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The particle orbits, which intersect the magnetic axis, behave differently from

banana ones!"?

I referred to as potato orbits. The potential importance on tokamak
transport is emphasized by Politzer””!, Lin, Tang, and Lee'*, and Shaing, Hazeltine,
and Zarnstoff'> ®. However, there are many problems in the last two papers. For
example, the Eq. (48) in Ref. [5] should satisfy the orbit constraint, which
guarantees single value of the function gy, that is, solubility condition, and Eq. (8) in
Ref. [6] has the same problem. The con strait comes from the distribution function
being an invariant when collision can be neglected for the same order. In this paper,
plasma transport at magnetic axis in tokamaks is systematically studied by means of
variation principle with orbit constraint instead of the constraint from magnetic
differential equation used by Rosenbluth, Hazel tine, and Hinton!”. The particle
trajectory and the magnetic surface are quite different near the magnetic axis.

The potato orbits are characterized by their turning points of the poloidal
velocity, 7 and 6@, which change with the particle pitch angle,
r,=(49pR, /3)"* (v4y /v)!'? and cos@, =(6R,/27gp)""* (v, /v)*'*. We define inverse
aspect ratio € =r¢/R, by the averaged r; over the distribution of the trapped particles,

where

[ 7.60r.6,)d6,
L

0= 1
[ £.6,40, W

and f,(6,) 1is the distribution of the trapped particles, which intersect the magnetic

axis. £1s like the inverse aspect ratio far away from the axis, which determines the
trapped particle fraction in the order of +e , potato width wp 1n the order of ¢gp/ Je,

where p = wo/2, v thermal velocity at axis, £2 the gyrofrequency, and the effective
collision frequency, veg=v/€ The ion thermal conductivity derived from the random

walk process near the magnetic axis is

X Z\/E"effws =Vi92/712873/2 ()
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The result in Eq. (2) seems quite conventional. Eliminating £ in favour of Ry. It
is equal to vigiRy which has weaker dependence on magnetic field. In Ref.[5], the ion
thermal conductivity is also provided, but the step in the random walk is different,
X =0.8v.(Iv, / 2,)"7(q/IR)"’ . It is obscure in physics.

The bootstrap current at the magnetic axis is also derived. In the reactor scale,
the bootstrap current density at magnetic axis could reach 10% of the total plasma
current density. The variational principle!’ ! was proved to be more accurate and
effective in evaluation of all neoclassical transport coefficients.

1 Particle dynamics

In tokamak configuration, the Hamiltonian!'” of a charged particle can be
expressed as:

Hzﬁ[(PR —edy ) +(P, —ed, ) +(P, —eR4, /R2]+ eU (3)

where Ag, Az, and 4, are the vector potential components of the magnetic field, U
the electrical potential which is assumed to be function of ¥, M the mass of the
charged particle which we set equal to unity for simplicity, and e the charge. P, Py
and Py are the canonical momenta conjugate to R, ¢, and Z respectively,

PR:VR+ eAR (4)
P¢:RV¢+ eRA¢ (5)
Pr=vz+eAdz (6)

The magnetic field can be expressed as:

B=V4xV¥ + V¢ (7)

where ¥is related to the poloidal flux of the magnetic field, / related to the poloidal

current, R is the major radius. Then, in tokamak, we have

R
A =0, A,=—Iln—, A,=—— (8)
RO

We introduce a generating function, the area conserved transformation,

2

QR;

F,=—"""exp X lni— X tear — ZX 9)
2 2R, | R, R,
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where

R
X=2,R,In"*. R=R, exp(—p(;ssa} (10)

0 c

and (2 is the toroidal gyrofrequency, p the Larmor radius, o the gyrophase,
subscripts 0 and c refer to the values at the magnetic axis and the guiding center
respectively. X and « are the new coordinates conjugate to the momenta

pz
P, =7+ psina+
X P AR

sin 2¢r (11)

c

P, :%gcpz (12)

where Py is actually the guiding center of Z coordinate, Z.. The Hamiltonian is
rewritten as:

2

R

HlecPa ¢ | sin® a+cos’ & +L[P¢+e¥’]2+eU (13)
2 R 2R?

