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Abstract

We determine the precise order of B(G)*, for G = E)jGj, a bounded abelian 2-group, where

c7i is a direct sum of r copies of a cyclic group of order 2". The cases r = and r = k, for some

natural number k, are respectively considered in this paper.
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1 INTRODUCTION

For G a finite group, the Burnside ring B(G) of G as introduced by A. Dress 2 is the

Grothendieck group of the category of finite G-sets with multiplication given by direct product.

Tammo, tom Dieck in [1] constructed congruences between fixed point numbers to determine

the order of units of Burnside rings of various finite groups while Matsuda introduced the

structure matrix method to determine the order of units of Burnside rings for vaxious finite

groups with many normal subgroups.

Our principle aim is to use these two procedures to determine the precise value of the order

of units of Burnside rings for G= C2., and G = C2. ED C2. ED ... D C2., respectively.

r-times
More precisely, using the congruence method, due to tom Dieck, we proved first the following

result:

Theorem 34:

Let G = C2. and H, G with 1 = Ho H1 ... H = G. Let y(Hi) E 1±11 for

i = 0, n - then

-y(Hi) + -y(Hi+,) + 2-y(Hi+2) +... + 2j-'-y(Hi+j) + ... + 2n-i-2 -y(Hn-1) + 2n-i-l-Y(Hn) c- 02 n-i)

for all i = 0, 1, ... , n - if and only if

,y(Ho) = y(Hi) -y(Hn-1) = ±,y(H.).

Remark:

Theorem 34 implies that

IB(G)*l = 2 2

Finally, using Matsuda's approach, we proved the following:

Claim 4.2

Let G:= C2n (D C2n (D ... (D C2n , k a natural number greater than 1, then we have B (G)* 22k

k-times

2 Preliminaries with Notations

In this paper we use the following notations:

1 the unit element of G

(H) the conjugacy class of a subgroup H of G

-iD(G) the set of conjugacy classes of all subgroups of G

For a G-set X and for each x E X, the set

G., Ig E Glgx x} is the isotropy subgroup at a point x of a G-set X,

XG Ix E Xlgx x Vg E GI is the set of fixed points of a G-set X

JXJ is the cardinal number of a set X,

[X] is the element of B(G) represented by a finite G-set X,
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1B(G) is the unit element [point] of B(G),

N(F) is the normalizer of a subgroup F of G in G,

R* is the unit group of a ring R,

X is the ring of rational integers,

X2 is the set I , - 1}

X2 is the set 0, -21.

'The following is a summary, for the reader's convenience, of elementary facts about the Burnside

ring of a finite group and its units which will be used in he sequel, most of which axe standaxd

:materials taken directly from Matsuda[3] and are stated without proof;

Theorem 210]

Let G be a finite group and B(G) the Burnside ring of G. Then we have the following

(1) B(G) is a commutative ring and a free E-module generated by the set f[GIF]I(F) E

-P(G)}-

(2) Let -yF : B (G) --+ X be a map defined by

-yF([GIH]) = I(GIH)FI, where: (H), (F) E 1(G).

Then -yF is a ring homomorphism. Moreover,

" � 11(F)E�t(G)7F : B(G) __+ X1,P(G)l

is an ifective ring homomorphism.

(3) For each finite G-set X, [Xj has the following representation in B(G).

[Xj = 1:(F)E-I,(G) AF[GIF], where AF = jxjx E X and (G,,,) = (F)IIIIGIFI

(4) For an element a E B(G), the following three statements are equivalent

(i) a E B(G)*

(ii) a2 = 1B(G)

WII(G)l
(iii) y(a) E �2

'Theorem 2.201

The Burnside ring B(G) can be viewed as a subring of Alap(ib(G), X), wherey E Map(4�(G), X)

is contained in B(G) if and only if

E IN(H)IN(H) n N(K)jj(K1H)*j-f((K)) �--- 0 modIN(H)IHI for all (H) E -(D(G),

(K)

where the sum is over N(H)-conjugate classes (K) SUCIL that H is normal in K and KIH is

cyclic, and (KIH)* is the set of generators of KIH.

