble pressure assuming
the same driving pressure in both cases. That is, the correction factor is

shifted from the reference radius to the bubble pressure.

12. What is the effect of steam in the pipe on the bubble cloud pressure

and frequency.
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Regarding the frequency, see section 2.4.6 in RVE 92-056.

An increased steam content implies a smaller mean bubble radius, and
from the relation fo.R0 = 3,26, a smaller radius gives a larger frequency.
Normally, the fundamental frequency range is between 5 and 8 Hz,

depending on the amount of steam content.

The employed relation is applicable for an infinite volume of water. The
tank and pool obviously have limited dimensions, but the EWSA must

be sufficient.

The influence on bubble cloud pressure is more complex. Some
indication can be found in Fig. 2.8 in RVE 92-056. As stated in 1.3.3

above, the effect of temperature and steam content is not very strong.

The KAERI test facility does not include the electrode analogy test.
Instead we tried to measure the bubble cloud pressure directly. But,
it seems that the test results were not nice enough to be used. How

can we calculate the bubble cloud pressure with the wall pressure?

The results from the Atom electric field analogy tests and the procedure
to use them for the analysis of bubble cloud pressure can be applied
also to the KAERI pressure field tests. Appropriate scaling factors must
be applied. The difference in tank width between Studsvik and KAERI
is very small, a factor of 1.06. The distance from the sparger end to the
bottom of the tank is almost exactly the same in the two test facilities
(in the reference case in Fig. 2.6). The water level in Studsvik was 5.5
m, in KAERI it is 3,5 m. The x-axis in Fig. 2.6 will thus go from 0 to
3.5.

The intersection between the two solid lines in Fig. 2.4 is at a position
of 130.3 mm, which, with a scaling factor of 33, corresponds to a depth
in the pressure tank of 4.3 m. The curve in Fig. 2.6 is valid for this
value. The corresponding depth in KAERI is 3.5 - 1.1 = 2.4 m. At this
depth the KAERI curve attains the same value as the curve in Fig. 2.6,
0.74 (1.47/2.0V in Fig. 2.4), possibly with a slight conservative reduction
to 0.73 to account for minor scaling effects (33/1.06). Note that these
values refer to a specific reference bubble volume of 0.11 m’, see
section 2.3.2 in RVE 92-056.
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The experimental conditions do vary between the two test facilities, but
this is of no consequence, really, since Atom did a large number of
tests where the initial conditions were also allowed to vary greatly. The
most important aspect is the driving pressure in the experiments, and this
is not much different in the two cases, as shown in the KAERI test
results. The experiments can be seen as being performed with a  black
box  for the gas cloud configuration at the sparger outlet. The amount
of gas in the bubble ( the black box ), for instance, 50 % more in
KAERI than in Studsvik, is irrelevant, since the analysis is based on

measured values on the tank walls and bottom.

The curve in Fig. 2.6 correponds to a test where the sparger end is at a
submerged depth of 4.5 m (there is a wrong value in the first
sub-section in section 2.3.2 in RVE 92-056), and where the bubble cloud
center is at 0.2 m above this end, ie. at 4.3 m. Other curves were
recorded where the center of the bubble is 0.7 m above the sparger end.
The 0.2 m curve is the curve that gives the best correlation between

relative voltage and relative pressure

The relation between voltage and pressure is:

p/pgas cloud = U/Umax, ref. electrode

p is the measured value

U is the measured voltage

Umax, ref.electrode is a fix reference voltage (2.0 V in Fig. 2.4)

pgas cloud is the bubble pressure, which can thus be calculated from the
three parameters. The calculational procedure is described in the first
sub-section of section 2.3.2 in RVE 92-056. The reason to use this

methodology is to demonstrate that the two fields are analoguous.

In the KAERI tests there are five different pressure transducers along the
walls. These give five values of pgas cloud, which should be averaged

to give a mean value.

KAERI: Can the pgas cloud be calculated theoretically?
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Atom: Yes, it requires the solution of Laplace’s equation.

It seems that the load reduction ring is an unique feature which is

found in the ABB-Atom sparger. Explain the design concept of it.

With the ring the two discharge clouds, from the upper and lower
outlets, will coalesce into one at the sparger bottom. The configuration is
a result of an extensive testing program which demonstrated that the
dynamic loads are reduced substantially with the ring. Without the ring
there will be two clouds which will produce a different type of

oscillations and higher loads.
KAERI: Friction factors for the two outflow areas?
Atom: Atom's POOLBLOWER calculations would have to be consulted.