The canonical transformation makes the Hamiltonian be exact in new

coordinates. Now, we introduce a small parameter 9,

S~p/R. ~B,/B, (14)

Since the total energy is conserved during the particle gyromotion, to the first
order of p/L, , the magnetic moment could be divided in two parts,

P,=P,+P,(a) . P, could cancel the explicitly o-dependent part of the
Hamiltonian, that is, the gyrocenter could be shifted to construct the Hamiltonian in
the form,
1
H, = 2,P,, +W[P¢° +e% (X, P +eU (15)

where ¥,and Uy are independent of a. 2 and R, are functions of X through Eq.
(10). Both Py and P, are constant of motion conjugate to ¢ and @respectively.

Together with conservation of the canonical momentum in toroidal direction, we
get a set of equations of motion for the guiding center,

dR Bi(u Ru,
— =R 16
d B¢(R R; J (16)
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d—Zzi(l—R”EJ+vd (17)

d B,\R R
du E
EZQRRVd +QOROB—¢ (18)

¢

U

1
where u=Rvy, up=— Rja—yszja)E, v, =

R,

2
(.QCPu +”—2j Some subscripts are
R

omitted for simplicity. The velocities in R and z directions are easy to change to the
radial and poloidal directions through rotating the coordinates. For any tokamak
configuration, the particle guiding-center equations of motion are reduced in (R, ¢, z)

coordinates,
B
Ve =—2v, (19)
B
p
B R B
v, =—" L s vy (20)
B,\R R} ) B,

where vy is in radial direction, while v, is in poloidal direction. The Egs. (19) and

(20) are the generalized version of equations of motion obtained by Balescu!' .

Near the magnetic axis where & is, generally, small, large-aspect-ratio
expansion always applies. Eq. (15) could be changed into

1 ) 5 ¢|/2
H=0Q,P, +———(qRyv, + @ — (2,P, +v2)——cos 21
0 24°R? (q 0Y90 ) 0 )% (21)

0 0

where @:%Qoﬂ, the longitudinal magnetic flux conjugate to 6, @, =%QOR§,

g=®/e¥ the safety factor, v,, is the toroidal velocity at magnetic axis and the

0
electrical potential in Eq. (15) neglected for simplicity. The Hamiltonian equations
for the guiding center motion in toroidal cylindrical coordinates (», €, ¢) are given

by

dr

—=-v, sinf 22

QU Vq (22)
46 _ L ~Yicosh 23)
dt gR, r

QP v . .
Where v, =5 o It is easy to verify thatv;, /2=H-,P,. We define
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x=+/@ , then Eq. (21) is turned to be cubic equation,
x> +2qRyvy0x —2q Ry (82,P, +v3,)cos 0/ D> =0 (24)

The solutions of Eq. (24) given in Refs. [1, 2] and [5], have following form,
x=2(20qR,v,, /3)""?Y (25)

where Y is one of the functions: sin (/6 & £/3), cos (£/3), sin h (#/3), or cos h (/3)

depending on range of parameter ox; where fis a new angle, o=v,, /|v,|, and

90 /[Vg0

K=(0vy / Fv)? (26)

where F, =(27qp, /16R,)"* =13+/@ , the fraction of trapped particles, p, =v, /2,,

the Larmor radius, a stands for either election or ion. We take v,=w, for simplicity,
where vy, s the thermal velocity of species a.

2 Variational principle

Calculation and variation of the entropy source provides a particularly efficient
means of evaluating transport coefficients, which are found from the Onsager
relations.