Definition 2.3:

A subset S of 4(D(G) is called a basic subset if S satisfies the following two conditions:
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(i) G E S < >E and for (H) E S, H is a normal subgroup of G.

(ii) If (H), (F) E S, then (H F H n F E S, where H F is a subgroup of G generated by

H and F.

Now, for each H G in S, put

S(H = (F) E P(G)IF D H, and H = H' if F D H'D H and HE SI

a non-empty set. Next, define a partial order on -(P(G) by setting (K) (P) if K is conjugate

in G to a subgroup of P.

Further define, with respect to this partial order, a bijection

t(S(H)) : S(H) JS(H)J}

satisfying

(K) $ (P) if t(S(H))((K)) < t(S(H))((P)).

Finally, we have the following theorem:

Theorem 240]

Let be a basic subset of -(D(G). Then we have

JB(G)*J = 2(F1(H)ES-fG} IMt(Sl (2gIS(H)l ) n XIS(H)l 1), where(H)) 2

Mt(S(H) = (aji(t(S(H))) = -yp([GIK])) is the JS(H)J x JS(H)J

structure matrix of B(G) over S(H) subordinate to t(S(H)) and where t(S(H))((P)) j and

t(S(H))((K)) = i

Theorem 2543]

Let 4)(G) be the set of conjugate classes of all subgroups of G, then we have

JB(G)'J = 1M�_,(X,'-,P(G)J ) n E14,(G)J I,
2

where Mt is the 11)(G)l x 1D(G)l structure matrix of B(G) over 4)(G) subordinate to a bijection

t defined on 4)(G).

Theorem 26:[3]

If G is a finite abelian group, then we have JB(G)*J = 2'+', where

m = JHJH is a subgroup of G with G1HJ = 2}1.

Theorem 2.7:[l]

If G is a finite group of odd order, then we have JB(G)*J = 2.
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3 Units of Burnside ring of Abelian 2-group of exponent n and
rank I

Lemma 31:

Let [G : 1 = 2 then we have for each unique subgroup Hj of G, [G: Hj = 2n-j.

Proof-

To see this let i . 2 = G : 1]. We can enumerate all divisors of i in an increasing sequence

of numbers, say,
nio = 1, il = 2 2 = 4 3 = 8,. in = 2

Clearly, since G is cyclic, for each divisor ij of i, there i a unique subgroup Hj of G such that

JHjJ = 23, and hence [G: Hj = 2n-j.0

Lemma 32:

Let a denote a generator of G ad put aj = a2n-i so tat

Ho =< ao > Hj =< aj > j C, j n

with

ao ><< a, >< ... << an >=< a >= G.

Then we have the following list of distinct conjugate classes

CI(G) ao > < a, > < an >.

Proof-

'This is trivial because for all j , NG(< aj > = G.0

Lemma 33:

Let Ai be set of generators of Hi, i = 0, 1, 2.... n, then we have

n-2 n-1
JAo = 1, AI I JAn-1 I = 2 and JAn1 = 2

Proof.

Let g be an arbitrary element of G, then g = ak for all k. It also follows from above lemma that

g >= Hj for some j, that is,< a k >=< a 2n-j > So we can rewrite each member in Cl(G in

terms of its set of generators in the following way:
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Ao la" I

Al la 2n-I

2 6 4n-6 4n-2
An-I la a a a

An la, a3, a2n-3,a2n-1
and hence the result follows. 0

Now, since IN(H)IN(H) n N(K) = in this case, applying theorem 22 we obtain the congru-

ences

n-2,y(Hn_l n- ',y(G) 0(2')-y(Ho)+ y(H,)+ 2,y(H2)+ 4,y(H3)+ 2 )+ 2
-y(H,)+ -y(H2)+ 2,y(H3)+ 2n-3,y(Hn_,)+ 2n-2-f(G) 0(2 n-1)

-Y(Hn-l)+ -y(G) 0(2)

Theorem 34:

Let -y(Hi) E ±1} for i = 0,... n - then

n-i-2 n-i-I_Y(Hn) n-i)-y(Hi) +-y(Hi+,) +2-y(Hi+2) +2j-'-y(Hi+j) .. +2 -y(Hn-1) + 2 0(2

for all i 0, 1, n - if and only if

-y (HO) = -y(I-Ii) -y(Hn-1) = ±-y(H.).