What is the exact meaning of normalized time to 1 Hz fundamental

frequency in the forcing function.

This has no real meaning other than to produce a curve which has an
oscillation period of 1 s. Compare Fig. 3.2 where the period is denoted
as 1/f0. The fundamental design frequency range is between 4 and 20
Hz, but normally the frequency range was between 5 and 8 Hz, see
1.6.1 above.

In the generation of the correction factors for System 80+, it seems
that every parameter affecting the bubble cloud pressure is of equal
importance. Did you consider any weighting factor for each

parameter?

Reference is made to sections 2.4 and 2.5.

There is no weighting applied. The correction factor corresponds to a
conversion of the constituents, which are affecting the factor, to the

appropriate design configuration.

17. For the estimation of dPgas , the measured wall pressures and the

electrode analogy curve are used. Explain the following regarding

the electrode analogy curve:

- Can we obtain the limiting value of 0.73 (or 0.74) based on a
theoretical approach? Any reference or calculation?
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This is discussed in 1.7.1 above. A value quite close to 0.74 should be
obtained with the KAERI test parameters, provided they are adequately
scaled. Atom performed tests with four different electrode positions,

corresponding to submergence depths of 3.3 m, 3,8 m, 4.3 m and 4.8 m.

These yielded limiting relative voltage (pressure) values of 0.71, 0.73,
0.74 and 0.74, respectively. The curves for 3.3, 3.8 and 4.8 m are
attached to this report, Appendix 1 3, and the curve for 4.3 m is
shown in Fig. 2.4 in RVE 92-056. To invoke conservatism in the
determination of the reference pressure value, a smaller value should be

used. Atom recommends KAERI to use a value around 0.7.

Utilizing potential field theory, it is a rather straightforward matter to
calculate with a suitable computer code the relative voltage (pressure) on
the tank walls, or, conversely, the source pressure from the wall
pressures. Atom performed these calculations during the test procedures,

but this analysis was not documented.

18. For the estimation of dPgas , the measured wall pressures and the
electrode analogy curve are used. Explain the following regarding
the electrode analogy curve:

- How can we generate the dP/ dPgas curve for the KAERI test ? It
is difficult to estimate the curve near the center of bubble cloud
(about 2.4 m below water surface), since we do not have the
ABB-Atom electrode test curve with the submergency of 2.4 m.

The curve from Fig. 2.4 in RVE 92-056 is transferred directly to Fig.
2.6 with the same shape and relative position to the straight lines. After
creating the straight lines from the KAERI parameters, see 1.7.1 above,
the relative deviation to the corresponding pressure curve should be

made the same.

19. For the estimation of dPgas , the measured wall pressures and the
electrode analogy curve are used. Explain the following regarding

the electrode analogy curve:

- Is the pressure distribution curve applied to both the tank side

walls and bottom wall ?

Yes. Due to the large distance from the bubble center to the bottom of
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the tank, greater than 3 times the bubble radius in Fig. 2.6, the pressure
is practically the same along the whole bottom, about 0.74. The most
important measured pressure values are those on the tank walls, since
they exhibit the largest differences. The reference pressure value is
calculated for PT8. For the other measuring points, the pressure is
calculated relative to PT8 in order to determine the deviation from the
electric analogy value, and thus, as stated previously, to establish the

validity of the analogy approach.

20. For the estimation of dPgas , the measured wall pressures and the
electrode analogy curve are used. Explain the following regarding
the electrode analogy curve:

- Looking at the pressure distribution curve, it seems that the tank
wall pressure depends on just submergency. Do you think that the
pressure depends on the actual distance from the source rather than

the submergency ?

From potential field theory, there is an 1/r dependency only close to the
source. Further away the pressure values (equi-potential values) are the

same along lines orthogonal to the field lines.

21. ABB-Atom recommends that the center of bubble cloud is located 0.2
0.7 m above sparger bottom based on experience. Can we have a

conservative result (i.e. larger dPgas) if we use the value of 0.2 m
in the estimation of dPgas for APR 1400 ?

The deviation between the results from 0.2 m tests and 0.7 m tests is
approximately 1 % for the gas cloud pressure. The value 0.2 m should

rather be considered as a best-estimate value.

22. ABB-Atom determined dPgas based on 21 tests changing the initial
conditions in the pipe. But the KAERI test facility can not change
the initial conditions in the pipe and we perform with air only.
Evaluate the KAERI test in the conservative view point. How many

repeated test runs are necessary ?

