Technical Report 5x5 봉다발 지지격자 압력강하 실험

Pressure Drop Test of the Spacer Grids on 5x5 Fuel Rod Bundles

한 국 원 자 력 연 구 소 Korea Atomic Energy Research Institute

제 출 문

한국원자력연구소장 귀하

본 보고서를 2002 년도 "핵심노심열수력안전특성실험"과제의 "5x5 봉다발 지지격자 압력강하실험"기술보고서로 제출합니다.

2002. 7.

과 제 명 : 핵심노심열수력안전특성실험

저 자 : 장석규, 김복득, 천세영 (열수력안전연구팀) 복합유동 날개 지지격자(Hybrid type)의 수력 성능 검증을 위하여 압력강하 실험을 수행하였다. 또한, 지지격자의 성능비교를 위하여 독일 KWU에서 개 발한 분리형 날개 지지격자(Focus)와 reference용으로 Hybrid형 지지격자에 서 날개를 제거한 지지격자(Plain)들에 대한 수력적 실험을 수행하였다. 실험 은 상온, 상압 수력실험장치인 Cold Test Loop-I에서 수행하였다. 각 지지격 자들에 대한 수력실험을 위하여 test section은 5x5 핵연료다발에 대하여 3개 의 지지격자를 장착하도록 하였다. 측정변수로 지지격자 및 핵연료봉 구간에 대한 차압을 측정하였으며 loop의 실험조건을 일정하게 맞추기 위하여 유량, 온도 그리고 압력들을 측정하면서 실험조건으로 제어하였다.

지지격자의 압력손실계수는 Plain 지지격자가 가장 낮으며 Hybrid 지지격자 의 손실계수는 날개의 저항으로 전반적으로 7~10 % 높게 나타났다. 핵연료 봉의 마찰손실계수는 test section 상, 하단이 서로 차이를 보여 압력 측정탭 을 지지격자에 의한 국지적 유동교란 영역을 벗어난 안정된 유동 지점을 택 하는 것이 요구되었다.

Summary

The pressure drop test was performed to verify the hydraulic performance of hybrid type spacer grid. And also, for the comparison of the hydraulic performance of the hybrid type spacer grid, the pressure drop tests were performed for the splitted vane type spacer grid (FOCUS) which had been developed in KWU and the reference spacer grid which has no vanes. The tests were conducted at the hydraulic test loop facility, Cold Test Loop-I. Three spacer grids are installed on the 5x5 fuel assembly for the tests. The differential pressure drops are measured for the spacer grids and the fuel rods. The loop flow rate, system pressure and temperatures are measured and controlled for the test conditions. The pressure loss coefficient of the plain spacer grid is lowest. The pressure loss coefficient of the Hybrid spacer grid is $7 \sim 10$ % higher than the plain spacer grid due to the mixing vane resistance. The friction loss coefficients of the fuel rods are different from upper and lower part. There is need to correct the locations of the pressure taps to avoid the local unstable region due to the spacer grids.

요 약 i
Summary ii
표목차iv
그림목차 v
1. 서 론 1
2. 실험장치 2
2.1 Test Loop
가. Water Storage Tank 2
나. Heater & Cooler 3
다. Circulation Pump 3
라. Loop Instrument 4
2.2 Test Section
가. Test Channel 4
나. Spaecr Grid 4
다. Instruments 5
2.3 Data Acquisition System 5
가. 실험자료 획득 5
나. 실험자료 수집 5
3. 실험방법 및 절차 7
3.1 실험절차 7
가. 실험대 조립 7
나. 실험장치 가동 7
다. 실험수행 8
라. 실험장치 가동 종료
3.2 Test Matrix 10
4. 실험결과 11
4.1 실험수행예 (T1-100-291_20-S2) 11
4.2 실험결과 분석 12
5. 결 론
부 록

표 목 차

표	2.1-1	계측기 기술사양 1	17
표	2.1-2	유량계 교정자료]	17
표	2.1-3	압력계 교정자료 1	18
표	2.2-1	지지격자의 기하학적 사양	18
표	3.2-1	지지격자 성능실험 Test Matrix	19

