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PERTURBATION OF FINITE-LATTICE SPECTRAL
LEVELS BY NEARBY NUCLEAR RESONANCES

A. K. Motovilov, V. B. Belyaev

Joint Institute for Nuclear Research, Dubna

We consider finite linear or cyclic crystalline structures with molecular cells having narrow pre-
threshold nuclear resoriance. We prove that, if the real part of such a nuclear resonance lies within the
energy band (the convex hull of the energy levels) of the crystalline structure arising from a separated
molecular level, then there exist molecular crystalline states that decay exponentially in time and the
decay rate Г ^ 0 of these states in the main order is described by the formula Г ^ = 4 ( R e a / r £ ) ) ,
where a is the value of the residue of the molecular channel transfer function at the nuclear resonance
point and Г ^ is the nuclear resonance width.

Мы исследуем конечные линейные и циклические кристаллические структуры, элементарные
молекулярные ячейки которых обладают узким предпороговым резонансом. Мы доказываем, что
если вещественная часть этого резонанса находится внутри выпуклой оболочки (полосы) уровней
энергии кристалла, возникающих из некоторого выделенного молекулярного уровня, то существуют
молекулярные состояния кристалла, скорость экспоненциального распада которых Гд в старшем
порядке описывается формулой Гд ' = 4(Неа/Гд ), где о — величина вычета трансфер-функции
молекулярного канала в точке ядерного резонанса, а Г ^ — ширина этого резонанса.

INTRODUCTION

Molecules are usually treated as purely Coulomb systems, while the strong interaction
between their nuclear constituents is assumed to play a negligible role. However any Coulomb
molecular level lying above the Jower threshold of the nuclear subsystem is embedded in the
continuous spectrum of the nuclear sub-Hamiltonian. The coupling between the molecular
and nuclear channels, hence, turns this level into a resonance (see, e. g., Refs. [2,12,13,18,19]
and references cited therein). Of course, due to the wide Coulomb barrier between the nuclei
and the short-range character of the nuclear interaction, this coupling, and thus the width
of the resonance, which determines the fusion probability of the nuclear constituents of the
molecule, is in general extremely small.

However, as pointed out in [3,4], the situation may be rather different if the nuclear
subsystem of a molecule has a sufficiently narrow near-threshold resonance. Examples of
such nuclear systems may be read off from the data presented in [10]. Among them are
even customary systems like pp16O and p17O [1,20], i.e., the nuclear constituents of the
water molecule H 2 O or the hydroxyl ion OH~ with О being the isotope 1 7 O. For LiD and
H2O the influence of near-threshold nuclear resonances on the molecular properties has been
studied in [5,6,8] by estimating the overlap integrals between the corresponding molecular and
nuclear wave functions. The best known example of such phenomena is the muon catalyzed
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fusion of deuteron and triton in the dt/j, molecule, where the near-threshold nuclear resonance
5He(3/2+) plays a decisive role [9].

Being motivated by the above special cases, we deal in the present work, like in [3,7],
with a rather general model Hamiltonian related to the ones considered by Friedrichs in [11].
This Hamiltonian consists of a nuclear part, a molecular part with eigenvalues embedded in
the continuous spectrum of the nuclear part, and a weak coupling term which turns these
unperturbed eigenvalues into molecular resonances. Since the model is explicitly solvable,
the mechanism of formation of the resonances becomes clearly visible.

The following property pointed out in [3,4] appears, in particular, as a general feature:
if the nuclear channel itself has a narrow resonance with a position close to the molecular
energy, then the width (the imaginary part) of the resulting molecular resonance is found to
be inversely proportional to the nuclear width. In other words, a large increase of the decay
rate of the molecular state, i.e., of the fusion probability, is observed in this case. Such
a coincidence of nuclear and molecular energies is, of course, a very rare phenomenon in
nature.

Influence of the narrow pre-threshold resonances on the properties of infinite crystalline
molecular structures was studied in [7]. In the present work we concentrate on more realistic
finite crystals. A goal of this work is to show that the decay rate of a molecular state
with the energy close to a near-threshold resonance may be considerably enhanced when
arranging molecular clusters within a finite crystalline structure. The reason is that in such
a configuration the original discrete molecular energy turns into a set of energy levels. That
is, even if the position of the nuclear resonance differs from the original molecular level, it
can get within this set. This allows for a fine tuning by exciting the crystalline structure to
energies as close as possible to the energy of the nuclear resonance. We show that the lattice
states, which correspond to such an initial choice of their quasimomentum distribution, decay
exponentially with a rate which is again inversely proportional to the width of the nuclear
resonance.

