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 3. 7  Plasma Transport at Magnetic Axis 
in Toroidal Confinement System 

WANG Zhongtian 
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    The particle orbits, which intersect the magnetic axis, behave differently from 
banana ones[1, 2], referred to as potato orbits. The potential importance on tokamak 
transport is emphasized by Politzer[3], Lin, Tang, and Lee[4], and Shaing, Hazeltine, 
and Zarnstoff[5, 6]. However, there are many problems in the last two papers. For 
example, the Eq. (48) in Ref. [5] should satisfy the orbit constraint, which 
guarantees single value of the function g0, that is, solubility condition, and Eq. (8) in 
Ref. [6] has the same problem. The con strait comes from the distribution function 
being an invariant when collision can be neglected for the same order. In this paper, 
plasma transport at magnetic axis in tokamaks is systematically studied by means of 
variation principle with orbit constraint instead of the constraint from magnetic 
differential equation used by Rosenbluth, Hazel tine, and Hinton[7]. The particle 
trajectory and the magnetic surface are quite different near the magnetic axis. 
    The potato orbits are characterized by their turning points of the poloidal 
velocity, rt and θt, which change with the particle pitch angle, 
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and )( tt θf  is the distribution of the trapped particles, which intersect the magnetic 
axis. ε is like the inverse aspect ratio far away from the axis, which determines the 
trapped particle fraction in the order of ε , potato width wp in the order of ερ /q , 
where ρ = vt0/Ω, vt0 thermal velocity at axis, Ω the gyrofrequency, and the effective 
collision frequency, veff=v/ε. The ion thermal conductivity derived from the random 
walk process near the magnetic axis is 
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    The result in Eq. (2) seems quite conventional. Eliminating ε in favour of R0. It 
is equal to viqiR0 which has weaker dependence on magnetic field. In Ref.[5], the ion 
thermal conductivity is also provided, but the step in the random walk is different, 
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    The bootstrap current at the magnetic axis is also derived. In the reactor scale, 
the bootstrap current density at magnetic axis could reach 10% of the total plasma 
current density. The variational principle[7～9] was proved to be more accurate and 
effective in evaluation of all neoclassical transport coefficients. 

1  Particle dynamics 

   In tokamak configuration, the Hamiltonian[10] of a charged particle can be 
expressed as: 
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where AR, AZ, and Aφ are the vector potential components of the magnetic field, U 
the electrical potential which is assumed to be function of Ψ, M the mass of the 
charged particle which we set equal to unity for simplicity, and e the charge. PR, Pφ 
and PZ are the canonical momenta conjugate to R, φ, and Z respectively, 

 PR=vR+ eAR                            (4) 

Pφ=Rvφ + eRAφ                           (5) 

 PZ=vZ + eAZ                            (6) 

     The magnetic field can be expressed as: 

φΨφ ∇+∇×∇= IB                         (7) 

where Ψ is related to the poloidal flux of the magnetic field, I related to the poloidal 
current, R is the major radius. Then, in tokamak, we have 
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We introduce a generating function, the area conserved transformation, 
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where 
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and Ω is the toroidal gyrofrequency, ρ the Larmor radius, α the gyrophase, 
subscripts 0 and c refer to the values at the magnetic axis and the guiding center 
respectively. X and α are the new coordinates conjugate to the momenta 
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where PX is actually the guiding center of Z coordinate, Zc. The Hamiltonian is 
rewritten as: 

      [ ] eUeP
RR

R
P +++












+







= α
2

2
22

2
c

c 2
1cossin

2
1H ΨααΩ φ         (13) 

   The canonical transformation makes the Hamiltonian be exact in new 
coordinates. Now, we introduce a small parameter δ, 
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   Since the total energy is conserved during the particle gyromotion, to the first 
order of nL/ρ , the magnetic moment could be divided in two parts,  

)(10 αααα += PPP . 1αP  could cancel the explicitly α-dependent part of the 
Hamiltonian, that is, the gyrocenter could be shifted to construct the Hamiltonian in 
the form, 
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where 0Ψ and U0 are independent of α. cΩ and Rc are functions of X through Eq. 
(10). Both Pα0 and Pφ0 are constant of motion conjugate to α. and φ respectively. 
   Together with conservation of the canonical momentum in toroidal direction, we 
get a set of equations of motion for the guiding center, 
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omitted for simplicity. The velocities in R and z directions are easy to change to the 
radial and poloidal directions through rotating the coordinates. For any tokamak 
configuration, the particle guiding-center equations of motion are reduced in (R, φ, z) 
coordinates, 
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where vΨ is in radial direction, while pv  is in poloidal direction. The Eqs. (19) and 