그림목차

그림	2.1-1	Cold Test Loop -I 실험장치 개략도	20
그림	2.1-2	냉각수 저장탱크 도면	21
그림	2.1-3	유량계 교정식	22
그림	2.1-4	압력계 교정식 (X축: Volts, Y축: KPa)	23
그림	2.2-1	Test Section의 기하학적 사양	24
그림	2.2-2	Test Section (5x5 Fuel Rod Assembly)	25
그림	2.2-3	Spacer Grid (Focus)	26
그림	2.2-4	Spacer Grid (Hybrid)	27
그림	2.2-5	Spacer Grid (Plain)	28
그림	4.1-1	FT-1(1.5 ") 유량계에서의 Data Sampling	29
		(Test Case : DP-VFA-Hybrid-1.5)	
그림	4.1-2	저유량에서의 중간지지격자 차압(DP-3) Data Sampling	30
		(Test Case : DP-VFA-Hybrid-1.5)	
그림	4.1-3	저유량에서의 Loop 온도(TC-1) Data Sampling	30
		(Test Case : DP-VFA-Hybrid-1.5)	
그림	4.1-4	FT-1(3.0 ") 유량계에서의 Data Sampling	31
		(Test Case : DP-VFA-Hybrid-3.0)	
그림	4.1-5	고유량에서의 중간지지격자 차압(DP-3) Data Sampling	32
		(Test Case : DP-VFA-Hybrid-3.0)	
그림	4.1-6	고유량에서의 Loop 온도(TC-1) Data Sampling	32
		(Test Case : DP-VFA-Hybrid-3.0)	
그림	4.2-1	중간 지지격자에 대한 입, 출구 지지격자의 압력강하	33
		차이 비교 (Test Case : DP-VFA-Hybrid)	
그림	4.2-2	상단 핵연료봉 마찰손실에 대한 하단 핵연료봉의 마찰손실	33
		차이 비교 (Test Case : DP-VFA-Hybrid)	
그림	4.2-3	지지격자와 핵연료봉 압력손실에 대한 측정치 비교	34
		(DP-6, DP-3+DP-4)	
그림	4.2-4	지지격자의 압력손실 계수 비교	35
그림	4.2-5	핵연료봉의 마찰손실 계수 비교	36

1. 서 론

핵연료의 성능을 향상시키기 위해서는 핵연료를 일정간격으로 지지하고 냉각재의 유동 혼합을 증진시키는 지지격자(Spacer Grid)의 설계가 중요하 다. "핵심노심열수력안전특성실험"과제에서는 이러한 핵연료 지지격자들에 대하여 성능 검증을 위한 수력적 실험을 수행하여 왔다. 최근에는 "핵연료성 능향상기술개발"과제에서 기존 지지격자에 비하여 열적, 수력적 성능을 향 상시킬 목적으로 복합유동 발생 지지격자(Hybrid)를 설계/제작하였으며 이에 대한 검증시험을 우리 과제에 의뢰하였다. 복합유동 날개 지지격자는 날개 후방 부수로에서 회전류와 교차류를 동시에 발생시키도록 고안된 것으로 부 수로 중앙에 회전류를 발생시키는 한 쌍의 날개와 교차류를 발생시키는 한 쌍의 날개가 대각선 방향으로 서로 마주보고 격자판 교차점에 존재하며 교 차점을 중심으로 하는 회전대칭 형태이다. 본 보고서는 복합유동 날개 지지 격자의 수력 성능 검증을 위하여 본 지지격자 외에 독일 KWU에서 개발한 분리형 날개 지지격자(Focus)와 reference용으로 Hybrid형 지지격자에서 날 개를 제거한 지지격자(Plain)들에 대하여 수력적 실험을 수행하여 비교한 내 용에 대하여 기술한 것이다. 실험은 상온, 상압 수력실험장치인 Cold Test Loop-I에서 수행하였다. 각 지지격자들에 대한 수력실험을 위하여 test section은 5x5 핵연료다발에 대하여 3개의 지지격자를 장착하도록 하였다. 측정변수로 지지격자 및 핵연료봉 구간에 대한 차압을 측정하였으며 loop의 실험조건을 일정하게 맞추기 위하여 유량, 온도 그리고 압력들을 측정하고 실험조건으로 제어하였다.