1. TWO-CHANNEL MOLECULAR RESONANCE MODEL

In this section we recall our main reasoning [3,7] regarding an influence of a near-threshold
nuclear resonance on the width of a molecular resonance in the case of a single molecule.

1.1. Description of the Model Hamiltonian. Let us consider a two-channel Hilbert space
H = Hi © H2 consisting of a nuclear Hilbert space Hi (channel 1) and a one-dimensional
molecular space H2 = С (channel 2). The elements of H are represented as vectors и —

, where iti € Hi and u^ £ H2 Ы2 is simply a complex number). The inner product

(U,U)-H = (ui,ui) + U21J2 i n H is naturally defined via the inner products (ui, ui) in Hi and
U2V2 in H2-

As a Hamiltonian in H we consider the 2 x 2 operator matrix

where hi is the (self-adjoint) «nuclear Hamiltonian» in Hi, and Л2 £ К a trial molecular
energy. A vector b € Hi provides the coupling between the channels. It should be mentioned
that the Hamiltonian (1) resembles one of the well-known Friedrichs models [11].
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If there is no coupling between the channels, i. e., for b = 0, the spectrum of A consists
of the spectrum of h\ and the additional eigenvalue Л2. We assume that the continuous
spectrum ac(hi) of the Hamiltonian hi is not empty and that the eigenvalue A2 is embedded
in ac(hi). It is also assumed that A2 is not a threshold point of oc{hi), and that this spectrum
is absolutely continuous in a sufficiently wide neighbourhood of A2.

A nontrivial coupling (b ф 0) between the channels will, in general, shift the eigenvalue
A2 into an unphysical sheet of the energy plane. The resulting perturbed energy appears as
a resonance, i. e., as a pole of the analytic (or, more precisely, meromorphic) continuation
of the resolvent r[z) = [A — z)~l taken between suitable; states (see, e.g., [19]). In the
present work we assume that such a continuation through the absolutely continuous spectrum
of h\ in some neighbourhood of A2 is possible at least for the matrix element (n(z)b, 6) of
the resolvent r\(z) = (hi - г ) " 1 . Then, from the explicit representation for the resolvent
r(z) [3,7], one can easily see that the operator-valued function P2(A - z)~1\n admits
meromorphic continuation to the same neighbourhood, too.

The poles of r(z) on the physical sheet are either due to zeros of the transfer function
(see 115])

M2(z) = A2 - z - /?(z)

or due to poles of the resolvent r\ (z) (see [3, 7]). The latter correspond to the discrete
spectrum of the operator hi which may determine part of the point spectrum of A. This
is true, in particular, for the multiple eigenvalues of hi. In any case it is obvious that the
perturbation of the eigenvalue A2 only corresponds to solutions of the equation M2(z) = 0,
i.e., of

z = A 2 -/?(z). (2)

This equation has no roots z with Im z Ф 0 on the physical sheet. Therefore, being eigenvalues
of the self-adjoint operator A, they have to be real. Thus, Eq. (2) may have solutions only
on the real axis and in the unphysical sheet(s) of the Riemann surface of the resolvent ri(z).

We start with a brief discussion of the case where the nuclear channel Hamiltonian /ii
generates no resonances close to A2 in a domain V of the unphysical sheet which adjoins
the physical sheet from below the cut. This assumption implies that for a wide set of unit
vectors b = 6/||b|| the quadratic form /3(z) = | |b| |2(ri(z)b, b) can be analytically continued in
V. Moreover, under certain smallness conditions for ||6||, Eq. (2) is uniquely solvable [15] in
V providing in the main order (see, e.g., [14,16])

22 = • \2-(ri(\2 + iO)b,b) + o(\\b\\2). (3)
IIMI—o

p(2)
The real and imaginary parts of the resonance 22 = ER — i—jr-, thus, are given by

4 2 ) =A2 - Re ( n ( A 2 + iO)b, b)

