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In region x≤ 0. 537, the magnetic shear is negative, the minimum value of q is qmin 
=0. 725q(l). 

The Shafranov shift and the deformations of the cross-section can be obtained 
analytically or by a little numerical work. 
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Electron cyclotron resonance heating (ECRH), such as the fundamental heating 

and the second harmonic heating, is a basic and powerful method to heat the plasma 
in tokamak and stellarator devices. Theoretical studies of this heating have been 
done in rather early literatures[1~3], however, the understanding of some important 
problems is still uncertain. These include: the coupling of the O-mode and the 
E-mode and the role of this coupling in wave damping, the O-mode damping 
mechanism, the evolution of the electron distribution function during O-mode 
damping, the synergetic effect of the O-mode heating with other wave processes, etc. 
For the linear dispersion study, we have recently obtained a refined result for pure 
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O-mode[4]. Here we give result for nearly perpendicular propagation. 
At first we consider the non-relativistic case. The coupling of the O-mode and 

the X-mode only happens in the narrow region near the resonance point with a width 
of about 2 kz Rρ e, with kz being the parallel wave number, R the major radius, ρ e the 
electron gyro-radius. Outside this region, the wave polarization vector is parallel to 
the magnetic field. 

In the near resonance region, the dispersion relation of the O-mode is[4~7] 
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where ⊥n is the perpendicular refractive while nz is the parallel refractive, 
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Z and Z' are the plasma dispersion function and its derivative with respect to the 

argument 
eTz

e
1 ν

Ωωζ
k
−= . eΩ is the electron cyclotron frequency, which is inversely 

proportional to the major radius R. Condition for the validity of non-relativistic 
approximation is 

              1 >> nz >> c/eTν                      (4) 

Outside this region, the dispersion relation of the O-mode is approximately equal[1] 
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The real part of this relation gives α−=⊥ 12n . In the inner region of 21 <ζ , the 

wave is nearly right circular polarized and we have 

⊥

⊥⊥ −−==
−

n
nn

E
EE

z

yx

13

3
2

3

1

13 )1(i
χ

χε
ε
χ                   (6) 

The imaginary part of the wave number can be obtained from Eq. (1): 
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We note that this quantity is inversely proportional to the parallel refractive nz, 
implying that the smaller the parallel refractive, the narrower the width of the 
resonance region and the more peaked value of the absorption. 

Now we go to the relativistic analysis for nz≤ν/c. Modification only happens 
to the elements ε11, ε13, ε33, other elements do not need to change. Expressions of 
Eqs. (1) and (6) are still correct. In the weakly relativistic case, we have 
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where function G(s, n) was defined in Ref. [5], its general form is 
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and f0= (2π)-3/2θ-3exp(- p2/2θ2) is the distribution function with θ=(mTe) 1/2. It is 
sufficient to calculate the three quantities G(0, 1), G(1, 1), G(2, 1) with the 
relativistic formulae while other quantities can use the non-relativistic results, even 
the cold plasma results, such as G(2, 0)= -1. Now we obtain 
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The imaginary parts of these quantities can be easily obtained, the real parts of them 
(the principal parts) are rather complicated. 

The imaginary part of G (s, n): in condition 

        ττ ≤z0                           (16) 

we obtain 
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The expression of Im{G(2, 1)} is very complicated and we do not write it. For very 
small nz, we have 
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Im{G(0, 1)} and Im{G(2, 1)} approximately have their values of case nz =0 [1]: 
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The above results show that absorption of the O-mode happens in the inner side of 
the resonance. 

The real part of G(s, n):in some literatures the real part of these function are 
replaced by the cold plasma results. This is not correct. We need to calculate these 
quantities more accurately. The dominant role is played by the principal value of the 
quantity G(1, 1), from Eq. (13), we get 
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Detailed analysis shows that in above integral, contribution from the region of 
21 τττ ≤≤ is almost cancelled by contribution from outside this region. The final 

result is proportional to nz. We write it as 
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where function gl1(nz,∆ ) basically only depends on ∆ . Now we understand that for 
the wave absorption, the main role is played by the above three imaginary quantities 
while for the mode coupling of the O-mode and the E-mode, the real parts of these 

quantities are also important. We note that in region of width R
mc
T
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and the imaginary parts of these relevant quantities are comparable. 
    Now we consider the coupling of the O-mode and the X-mode. In the inner 
region we have 
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For nearly perpendicular propagation, the value of both the real part and the 
imaginary part of the function G(0, 1) is approximately the same as in case of nz=0. 
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Both the real and imaginary parts of this function have values of order unity, the per- 
pendicular refractive index of the O-mode is also unity. This means that in the inner 
region, there is a vertical component of the electric field, which is proportional to nz 
n⊥. For Fokker-Planck study, it is necessary to know the following quantity: 
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Noting that in the inner region, three functions related to the damping rate are 
in same order of magnititude, we obtain 
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The function G(2, 1) can be replaced by its value in case nz =0 [7]: 
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The above result can continuously transforms into that of case nz = 0[7]. The 
non-relativistic analysis can not transform in this way. Expressions of Eqs. (28) and 
(29) are the main results of our study. They show that the absorption of relativistic 
resonance comes from two parts, one is the direct O-mode damping, the second is 
the X-mode damping coupled with the O-mode. 
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