2. 실험장치

2.1 Test Loop

실험장치(Cold Test Loop-I)는 냉각수 저장탱크(water storage tank), 순환 펌프(circulation pump), 시험대(test rig) 그리고 loop 조건을 감시하는 유량계, 온도, 압력 센서 등으로 구성되어 있다. 그리고 냉각수 저장탱크에는 냉각수 온도를 설정온도로 맞추기 위하여 heater와 cooler가 장착되어 있으 며 이들을 제어하기 위하여 heater controller와 flow control valve가 설치되 어 있다. 실험장치에 대한 개략도는 그림 2.1-1과 같으며 각 component에 대 한 내용은 다음과 같다.

가. Water Storage Tank

냉각수 저장탱크의 형상은 직립원통형(직경 750, 높이 1950 mm)이며 전체용량은 900 liter, 정격용량은 700~800 liter정도이다. 탱크의 하단에 출 구배관(4")이 외부의 순환펌프와 연결되고 상부 측면에 입구배관(4")이 연 결되어 있다. 탱크내부에는 냉각수를 식히기 위하여 cooler가 직경 5/8", 총 길이 6 m의 tube가 코일형상으로 내장되어 있다. 또한 냉각수의 온도를 높 이기 위하여 탱크 하단에 10 KW 용량의 heater 2개를 장착하였다. 그 외 탱 크에 장착된 배관의 사양은 다음과 같으며 탱크의 자세한 도면은 그림 2.1-2 에 나타나 있다.

- 탱크 상단 윗면 : 시약 및 입자 투입구(2"ball valve), demi-water
 주입구 (1/2"), 수위 측정 및 over flow 배관 (1-1/2")
- 탱크 상단 측면 : 냉각수 입구 (4"), 2차측 냉각수 출구 (3/4")

탱크 중간 측면 : 온도측정구 (1/2")

- 탱크 하단 측면 : 2차측 냉각수 입구 (3/4")
- 탱크 하단 아랫면 : 냉각수 출구 (4"), heater 삽입구 2개 (2"),

drain 배관 (1")

나. Heater & Cooler

실험 중 냉각수를 실험온도로 맞추기 위하여 heater와 cooler를 사용 한다. 이들은 냉각수 저장탱크 내부에 장착되어 냉각수 온도의 측정값과 설 정온도를 비교하고 heater와 2차측 냉각수 공급밸브의 제어에 의하여 작동됨 으로써 냉각수의 온도를 일정하게 유지하는 기능을 수행한다. 각 제어 시스 템의 구성은 아래와 같다.

Heater의 제어 시스템 구성

- Heater : 10kWx2ea

- 전원공급 : AC 220 Volt

- Controller : AC Zero Crossing 전력제어 Unit (WYU-PH150T, 유영)

Flow Control Valve 제어 시스템 구성

- Valve : Globe Valve

- Actuator : Diaphragm, Pneumatic

- Controller : Motoyama, E/T603

다. Circulation Pump

순환 펌프는 저장탱크의 냉각수를 순환시켜 loop 내에 유량을 형성한 다. Loop의 유량은 펌프의 회전속도를 조절함으로써 변화시키는데 펌프속도 는 inverter를 사용한다. 펌프의 기술 사양은 아래와 같다.

- 용량 : 2 m³/min, 75HP

- 양정 : 100 m

- 모델 : IHV65-10, 신한

라. Loop Instrument

실험장치의 실험조건을 감시, 제어하기 위하여 loop의 상태를 정확하 게 측정하여야 한다. 이를 위하여 유량, 시스템 온도, 압력을 측정하기 위한 계측기를 설치하였다. 사용된 계측기들의 기술사양은 표 2.1-1과 같다. 유량 계의 교정자료는 표 2.1-2, 압력계의 교정자료는 표 2.1-3과 같다. 이에 따른 유량계 및 압력계의 교정식은 그림 2.1-3과 4에 나타나 있다.

2.2 Test Section

가. Test Channel

Test channel은 5x5 핵연료 다발이 장착될 수 있도록 사각 채널형상 이며 재질은 아크릴을 사용하였다. Test channel의 길이는 하단에서의 입구 효과와 상단의 출구효과를 최소화하기 위하여 하단과 상단 지지격자를 장착 하고 중간에 지지격자를 둠으로써 두 구간의 span과 입, 출구 구간을 고려하 여 제작하였다. 자세한 test channel의 사양은 그림 2.2-1, 2에 나타나 있다.

나. Spacer Grid

실험에 사용된 지지격자(spacer grid)는 다음의 세 종류이며 기하학 적 사양은 표 2.2-1과 같다.