In comparison with the Atom tests, the KAERI tests correspond to a
sub-set of the Atom tests which was performed without taking account

of steam valve leakage or temperature changes. A KAERI correction
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factor for the consideration of these effects thus seems appropriate.
However, with reference to Fig. 2.8 and Appendix 1 in RVE 92-056
this factor should not be very large. It is the Atom opinion that a factor

of 1.4 - 1.5 should be adequate for the maximum gas cloud pressure.

It is also the Atom opinion that a set of about 10 tests of the KAERI

category should form a sound basis for statistical treatment.

23. Comment on the KAERI test facility
The drawings of the KAERI test facility were examined in detail. The

implications of differences in geometry and physical conditions between
the KAERI and the Atom tests were discussed.

The number of pressure sensors both in the pipe and the tank should be
adequate. As in the Atom tests, some locations in the tank should give
practically 1identical pressure values. Atom did not use all of the

pair-wise equivalent sensors in the evaluation.

The location of the sensors is also satisfactory. Ideally, one or two
additional pressure sensors at higher levels in the tank, between PT 1
and the water level, would improve the conditions further. This would
facilitate a better correlation with the electric analogy curve in Fig. 2.6
in the straight line portion of the curve. With the existing KAERI
locations, the measured points will be more concentrated towards the

high pressure values, the non-linear part of the curve.

It is the Atom opinion that the number of sensors in the pipe is also
sufficient.

There are rather more thermocouples in total than in the Atom tests.
This 1s of course very valuable for the KAERI plans to analyse the
temperature distribution in the pool with the 3D code FLUENT.

There is a very long opening time for the valve V202 in the KAERI
tests compared to the Studsvik tests and System 80+. This gives a
significant reduction of the sparger inlet pressure during the air clearing
phase at KAERI and therefore lower pressure amplitudes of the pressure
oscillations in the tank.
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The air chamber in the test arrangement, together with its compressor,
has the purpose to simulate an increased initial amount of gas. There is
some concern over the implications of this arrangement as opposed to
the Atom tests, where the relative steam and air content could be
controlled. The initial air chamber pressure of 40 bar implies a very
large equivalent pipe length in the prototype APR 1400. It stems from a

very conservative choice of maximum calculated sparger flow.

It is the opinion of Atom that the specifics of the air chamber do not
have much significance for the relevance of an application of the Atom
electric analogy methodology to the KAERI tests. If the pressure trends
during air clearing are similar to the Atom tests, then the air chamber is
not crucial to the validity of the test program. The most important
factor is to have a sufficient pressure at the sparger inlet. The KAERI
maximum value of about 11 bar does not apply to the air clearing
phase, according to the test results. There is a significantly lower
pressure value that is applied during the air clearing phase (roughly 5
bar, from the test results). This low test value during the KAERI tests

is due to the extremely long valve opening time in these tests.

KAERI should apply a corrrection factor to the maximum bubble
pressure due to the lower sparger inlet pressure (cf. section 2.5 in RVE
92-056, where a factor of 1.0 (no correction) is suggested for System
80+ in this respect, since the inlet pressure is the same as in the Atom
tests.)

The pressure oscillation frequency should be lower at KAERI because of
the larger air mass, but this should be off-set by a smaller submergence
depth and lower sparger inlet pressure in those tests. This is verified in
the available graphs from KAERI, which show about the same frequency

as the Atom tests.

KAERI: Influence of pipe length? Pressure wave reflections at valves,

etc.?

Atom: In Atom BWRs the pipe length is roughly the same as in the
experiments. In APR 1400 the pipe length is much larger. Pressure

reflections will occur, but the effect will be small because, normally, the
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reflections occur in a very short time period. Furthermore, the KAERI
(and APR 1400) valves have markedly slower opening times, which will
produce lower pressure amplitudes, because the sparger inlet pressure
will be lower. And, of course, this will also result in smaller shock and

reflection waves in the pipe.

KAERI: Refer to Appendix 1, page 1, in RVE 92-056: Do the 21
discharge tests in Calculation 1 include cases with increased pool

temperature?

Atom: No. The elevated pool temperatures apply to tests 177  182.
Higher pool temperatures gave rise to higher gas cloud pressures, see
Fig. 2.8. This is the basis for the design criterion for the temperature

influence on the pressure loads in the tank, Fig. 2.9.

24. The AE (Architect Engineer) requests that KAERI provide not only
bubble pressure transient data but also bubble radius and velocity
transient data. The bubble pressure transient data can be obtained
through KAERI tests. Did ABB-Atom have any experience of
providing the bubble radius and velocity transient data ?