Г£ } =2Im <T-I(A3 + t0)6,fe> +

1.2. Perturbation of the Molecular Resonance by a Nearby Nuclear Resonance. Our
r;(!)

main interest concerns the opposite case of a nuclear resonance z\ = E^ - i—^~, Гд > О,
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with a real part ER close to Л2. For the sake of simplicity we assume the corresponding
pole of ri(z) to be of first order. Let the element b e Hi be such that the function 0(z)
admits an analytic continuation into a domain V which contains both points Л2 and z\. This
domain, moreover, is assumed to belong to the unphysical sheet which adjoins the physical
sheet along the upper rim of the cut. In V the function 0(z), thus, can be written as

— Z
(5)

with Pres(z) being a holomorphic function. For a fixed «structure function» b = b/\\b\\ we
have \a\ = C a | |b | | 2 with a constant Ca determined by the residue of r\(z) at z = z±. Note
that this residue is usually expressed in terms of resonance (Gamow) functions (see, for
example, [17]). In fact, we assume that the resonance corresponds to an «almost eigenstate»
of h\. That is, in principle a limiting procedure TR —> 0 is possible so that the resonance
turns into a usual eigenvalue with an eigenvector гр\ е Hi-.More precisely, we assume

Ca=Ci°>+o(l) as Г ^ ^ О (6)

with Co = (6,Ф1)(ipi,6) ф 0. This can be achieved, e.g., if the Hamiltonian hi itself
has a matrix representation of the form (1) and the resonance zi is generated by a separated
one-dimensional channel. In such a case we would have Ca = 1 (for details see Ref. [4],
Sec. II).

Let
Re a > 0 and I m a « R e a (7)

and, for z £ T>,
2 and \(3^(z)\ 2

with constants c-p > 0 and Ct> > 0. Furthermore, the coupling between the channels in the
Hamiltonian (1) is assumed to be so weak, that

|/3reg(*)l ^ Cv\\b\\2 « TR
l\ while |a| = Ca||b||2 « ( г ^ ) ' (8)

It can be expected that these conditions are fulfilled in specific molecular systems even under

the supposition that the nuciear width Г R itself is very small.

After inserting (5) for /3(z), Eq. (2) turns into the «quadratic» equation

(A2 - z)(zi - 2 ) _ о + (zi - z)f5"*{z) = 0,

which can be «solved», i.e., can be rewritten in form of two equations

(9)

By Banach's Fixed Point Theorem, each of the equations (9) has only one solution in the
domain V. In case of the sign «-» we denote the root of (9) by z n u c ], in case of the sign
«+» by zmoh
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According to [3] and [7], the roots znuci and zmo\ of (9) are essentially given by

A2 - z\ - >JTeB(Zi i Л? -

zmo\ = Л2 - / 3 r e g ( A 2 + Ш) + 1
Л2 Zi ртк£(Л

(10)

From the second condition (8) follows
A2 -

д . Consequently, this term provides

in 2:nuci a very small perturbation of the initial nuclear resonance z\. As compared to F R

it represents also in zmo\ a very weak perturbation of the molecular energy A2. However,
as compared to the result (3), valid in case of a missing nearby nuclear resonance, it can be
rather large. In particular, if the molecular energy A2 coincides with the real part ER of the

nuclear resonance z\, then zmo\ = £ д - i -^ with

r^tm) > Ima , „I'm) , R e e
EYT' = A2 - 2—ТГТ- and Гя ' = 4—rr-. (12)

1 R l R

The width of the molecular resonance zmo\ in the presence of a nearby nuclear resonance Z\,

thus, turns out to be inversely proportional to the nuclear width Гд .

The second inequality (8), chosen as a condition for ]|b||, reflects the fact that the «usual»

molecular width I u' is much smaller than the width of a usual nuclear resonance Г л \

(13)

This can practically always be assumed for concrete molecules.