분리형 날개 지지격자 (Focus)

그림 2.2-3 참조

복합유동 날개 지지격자 (Hybrid)

그림 2.2-4 참조

날개 없는 지지격자 (Plain)

다. Instruments

Test section에서의 지지격자 및 핵연료 다발의 수력 성능을 검증하 기 위하여 구간별 압력강하를 측정하여야 한다. 이를 위한 계측기로 6개의 차압측정기를 사용하였다. 이들 측정기들의 기술사양은 표 2.1-1에 나타나 있다.

2.3 Data Acquisition System

가. 실험자료 획득

실험 중 loop와 test section의 센서로부터 발생하는 유량, 압력, 온도 의 실험자료는 signal conditioner를 거쳐 data acquisition unit (Agilent 34670A)에서 처리된다. 이들의 기술사양은 다음과 같다.

Signal Conditioner

- Model : M8BS-16U0 (Dual Output Signal Conditioner, Pico-M
- Capacity : 16 Positions
- Power : AC 100~240 Volt, DC 24 Volt
- Response Time : \leq 0.5 sec. (typical), 25 mS (optional)

Agilent 34970A

- 6-1/2 multimeter accuracy
- up to 60 channels per instrument
- Scanning rate : 250 channels per second
- GPIB, RS-232 interface
- HP 34901A 20 ch. Multiplexer 사용
- 나. 실험자료 수집

Data logger로부터 처리된 실험자료는 PC의 모니터 상에 표시되고 파일로 저장된다. PC의 정상 작동을 위해서는 data logger의 driver를 PC에 설치해야 한다. PC로부터 실험자료 획득/처리를 통제하기 위해서 HP-VEE 를 PC에 설치하고 data logger와 계측기들의 정보(그림 2.1-3, 4 참조)를 설 정하였다.

3. 실험방법 및 절차

3.1 실험절차

- 가. 실험대 조립
- 가) 실험 대상 지지격자와 모의 핵연료봉 조립
 1) 3개 지지격자 위치 선정 및 확인
 2) 지지격자에 봉다발 조립
 3) 아크릴 사각 채널에 봉다발 넣고 조립
 나) 실험대에 Test Section 장착
 1) 실험대에 5x5 Test Section을 조립
 2) 누수 확인

나. 실험장치 가동

- 가) Loop Valve 개폐 조정/확인
 - 1) 사용할 Loop 관련 Loop Valve Setting
- 나) Storage Tank, Loop 충수
 - 1) Storage Tank 냉각수 잔량 확인, 하단 Valve Close 확인
 - 수위지시관에서 Tank 상부 적정 수위표시 보다 현저히 낮은 경우 충수 실시
 - 2) 충수 필요시 Demi-water 공급 Valve Open
 - 3) 외부 Loop 충수 확인
 - Pump 현장에서 drain 및 vent valve 개폐로 확인
 - 4) Tank와 외부 Loop 연결 Valve 개방
 - 5) 외부 Loop empty 시
 - 외부 Loop Drain Valve Close
 - 외부 Loop Vent 실시 후 Vent Valve Close
 - 6) 충수 중 Loop Vent 실시

7) Storage Tank 적정수위까지 충수 후 Demi-water 공급 Valve Close

다) 냉각수 온도조절장치 가동

1) Heater Main Power ON

- 2) Cooler Valve, Heater Controller Power ON
- 3) Cooler 수동 Valve Open
- 4) 온도 Controller 25 °C Setting
- 라) Pump 가동
 - 1) Pump Control Panel 내부 Main Power ON
 - 2) Pump Control Panel Power ON
 - 3) Pump 회전 Switch ON (front)
 - Pump 기본 회전수(10 Hz)로 가동 시작
 - 4) 필요시 Potentiometer로 Pump RPM 조절

마) Loop DAS 가동

- 1) 계측기 배선 확인
- 2) DAS PC ON
- 3) 계측기 Main Power ON
- 4) Distributer ON 확인
- 5) HP-Vee S/W 가동
- 6) HP Data Logger ON

바) Pressure Transmitter Vent

- 1) 계측에 사용되는 PT, DP 확인
- 2) 각 계측기에 대하여 tubing이 긴 것부터 Vent 실시
 - Common valve Open
 - 저압측, 고압측 Vent Open 기포 제거
 - Vent 충분히 실시 후 Vent, Common Valve Close