To establish the variational formalism, first, we look at the drift kinetic Eq.
(12).

dF
=) @7)

where C(F) 1s the Fokker Planck collision operator. F can be expressed as:

F=F,(H,P)+g (28)

where the first term is the Maxwellian form with A in the place of kinetic energy,
and P, in the place of ¥, the second term is the correction due to collision. At

magnetic axis, Py is small compared with e'#, where ¥, is the plasma boundary
position. For the particles, which intersect the magnetic axis, F, can be expanded

m

as follows:

F'(H,¥)=F (H,0)+¥ — ——m_ ¢ 29
w(H,¥)=F,(H,0)+ YT (29)

Near the magnetic axis, for the parabolic distribution, ?ij is finite and
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constant. For any position », we have

OF Rv, _OF vy

3
¥ e o 2 0)

where 2, is the poloidal gyrofrequency. If roin Eq. (1) is chosen as expansion

position, the resulting thermodynamic force and fluxes are relevant to the
neoclassical transport problem near the magnetic axis. Using H, Py, 7, t, ¢, 6
coordinates, the drift kinetic equation near the magnetic axis is

g dg oF
a)£+r§+eE¢v¢a—H:C(F) (31)

where w=d6@/dr is given in Eq. (23). Then, we have, from Eq. (31), the orbit

constraints

C(F-v, E
J‘Mdg -0 (untrapped region) (32)
w

6, C(0=+1)+ (0 =-1)
J‘Hl @

de=0 (trapped region) (33)
where f; is given by Spitzer and Harm!"*!. Finally, we observe, in the trapped region,
that

g+ =g(=D) (34)
since (@, ,)=0 by definition.

Thus, our problem is reduced to determination of the function g, which satisfies
Eqgs. (31)~(33). We now wish to derive a variational formulation of this problem.
For simplicity, the temperatures of electron and ion are assumed to be equal. From
the four perturbed distributions,

fasza(l—i—fa)a gasza(1+éa) a:iae (35)
one may construct a bilinear form!”! from
K(f,2) == [d*¥,C.(2) (36)

where

C,(8)=Ch(84:8.) +Ciy (845 81) (37)
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The quantity may be recognized as the rate of irreversible entropy production.

With the abbreviation
U =u*3(uS§0(B — U, Up) (38)

we have

K(f,g)=me* nAY [d*v,d*V] fig, itV op X
a,b

[m_l v, —m; s, Jx[m_laﬁ—m_l ag—bj (39)

: avaB b aV;B : avw b aV’

where u in Eq. (38) is the relative velocity of the two colliding particles.
Furthermore, it is clear that K(f, g)=0 whenever df, / vy =cm,v, +dym, with ¢ and

dp constant, where dg=Bp/B.
The first two terms in Eq. (29) have no contribution to K(f, g). We conclude

1 z—;—HAm + Ay H]= v, d, fy — Dy, + 8, (40)
pa
where
We define

$=-S a7, -veE f)elr v 5, 1) (41)
where (4) = § Ad6/ § dé , the orbit integral. The convenient velocity variables are
w=%v2, U=Q,P, (42)

If x4 defined in Eq. (42) and H change position in Eq. (21), —u acts like
Hamiltonian with @ and 6 conjugate, that is

o I
_(gg) =, E()v:l) =qR,®, d3v=;2anVdﬂ/qRo|w| (43)

It is easy to prove that the requirement, 8 =0, is equivalent to Eqgs. (32) and
(33). Keeping to lowest order in F,, the fraction of trapped particles, since the cross

terms is small in the ordering we may approximate, we have
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- ¥
K(f, f»)=2me* 1nA§ma2Id3vaFMa av; ﬁxjd%bFMbU@ (44)

From locality of the trapped particles, we expect

o, o o, o, .
DD gnd e gr0dt 45
du_ow ¢ Gy TN o (45)

o

where cos&&vy/v , & the poloidal angle in spherical coordinates (v, & @) in velocity
space. The following variational process is similar to the one used in Ref. [7], except
that v is replaced by gRo@ and magnetic surface average replaced by orbit average
in Eq. (41). There is no need repeating. Finally, we get

$=4r’e’ InAY. m> 1, [V dvfy, (v) G ()Y F, (v) (46)
a b

where G, and Fy have the same meaning as in Ref. [7] and with =vg/v,
1 1 qp 1/3 dK‘I_ 1 1
Io=|dl| () =7 (= 1) =| =2 -
= K“’|> <“’|>}( : (21?0} jzc” <4Y2 —1> <4Y—1>:|X