Atom has no explicit experience of providing velocity transient data.
However, the effect of bubble oscillation on the water velocity is quite
insignificant. The water velocity is very small, and albeit it has some
influence on the frequency, it has no influence on the loadings on
structural components in the pool. The effect is disregarded in the
structural analysis of Atom BWR containments and reactor pressure

vessels.

From Newtons law on acceleration, applied to the water mass, the
maximum vertical surface velocity can be estimated. The value is quite
small, of the order of 0.5 m/s, according to the tests in the Studsvik
experiments with spargers. This gives rise to a dynamic pressure of
about 0.1 kPa. This value is more than ten times smaller than the
pressure loads from the dimensioning maximum pressure gradients on the
most important components in a suppression pool (e.g. piping with a
diameter larger than 50 mm). The dynamic pressure is of course larger
in the vicinity of a gas cloud, but it is still negligible compared to the

pressure loads from the dimensioning maximum pressure gradients,



because they also obtain higher values near a gas cloud.

The maximum vertical water displacement during one oscillation is of

the order of 30 mm in the above tests.

The bubble velocity can be estimated from the relation between bubble

surface area and water level area. From the continuity equation,
velocity(t)water surface.areatank = velocity(t)bubble.area(t)bubble
The bubble radius can be obtained from the electrode analogue studies.

25. In the generation of System 80+ correction factors, ABB-Atom
distinguished the maximum steam mass flow density and the
maximum pressure in the pipe, although the two parameters are
coupled. Explain the reason. In APR-1400, is the same procedure
applied ?

The two parameters are coupled, but the most important parameter by
far is the pressure. If the configurations in the test and the plant are the
same, the parameters can be used exclusively. If there is a substantial
difference, both parameters must be taken into account, but the driving

pressure is the most important factor.

In the Atom tests, an exchange of steam valve, with no other change in
parameters, enabled measurements to be made at two different steam
mass flow rates with a difference of about 30 %. The measured driving
pressures confirmed a pressure difference of the same amount, see
Summary in the report AE-RL-1630.

As stated in section 1.14.1 above, the specifics of the air chamber in
the tests, and thus the mass flow, are not crucial to the validity of the
test program. The Atom recommendation to KAERI, as indicated in
section 2.4.1 in RVE 92-056, is to disregard the mass flow density in
the generation of correction factors, because of the large pipe length
difference between test and prototype plant, and to only use the pressure
parameter. This is the meaning of the omitted value, - , in the table on
page 19 in RVE 92-056. The driving pressure value to be chosen from

the tests is an average between the PTS and PT6 values.
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KAERI: Why did Atom separate the two parameters?

Atom: To make the most use of the test facility. It was shown during
the experiments that the maximum pressure in the pool decreases with
the same factor as steam mass flow density, if nothing else is changed
(section 2.4.1 in RVE 92-056). This was not clear before the tests.

KAERI: In view of a possibly quite large correction factor between the
KAERI test facility and prototype plant APR 1400, is the extrapolation

procedure for the generation of correction factors still valid?

Atom: The procedure for the generation of correction factors is valid,
provided care is taken to match the appropriate parameter values to each

other, see section 2.14.1 above.

The appropriate driving pressure value is the maximum pressure during
the air clearing period. In the KAERI tests this occurs in the range 3.2
34 s. The maximum pressure is then 5 - 6 bar, from the availabe
graphs. Generally, the maximum pressure will occur when the valve is
fully open. Here, the valve open area will still be quite small at the
time of air clearing, because the valve has a rather long opening time. It
is thus very important to compare the maximum air clearing pressure
value with the relevant corresponding value for the prototype plant. This
value is most probably not the specified value of about 15 bar, but
some lower value. Due to the long opening time, the maximum pressure
value occurs at a time later than during the air clearing period. The
KAERI maximum driving pressure value of about 11 bar should thus
(most probably) be compared to the prototype value of about 15 bar,
and the KAERI value of about 5 bar should correspond to some value
lower than 15 bar. Conceivably, since the valves used in the two cases
are of the same kind, the air clearing pressure in the prototype is of
the order of about 7 - 8 bar. This must be verified by the Architect
Engineer in order to obtain a more proper value. The valve opening
time should be the same for the test and the prototype APR 1400.

26. In KAERI test facility, the steam mass flow density is changed with
the pipe locations, since the pipe diameters are different. In the

generation of the correction factor for the maximum steam flow
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density, which one (2 inch or 6 inch) should we choose ?