사) 실험 준비

- 1) Loop Data Acquisition 실시
- 2) Loop 냉각수 적정 온도 확인 (25 ℃)
- 3) Pump RPM Setting
- 다. 실험수행

저유량 실험

가) 배관, 배선 전환/확인 1) 저유량계로 배관(1.5["]) 전환 - 3 " 배관 개방 상태에서 1.5 " 개방 후 3 " 배관 Close 2) Multiplexer 입력단자 전환 (CH-12 for 1.5" Flowmeter) - Data Logger Off 후 배선 전환 나) 저유량 Setting 1) Pump Speed Setting 2) Bypass valve 개폐 조정 3) 1.5 " 배관 Valve 개폐 조정 다) Data Acquisition 실시 1) 실험조건 확인 2) Data 저장 실시 고유량 실험 가) 배관, 배선 전환/확인 1) 고유량계로 배관(3 ") 전환 - 1.5 "배관 개방 상태에서 3 "개방 후 1.5 "배관 Close 2) Multiplexer 입력단자 전환 (CH-11 for 3" Flowmeter) - Data Logger Off 후 배선 전환 나) 저유량 Setting 1) Pump Speed Setting 2) Bypass Valve 개폐 조정 3) 3["] 배관 Valve 개폐 조정 다) Data Acquisition 실시 1) 실험조건 확인 2) Data 저장 실시 라. 실험장치 가동 종료 가) Pump 정지 1) Pump RPM 최저 감속 (10 Hz) 2) Pump 회전 Switch OFF (stop) 3) Pump Control Panel Power OFF 4) Pump Control Panel 내부 Main Power OFF

나) 냉각수 온도조절장치 정지

- 1) Cooler Valve, Heater Controller Power OFF
- 2) Heater Main Power OFF
- 3) Cooler 수동 Valve Close

다) Loop DAS 정지

- 1) HP-Vee S/W 정지
- 2) HP Data Logger OFF
- 3) DAS PC OFF
- 4) 계측기 Main Power ON

3.2 Test Matrix

지지격자의 성능 실험은 전술한 바와 같이 세 가지에 대하여 수행 하였다. 각 지지격자의 실험경우(test case)에 대해서는 표 3.2-1과 같이 유 량을 변화해가며 압력손실을 측정하였다. 실험경우(test case)의 명칭은 예를 들어 "DP-VFA-Hybrid-1.5"로 하였을 경우, 압력강하(DP)실험을 수직 5x5 핵연료다발 test section(VFA)에서 Hybrid형 지지격자를 장착하고 1.5" 유량 계를 사용하여 표 3.2-1의 1~10번 유량조건에 대해 수행한 실험을 의미한 다.

Test Case	Run No. S/G Type		Flow Range (kg/s)	Date
DP-VFA-Hybrid-1.5	1~10	I I1	$2.554 \sim 7.193$	2002 2 22
DP-VFA-Hybrid-3.0	10~21	Hybrid	$7.216 \sim 25.565$	2002. 2. 28.
DP-VFA-Plain-1.5	1~10	Dloin	$2.543 \sim 7.223$	2002 2 2
DP-VFA-Plain-3.0	10~21	Flain	7.223~25.605	2002. 5. 2.
DP-VFA-Focus-1.5	1~10	Famo	2.553~7.208	2002 2 4
DP-VFA-Focus-3.0	10~21	Focus	7.209~25.514	2002. 5. 4.

수행된 실험의 경우를 정리하면 아래와 같다.