1/3
[1- F2(k*)] = 2.2(%} (47)

0

which is typical of the neoclassical transport at magnetic axis.
3 Summary and conclusion

We collect our results. Using gradient of n and 7, we can write the fluxes 7, O,
and J

2

’ ’ nE

r'=F, Pre [ 212" 40591 —231F, —% (48)
T n T B

€ p

0=0,+0, -5IT= FivippinT(— o.%%j +

’

ol 21991 4204 | £ 1.66F,
T T

P nE¢

T (49)

¢ p

and
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’ ’ 2
Jy—J 4 =F, ﬂ(— 4.62”——0.26Lj—3.60FC ‘1 E, (50)
B n T

m

P €

where P, By, n’, and T’ are the values at the position ry, F.. and Fj are the fractions

of the trapped particles for electrons and ions respectively, and we have used the
classical result!"’!
2
en
J,=198""E, (51)

m,

The ion thermal conductivity could be derived from Eq. (49).
X =0~6V1q2p12873/2 (52)

which is the same as the one in Eq. (2) derived from random walk process except for

numerical factor. Eliminating € in favour of Ry, we get

X =0.78v,qpR, (53)

The 1on thermal conductivity turns to be weaker dependence on the magnetic
field, which we may call Bohm-like diffusion. However, high temperature is
favourable in confinement. The onset condition of banana regime is determined
byv, <(gp,/R,)(v,/qR,) . Therefore, the maximum ion thermal conductivity in the

banana regime is

2 =0.78¢° pl w, (54)

1
where @, is the ion transit frequency.

The bootstrap current can be obtained in Eq. (50),

’ ’

J, =F. ﬂ(— 4.62”——0.26£j (55)
B T

p n

where

F.=1.19(gp./R,))"" (56
e e 0

In the reactor scale for small-aspect-ratio tokamaks, 7.=10 keV, Rp=1 m, Bp=1 T,
we get, p=3.37 X 10~ m, F.=0.0828, and the bootstrap current

dp
J, =0.10R— 57
b % (57)

where p is the total kinetic pressure of the plasma. It is possible that the bootstrap

current density could reach 10% of total plasma current density at the magnetic axis.
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In the Refs. [14] by Hirshman and [15] by Shaing, bootstrap current in an
ultra-low aspect ratio tokamak has been calculated. However, the fluid model!'®!
does not fully apply to the banana regime. And, Shaing’s paper has mistakes. For
example, it says that when aspect ratio approaches to unity, (n-VB)* goes to infinity.
This conclusion is not true. Using an exact solution of Glad-Shafranov equation

[17

which could form spherical tokamak configuration!'” with aspect ratio equal to

unity,

2
*P:WO%(zRg _R*—4y?7%) (58)
0

where Ry, ¥ and yare constant, we get

B B 2 2
nVB=_b ypo_pr ygro_L [10¥ 9B° 10%¥ dB (59)
B 2B* 2B*(R OR 90Z R 0Z OR
where
I; 1 (o) 1 (ow)
B =4 =5 ] torl 5, 60
R2+R2(8RJ +R2[aZj (60)

We can see that (n-VB) never goes to infinity.

Finally, we conclude as follows. First, the ion thermal conductivity at magnetic
axis is larger than outer part of the plasma by (a/gp)(a/R)"?, where a is radius of
plasma boundary and it has weaker dependence on the magnetic field, which we
may call Bohm-like diffusion. This accounts for the fast heat diffusion and
Bohm-like behavior at magnetic axis in tokamaks. Secondly, for the long-term
operation of tokamak reactor, especially for the low aspect ratio tokamaks bootstrap
current may play an important role. Ten percent of bootstrap current density at
magnetic axis could reduce the need of noninductive current drive. High temperature
is favourable in confinement in our scaling. Hopefully the prediction could be
verified by the future experiments in tokamak.

The author wishes to thank Prof. QU Wenxiao and JIAN Guangde for many
helpful discussions.
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