Under condition (6) the value of Ca = |a |/ | |6 | | 2 differs; from zero, Ca ^ С > 0, as

Гд —• 0. Therefore, in the presence of a narrow (Гд <S Ca/cx>) nuclear resonance close

to A2 the molecular width Гд is much larger than the molecular width Гд observed in the

absence of such a resonance. In fact, this ratio is determined by the large quotient
I T

2. MOLECULAR RESONANCES IN A FINITE CRYSTALLINE LATTICE

Let us assume that the «molecules» described by the Hamiltonian (1) are arranged in form
of a finite one-dimensional linear (chain) crystalline structure. To describe such a crystal we
introduce the lattice Hilbert space

g = e n{i) (14)

representing an orthogonal sum of the Hilbert spaces associated with the individual cells

«) | о 1 0 . (15)

Here the subspaces Hy = H\ and n£ = Нг = С are exactly the same ones as in Sec. 1
and, thus, H^ = H. The elements of the total Hilbert space Q are. represented by the
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sequences и = (u^\u^2\... ,и^) with components u^ - I L. I, where ul € H\

V «2 У

and и 2

г ) 6 Я 2 = С. The inner product in H is defined by (u,v)n = £ ( u ( i ) , V ( I ))H<O- The

subspaces £i = © w[r) and £2 = © ? 4 l \ w ' t n 5 = Q\ © S2, represent respectively the
i= l t=l

pure nuclear and pure molecular channels.
In the present section we will first deal with the Hamiltonian H acting in H according to

( Я и ) ( г ) =Ц?и(г-1}+Аи(г1+Wu<-t+l), i = 2 ) . . . , n - l , (16)

(Яи) ( п ) =Wu{n~1) + Au{n\

where only the interaction between neighbouring cells is taken into account and the interaction
operator W is chosen in the simplest form

with w being a positive number. Such a choice of the interaction corresponds to the natural
assumption that the cells interact between each other via the molecular states, while the direct
interaction between nuclear constituents belonging to different cells is negligible. We assume
that the closed interval [A2 - 2w, A2 + 2w] is totally embedded in the continuous spectrum
cc(hi) of hi and, moreover, that no thresholds of ac(hi) belong to this interval. For the sake
of simplicity we also assume that the interval belongs to the domain V introduced in Sec. 1
and that for any ц e [A2 - 2w, A2 + 2w]

Im {го(м±Ю)6,6) ^0. (18)

Obviously, the Hamiltonian (16) is a self-adjoint operator on the domain Dom (Я) =

© D ( l ) with D(l) = Dom (/i2) © C. The resolvent R(z) = (H - z)~l of Я possesses a
t=i
natural block structure, R{z) = {R(j, k; z)}, j , к = 1,2,..., п. The blocks R(j, k; z) satisfy
the equations

WR{j -l,k;z) + {A- z)R{j, k; z) + WR(j + l,k;z) = 5jkI, j , к = 1,2, . . . , n, (19)

where Sjk stands for the Kronecker delta and / for the identity operator in the Hilbert space
H of cells. Hereafter we assume Im z ф 0 so that the value of z automatically belongs to
the resolvent set of the operator H. The blocks R(j, к; z) themselves possess a 2 x 2 matrix
structure, R(j,k;z) = {Rmn{j,k;z)}t m,n = 1,2, corresponding to the decomposition

The set of the sequences / ь к = 1,2,..., n, with the elements

2

n+1

(20)

(21)
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forms an orthonormal basis for the (n-dimensional) Hilbert space l2 of n-element sequences
of the form {xi, x2,..., xn}, Xj € C, j = 1,2,.. . , n. The Fourier transform

(Fu)(Pk) = ] иь) sin (pkj) (22)

in Q reduces Eq. (19) to

{ Pk>;z) = Skk'I, к,к' = 1,2,... ,n, (23)

and the numbers R(pk,Pk'\z) represent the matrix elements of the resolvent R{z) in this
representation. From (23) it immediately follows that

where

G(p-z) =

R(Pk,Pk>;z) = G(pk;z)

I , > [ n{z)b{-,b)n{z)

M2(p;z)

ri(z)b \

' M2(p;z)

1

M2(p;z) M2(p;z)

Here, the scalar function M2(p;z) reads

M2(p; z) = X2 — z + 2wcosp — j3(z).

(24)

(25)

(26)

The numbers pk given by (21) represent the quasimomenta of the finite crystalline structure
under consideration.

Consider now the time evolution of the system described by the Hamiltonian H starting
from a pure molecular state <p — ipi ф <рг> ||Vm|| 6 6m, m = 1,2, with ip\ = 0 and
IMI — IIV2II = 1- The probability to find the system at a time t ^ 0 in the molecular channel
is given by

Pmoi(v,*) = IIP* e-**VH2, (27)

where P 2 is the orthogonal projection in Q on the pure molecular subspace Qi. Obviously,
one can represent the time evolution operator exp (—iHt) in terms of the resolvent R(z) =
(H-z)-\

exp {-iHt) = - ~ <(dze-izt(H - z)~\
2тгг J

(28)

where the integration is performed along a counterclockwise contour 7 in the physical sheet
encircling the spectrum of the Hamiltonian H.