4. 실험결과

4.1 실험수행예

세 가지 지지격자에 대한 압력강하실험 중 복합유동 지지격자 (Hybrid)에 대한 실험(test case: DP-VFA-Hybrid-1.5, 3.0)에 대하여 설명하 면 다음과 같다. Test section의 조립 및 실험장치 가동 작업에 대해서는 앞 서 기술한 바와 같으며 실험수행에 있어서 저유량 실험부터 시작하였다. 실 험요건에 의한 2.5 kg/s 유량을 얻기 위하여 저유량계 배관(1.5″) 및 계측 배선(CH-12)을 선택하고 펌프 최저회전(10 Hz) 그리고 bypass 밸브를 최대 로 열고 loop 밸브를 부분적으로 닫았다. 최저 유량에서 유량을 높이는 방법 으로 loop 밸브를 점차 열면서 4.5 kg/s까지 얻고 bypass 밸브를 닫아 5.7 kg/s까지 얻었다. 이후에는 펌프 회전수를 높여 저유량계 측정한계(7.2 kg/s, inverter = 13.8 Hz)까지 실험을 수행하였다. 각 test run에서는 유량 및 압 력, 온도값에 대해서 대략 100개의 data를 sampling하였다. 유량신호의 sampling에서는 그림 4.1-1 (a)에서 보는 바와 같이 최저유량에서 약간의 불 안정이 감지되었으나 무시할 만하였고 불안정 신호를 제거한 유량값은 표준 편차가 최대 0.74 % 정도로 나타났다(그림 4.1-1 (b)). 또한 압력신호는 두 번째 지지격자의 압력강하값에서 표준편차가 최대 2.43 %(그림 4.1-2), loop 냉각수 온도의 최대 표준편차가 0.3 % (그림 4.1-3)정도로 나타났다. 저유량 계의 한계유량 실험 후에는 펌프속도를 최저로 한 상태에서 유량계 배관을 3″로 바꾸어 고유량계를 사용하였으며 계측기 배선도 CH-11로 선택한다. 고유량 실험은 실험요건의 최대유량에서부터 시작하여 유량을 낮추면서 실 험을 수행하였다. 최대유량 25.6 kg/s를 얻기 위한 loop 조건은 bypass 밸브 가 닫히고 loop 밸브 완전개방 상태에서 펌프 속도 29.8 Hz였으며 유량을 실 험요건에 따라 낮추며 실험하기 위하여 펌프 속도를 10.4 Hz까지 줄여 9.0 kg/s의 유량까지 얻고 이후에는 펌프속도를 최저(10 Hz)로 하고 bypass 밸 브를 열어 7.2 kg/s까지의 유량에 대하여 실험을 수행하였다. 저유량실험에 서와 마찬가지로 각 test run에서 유량 및 압력, 온도값에 대해서 대략 100 개의 data를 sampling하였다. 유량신호의 sampling에서는 그림 4.1-4 (a)에서

보는 바와 같이 저유량(run No. 10, 11)에서 불안정한 신호가 다수 감지되었 다. 따라서 오차가 큰 불안정 실험자료는 모두 제거하였다. 불안정 신호를 제거한 유량값은 표준편차가 최대 1.11 % 정도로 나타났다(그림 4.1-4 (b)). 또한 압력신호는 두 번째 지지격자의 압력강하값에서 표준편차가 최대 1.15 %(그림 4.1-5), loop 냉각수 온도의 최대 표준편차가 0.36 % (그림 4.1-6)정 도로 나타났다.

4.2 실험결과 분석

각 test case에 대한 압력강하 실험자료는 지지격자에 대하여 세 가 지(DP-1(입구), DP-3(중간), DP-5(출구)), 핵연료봉 구간에 대하여 두 가지 (DP-2(하단), DP-4(상단)) 그리고 중간 지지격자와 상단 핵연료봉 구간의 압력강하(DP-6=DP-3+DP-4) 등 6개이다. 앞서 언급한 test matrix에 근거한 실험자료의 정리는 부록에 나타나 있다. 지지격자의 압력강하 실험자료는 입 구와 출구에서 배관 곡면부의 기하형상으로 인한 유동 왜곡으로 인하여 오 차발생 가능성이 크므로 참고자료로 활용하고 신뢰할 만한 자료로 중간 지 지격자의 압력강하 값을 사용하였다. Test section 입구 및 출구 지지격자의 압력강하는 중간 지지격자의 압력강하에 비해 입, 출구 효과로 인하여 크게 나타난다. 예를 들어 Hybrid 지지격자의 경우, 그림 4.2-1에서 보는 바와 같 이 압력강하 값이 유량에 따라 달라지는데 입, 출구 지지격자 압력강하가 중 간 지지격자 압력강하에 비해 최대 10 % 정도까지 크게 나타남을 알 수 있 다. 지지격자 압력강하에 비해 핵연료봉의 마찰손실에 의한 압력강하는 그림 4.2-2(Hvbrid 지지격자의 경우)에서 보는 바와 같이 두 구간(DP-2, DP-4)에 서 별 차이가 나타나지 않았다. 측정구간 DP-6는 DP-3와 DP-4의 측정구간 을 더한 구간이므로 측정값도 두 구간의 측정값을 더한 값으로 나타나야 한 다. 그러나 실제에서는 측정 지점에서의 가공상태 및 유동 교란 등의 요인으 로 인하여 오차를 발생시키는 것으로 보여진다. 그림 4.2-3은 측정값의 차이 를 보여주는 것으로 저유량에서 최대 6.2 %의 오차가 발생하며 고유량으로 갈수록 급격히 감소하는 경향을 보였다. 실험 수행 중 측정범위를 달리하는