(20) are the generalized version of equations of motion obtained by Balescu[11]. 
    Near the magnetic axis where ε is, generally, small, large-aspect-ratio 
expansion always applies. Eq. (15) could be changed into 
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ΨΦ eq /=  the safety factor, 0φv  is the toroidal velocity at magnetic axis and the 

electrical potential in Eq. (15) neglected for simplicity. The Hamiltonian equations 
for the guiding center motion in toroidal cylindrical coordinates (r, θ, φ) are given 
by 
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Φ=x , then Eq. (21) is turned to be cubic equation, 
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The solutions of Eq. (24) given in Refs. [1, 2] and [5], have following form, 
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where Y is one of the functions: sin (π/6±β /3), cos (β /3), sin h (β /3), or cos h (β /3) 
depending on range of parameter σκ, where β is a new angle, 00 / φφσ vv= , and 
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where Φρ 3.1)16/27( 3/1
0aa == RqF , the fraction of trapped particles, 0aa /Ωρ v= , 

the Larmor radius, a stands for either election or ion. We take va=vta for simplicity, 
where vta is the thermal velocity of species a. 

2  Variational principle 

    Calculation and variation of the entropy source provides a particularly efficient 
means of evaluating transport coefficients, which are found from the Onsager 
relations. 
    To establish the variational formalism, first, we look at the drift kinetic Eq. 
(12). 
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where C(F) is the Fokker Planck collision operator. F can be expressed as: 
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where the first term is the Maxwellian form with H in the place of kinetic energy, 
and Pφ in the place of Ψ, the second term is the correction due to collision. At 
magnetic axis, Pφ is small compared with eΨb where Ψb is the plasma boundary 
position. For the particles, which intersect the magnetic axis, *

mF  can be expanded 
as follows: 
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   Near the magnetic axis, for the parabolic distribution, 
Ψ∂
∂ mF  is finite and 
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constant. For any position r, we have 
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where pΩ  is the poloidal gyrofrequency. If r0 in Eq. (1) is chosen as expansion 

position, the resulting thermodynamic force and fluxes are relevant to the 
neoclassical transport problem near the magnetic axis. Using H, Pφ, r, t, φ, θ 
coordinates, the drift kinetic equation near the magnetic axis is 
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where td/dθω =  is given in Eq. (23). Then, we have, from Eq. (31), the orbit 
constraints 

    0d
)( s =

−
∫ θ

ω
φφ fEvFC

      (untrapped region)           (32) 

0d)1()1(2

1

=−=++=
∫ θ

ω
σσθ

θ

C       (trapped region)         (33) 

where fs is given by Spitzer and Harm[13]. Finally, we observe, in the trapped region, 
that 
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since 0)( 2,1 =θω  by definition. 

   Thus, our problem is reduced to determination of the function g, which satisfies 
Eqs. (31)～(33). We now wish to derive a variational formulation of this problem. 
For simplicity, the temperatures of electron and ion are assumed to be equal. From 
the four perturbed distributions, 

                  ei,a)ˆ1(),ˆ1( aMaaaMaa =+=+= gfgfff      (35) 

one may construct a bilinear form[7] from 

∑∫−=
a

aa
3 )(ˆd),( gCfvgfK                   (36) 

where 

)ˆ,ˆ()ˆ,ˆ()( baabaaaaa ggCggCgC +=                 (37) 