According to Eqs. (24) and (26) the operator P2(H — z)~l\s acts in quasimomentum
representation as the multiplication operator,

1

M2{pk\z)
(29)
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Here v?2(Pfc) stands for the values of the Fourier transform (22) of the vector

Hence

\(Pk) = -~MPk)J(Pk,t) (30)

with

Repeating almost literally the analysis of Section III in [7], one finds that the asymptotics of
the term J(pk,t) as t —» сю reads as follows:

5+0
+ iO))2

+ exp{-2znuci(p)£}

where

[X2(Pk)-Zl-0reS{z)]2

fc,t). (32)

(33)

The function e(p,t) = O(||6||2) is always small, \e(p,t)\ < 1. By (10) and (11) for the
positions of the resonance poles we then obtain

A2
(34)

2moi(Pfe) = A2 +2u;cospfc + - — — . (35)
A2 + 2w cos pit — z\

The asymptotics (32) implies

2 ^ ^ } 2 (36)
fc=i fc=i

where
Г ^ Ы = -21тг т о 1(р0 ^ -2Im ° . (37)

A2 + 2w cos pfc - 21

The background term e(t) in (36) is small for any t ^ 0, e{t) = O(| |6| |2) and \e(t)\ < 1.

Let us next assume that the number n of cells in the lattice is large and the real part E^ of

the nuclear resonance z\ belongs to the interval [A2 - 2w, A2 + 2w], that is \E^' — A2| ^ 2w.

Then, one can always prepare an initial molecular state ip which decays via the nuclear



Perturbation of Finite-Lattice Spectral Levels by Nearby Nuclear Resonances 23

channel with a rate close to 4—777 (°f- formula (12)). Indeed, under the assumption (7), this
1 R

maximum is given by
ri("i)/ л ~ л ^ а

max r n '(p) = 4—r-r-
0<Р<тг R K ' f(!)

The most appropriate is the monochromatic molecular state y> with the only nonzero compo-
nent ifi2(Pk0) associated with the quasimomentum Pk0 closest to

Ртах = arcCOS — Q .

In particular, if the values of Р2(Рк) are nonzero only for quasimomenta pk restricted by

COSPfc -
2w

r(i)

with some small S > 0, then the width Гд ' given by the relation (37) varies in an interval
, , 1 4Reo , 4Rea

lying approximately between ^ —777- and —77т-.
1 -4- о pv̂ / p4J1 R L R

In a similar way one also treats a one-dimensional cyclic crystalline structure. In this case
the Hilbert space Q is the same as in (14) but the operator H reads

( Я и ) ( 1 ) =Wu{n) \

(Hu)^ =Wu{i~1) + Au^ + Wu(i+l), t = 2 , . . . , n - l , (38)

(Hu){n) =Wu{n-^ + AvSn*> + Wuw.

If the intercellular interaction is still given by (17), the only difference in the analysis will be
the use of another complete orthonormal set in the space Щ. Instead of the sequences (20)
one now employs the orthonormal sequences

fkti) =-% exp (ipkj), j = 1,2,..., n (39)

with quasimomenta pj. given by

pk = —, k=l,2,...,n. (40)

After the Fourier transform (22) with —= exp (ipkj) the matrix elements of the resolvent

(H - z)~x again acquire the form (24), (25) with the transfer function M2(p;z) given by
(26). Hence, one concludes with formulas like in (30)-(37) and then observes that if the
number of cells is large enough it is possible to prepare pure molecular states that decay with

, Re a
the rate close to 4—777-.

1 R
In the same way one can also consider the finite two- and three-dimensional crystalline

structures arranged of the molecular cells described by the Hamiltonian (1). If the cell has
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a sharp near-threshold nuclear resonance with energy embedded into the convex hull of the

arising crystalline molecular levels, one again will find an enhancement of the decay rate for

particular molecular states. As in the case of the one-dimensional lattices, these molecular

states should decay with the rate close to 4—r—-.
•pv L)
1 R
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