Proof-

To see is easy, since

-y(Hi) + -y(Hi+l) + 2-y(Hi+2) + ... + 2n-i-2_Y(Hn_,) = 2n-i-l_Y(H.)

and by assumption we must have that

-y(Hi) + -y(Hi+,) + 2-y(Hi+2) ++ 2 n-i-1 -y(Hn) ' 0(2 n-,) for all i.

To see " we use induction on n - i:

For n - i = 0 ==� i = n it is easy to see that -y(Ho) = -y(Hn)

Similarly for i = n - 1

Now assume that the induction hypothesis is true for S' < n - 1, that is, n - i > 1, so that we

have

-YO = -Y(Hi+l) = -Y(Hi+2) -Y(Hn-1) = ±-Y(Hn)

Then we obtain by hypothesis

-y(Hi) + 2 n-i-I - 1)-yo2n-i-l-Y(Hn) 0(2n-i

6



This implies,

-y(Hi) + 2-'-'(-to ± -y(H.) - yo �-- 02n-i).

But since (-yo -y(Hn)) is either or 2 we gt that 2n-i I -yo -Y(Hn)) - 02n-i)

and -y(Hi - yo 0(2n-i), also since n - i > 1, -y (.ffi = I ± 1, -yo = I1} we cannot get

that +1 1(4) for instance, so it follows that yHi = yo and the proof is complete.0

Remark:
2The above theorem 34 implies that IB(G)*1 = 2

4 Units of Burnside ring of Abelian 2-group of exponent n and
rank r > 

Lemma 41:

Let G = 2n (D C2n ED ... E) C2n, n > 2 and H < G. Then the number of GIH such that

r-times

IGIH = 2 is 2r - .

Proof-

Let G:= C2n ED C2n E ... E C2., n > 2.

r-times

Clearly, in this case IGI = 2n" and for H < G with GIHI 2, we have that IHI 2n,-' and H

'Can be described by a multiple of any two or more of the forms:

C2n E C2n E) ... ED C2n E) 1

C2n E) 1 E) C2n E) ... E) C2.
1 E) C2� (D ... E) C2n

We obtain a matrix representation of each subgroup bas a follows:

Starting with the leading first row of the first matrix as a2, we allow that above the a's on the

diagonal, there can only be 1's, while above the a2 there can be only members of set {1, a}.

That is, the first subgroup base is a k x k-matrix

a2 1 1 ... 1 )

1 a 1 ... 1
1 1 al ... 1

a.

The second and third subgroup bases axe k x k-matrices:
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a 1 1 ... 1 (a a
1 a2 1 ... 1 1 a2

1 1 al ... I and 1 1 al ... I respectively.

a] a)

Continuing with this rule we stop at the k x k-matrix

a I 1 ... E

1 a 1 ... E

1 1 al ... E where

a2j

E E

a2 being in row and column k, we have k - elements that can belong to 1, a}, which gives a total

of 2k-1 combinations. Hence, the number of subgroups of order 2-1 is E'=, 2 k-1 = 2r - 1.n

Claim 42:
2r

Let G:= C2� E) C2. E ... � C2. then we have I (G) 2

7
r-times

Proof-

4�(G) is basic and by definition 4)(G)(H) = (H)j for each (H) E 4P(G). If (H) E 4)(G - GJ,

then the stucture matrix of B(G) over P(G)(H) is the x 1-matrix (IGIHI). But this x 1-

matrix satisfies theorem 2.4 only if IGIHI = 2 and in this case from Lemma 4.1 above we obtain

the value m of theorem 2.6 and the result follows.0
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