 337

    The quantity may be recognized as the rate of irreversible entropy production. 
With the abbreviation 
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where u in Eq. (38) is the relative velocity of the two colliding particles. 
Furthermore, it is clear that K(f, g)=0 whenever aaaa /ˆ mdvcmvf ββαβ +=∂∂  with c and 

dβ constant, where dβ=Bβ/B. 
    The first two terms in Eq. (29) have no contribution to K(f, g). We conclude 
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where ∫ ∫= θθ d/dAA , the orbit integral. The convenient velocity variables are 
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   If µ defined in Eq. (42) and H change position in Eq. (21), -µ acts like 
Hamiltonian with Φ and θ conjugate, that is 
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   It is easy to prove that the requirement, 0=δS& , is equivalent to Eqs. (32) and 
(33). Keeping to lowest order in Fa, the fraction of trapped particles, since the cross 
terms is small in the ordering we may approximate, we have 
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From locality of the trapped particles, we expect 
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where cosξ=vφ/v , ξ the poloidal angle in spherical coordinates (v, ξ, α) in velocity 
space. The following variational process is similar to the one used in Ref. [7], except 
that vφ is replaced by qR0ω and magnetic surface average replaced by orbit average 
in Eq. (41). There is no need repeating. Finally, we get 
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where Ga and Fb have the same meaning as in Ref. [7] and with t=vφ0/v, 
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which is typical of the neoclassical transport at magnetic axis. 

3  Summary and conclusion 

   We collect our results. Using gradient of n and T, we can write the fluxes Γ, Q, 
and J 

    
p

e
e

2
pe

e 31.259.012.2
B

nE
F

T
T

n
nnF φ

τ
ρ

Γ −





 ′

+
′

−=             (48) 

+





 ′
−=−+=

T
TnTvFTQQQ 46.05~

piiiei ρΓ  

T
B

nE
F

T
n

T
TnTF

p
e

e

pe
e 66.194.299.1 φ

τ
ρ

+





 ′

+
′

−          (49) 

 and 



 339

    φφφ τ E
m

neF
T
T

n
n

B
nTFJJ e

e

2

e
p

es 60.326.062.4 −





 ′

−
′

−=−          (50) 

where ,,, pp nB ′ρ and T ′  are the values at the position r0, Fe and Fi are the fractions 

of the trapped particles for electrons and ions respectively, and we have used the 
classical result[13] 
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    The ion thermal conductivity could be derived from Eq. (49). 
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which is the same as the one in Eq. (2) derived from random walk process except for 
numerical factor. Eliminating ε in favour of R0, we get 
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   The ion thermal conductivity turns to be weaker dependence on the magnetic 
field, which we may call Bohm-like diffusion. However, high temperature is 
favourable in confinement. The onset condition of banana regime is determined 
by )/)(/( 0t0ii qRvRqv ρ< . Therefore, the maximum ion thermal conductivity in the 
banana regime is 

                  it
2
i

2
i 78.0 ωρχ q=                        (54) 

where itω  is the ion transit frequency. 
   The bootstrap current can be obtained in Eq. (50), 
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where 
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   In the reactor scale for small-aspect-ratio tokamaks, Te=10 keV, R0=1 m, B0=1 T, 
we get, ρe=3.37×10－4 m, Fe=0.0828, and the bootstrap current 

          
Ψd
d10.0b

pRJ ≈                        (57) 

where p is the total kinetic pressure of the plasma. It is possible that the bootstrap 
current density could reach 10% of total plasma current density at the magnetic axis. 
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In the Refs. [14] by Hirshman and [15] by Shaing, bootstrap current in an 
ultra-low aspect ratio tokamak has been calculated. However, the fluid model[16] 

does not fully apply to the banana regime. And, Shaing’s paper has mistakes. For 
example, it says that when aspect ratio approaches to unity, ( B∇⋅n )2 goes to infinity. 
This conclusion is not true. Using an exact solution of Glad-Shafranov equation 
which could form spherical tokamak configuration[17] with aspect ratio equal to 
unity, 
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where R0, Ψ0 and γ are constant, we get 
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We can see that B∇⋅n  never goes to infinity. 

    Finally, we conclude as follows. First, the ion thermal conductivity at magnetic 
axis is larger than outer part of the plasma by (a/qρi)(a/R)1/2, where a is radius of 
plasma boundary and it has weaker dependence on the magnetic field, which we  
may call Bohm-like diffusion. This accounts for the fast heat diffusion and 
Bohm-like behavior at magnetic axis in tokamaks. Secondly, for the long-term 
operation of tokamak reactor, especially for the low aspect ratio tokamaks bootstrap 
current may play an important role. Ten percent of bootstrap current density at 
magnetic axis could reduce the need of noninductive current drive. High temperature 
is favourable  in confinement in our scaling. Hopefully the prediction could be 
verified by the future experiments in tokamak. 
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