See Q2 above: Disregard mass flow density in the generation of
correction factors, and wuse the appropriately matched gas driving

pressures.

27. The pressure transient curve obtained in the test has a lot of
fluctuations. The forcing function generated by ABB-Atom is rather

neat. How could we get rid of the fluctuations to get a neat curve ?

In order to examine the frequency content in the pressure measurement
signals, a Fourier transform analysis was performed for the experiments
in Forsmark 1. Oscillations with a frequency of 40 Hz and higher give
small amplitudes and were disregarded. A return to the time domain
yielded curves that were considerably smoothened. This is common
practice. It is essential for the stress analysis work to reduce the amount

of pressure curves.

The high frequency fluctuations are most certainly not due to gas cloud

oscillations, but due to transducer vibrations and tank wall movements.

The KAERI curves tend to exhibit a more harmonic character than the
Atom curves. This is probably due to lower pressure amplitudes. There
is a correlation between amplitude and harmonicity. The Atom curves
show a less harmonic character and larger pressure amplitudes. Normally,
a stronger harmonic character implies a more conservative situation,
especially for frequencies with a stronger coupling to structural

resonances.

As regards the number of cycles to be applied in the analysis, Atom
usually used ten cycles, the last three or so of which give an
insignificant contribution in the stress analysis. The same should apply to
KAERI and APR 1400.

28. ABB-Atom generated a normalized forcing function based on about
120 pressure transient curves. Explain how can all the curves be
fitted to one normalized curve. Did you use any skills in the

generation of a curve with many pressure curves ?

It was found that, after normalization, all curves turned out to have a

very similar appearance. The deviation among the 120 curves (in the
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29.

tests 154 to 174 in Studsvik) was normally only a few percent. This has
been confirmed also in real plant testing at Forsmark, where Fourier

analyses as well as response spectra analyses were performed.

Due to this very consistent behaviour, it is appropriate to choose one of
the measured curves as a representative of all the others. Atom
disregarded the measuring points with the largest content of disturbances
(transducers at the bottom of the tank), and, observing that several of
the wall transducers showed practically the same signals, chose the curve
for PT8, which had slightly higher amplitudes and a minimum of
disturbances. The curve chosen was from test number 186, since the
pressure amplitude in this test was higher and corresponded best to the
pressure amplitude in System 80+. A factor in the selection was the
degree of harmonicity, which, as stated above, should be large, and
which was determined as the ratio between the maximum negative
amplitude and the maximum positive amplitude, for the fundamental

oscillation of PT8 from test number 186.

A change in initial gas conditions produces a change in fundamental
frequency. In the Atom tests, with a large variety of initial conditions,
the fundamental frequency range was from 4.8 Hz to 7.5 Hz. The figure
33 in RVE 92-056 was designed to accommodate all frequencies
occurring in the blowdown situations. From the Forsmark plant tests, as
well as the Studsvik and the laboratory tests, it was confirmed that the
normalized pressure amplitude for frequencies between 4 and 10 Hz is
covered by the value 1.0, and that the amplitude decreases at higher
frequencies. Reference is made to section 2.4.6 in RVE 92-056.

Looking at the KAERI pressure transient curve, it seems that the
frequency is different according to time. As time goes, the frequency
becomes higher. How can we estimate the frequency of the forcing
function ? The initial part of the curve looks also different from
ABB-Atom curve.

This phenomenon can also be seen in the Atom curves. As in KAERI,
the frequency from the first few peaks is about 5 Hz, and from the last

peaks about 7 Hz.

The fundamental frequency is determined from the first two positive
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maximum amplitudes. The design minimum value of 4Hz on page 19 in
RVE 92-056 is the minimum value defined in Fig. 3.3, which is based
on the full range of Atom tests, as stated above. Figure 3.3 can be
applied also to System 80+.

The difference in the initial part of the curves is most probably due to
the large content of gas in the KAERI case. Differences in this part of
the curves were also observed in the Atom tests, and are attributed to
differences in initial steam content in these tests. This part of the curve
represents quite high frequency values, in the range of 40 60 Hz, and

has no significance in the structural stress analysis.

30. What is your opinion on performing a full scale test in KAERI ?

The need for full scale tests depends to a substantial part on the views
of the Korean Regulatory Authority. Atom can refer to the situation with
System 80+ in the US. The NRC has had no problem accepting the
applicability of the Atom sparger pressure analysis methodology without
CE having to perform their own tests. The situation here, where KAERI
has access to the Atom full scale test data and the Atom methodology,

and in addition perform their own tests, must be quite favourable.
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