두 개의 유량계를 사용하였는데 유량의 중복범위에서 약간의 유량값 불일치 가 발생하였다. 이는 유량계 측정 한계 영역 부근에서 오차가 커지는 것과 두 유량계의 bias가 복합적으로 작용하여 생긴 것으로 보여진다. 이로 인한 압력손실 및 마찰계수의 오차는 1 % 이내로 무시할 만하다.

Test section에 대한 6개의 압력강하 실험자료로부터 지지격자의 압력손실계 수와 핵연료봉의 마찰손실계수를 다음과 같이 산출하였다.

Test section의 유로면적은 다음과 같다.

$$A = A_{T/S} - A_{rods}$$

= 68*68 - 25*(3.14/4*9.5²)
= 2852 mm²
$$P = P_{T/S} - P_{rods}$$

= 4*68 + 25*(3.14*9.5)
= 1018 mm
$$D_h = 4*A/P$$

= 11.2 mm

여기서,

- A
 봉다발 유로면적, mm²

 D_h
 수력직경, m
- P 수력길이, m

레이놀즈수는 test section 내 봉다발 유로면적과 수력직경을 토대로 하 여 식 (1)과 같이 정의된다.

$$Re = \frac{V D_h}{\nu} \tag{1}$$

여기서 동점성계수는 1 bar 25℃에서 다음과 같다.

 $v = 0.8933 \text{ x } 10^{-6} \text{ m}^2/\text{s}$ $p = 997.2 \text{ kg/m}^3$

여기서,

Re	레이놀즈수
V	봉다발에서 유속, m/s
v	동점성계수, m ² /s
ρ	유체밀도, kg/m ³

본 실험에서 최종적으로 생산되는 압력손실계수 및 마찰손실계수는 다 음과 같이 정의된다.

지지격자 압력손실계수 :

$$K = \frac{\Delta P}{\left(\frac{\rho V^2}{2}\right)} \tag{2}$$

여기서 △P에 해당되는 실험자료는 DP-1. DP-3, DP-5의 측정값이다.

핵연료봉 마찰손실계수 :

$$f = \left(\frac{d}{l}\right) \frac{\triangle P}{\left(\frac{\rho V^2}{2}\right)} \tag{3}$$

여기서,

△P 차압, bar

f 마찰손실계수

K 압력손실계수

1 마찰길이, m

여기서 △P에 해당되는 실험자료는 DP-2, DP-4의 측정값이다.

위 정의에 의하여 산출된 각 지지격자들의 압력손실계수는 그림 4.2-4 (a), (b), (c)에 나타나 있다. 그림에서 보는 바와 같이 Plain 지지격자의 압력손실 이 가장 적었으며 Plain 지지격자에 혼합유동 날개를 장착한 Hybrid 지지격 자는 Plain 지지격자에 비해 전반적으로 7~10 % 정도 압력손실이 더 크게 나타났다. 반면 Focus 지지격자는 저 Re수(20000정도)에서는 Hybrid 지지격 자와 비슷한 압력손실을 갖다가 Re수 증가에 따라 현저히 손실계수가 줄어 들어 고 Re수(100000이상)에서는 Plain 지지격자의 손실계수와 비슷한 값을 갖는 것으로 나타났다. 입구, 중간, 출구의 지지격자에 대한 압력손실계수 차 이는 입, 출구 장착 지지격자가 배관 형상에 의한 영향으로 중간 지지격자의 압력손실계수보다 크게 나타나는 것으로 보인다.

그림 4.2-5 (a), (b)는 핵연료봉 상, 하단 마찰손실계수의 경향을 나타낸 것인 데 지지격자에 관계없이 동일한 값을 나타내어야 하나 장착 지지격자에 따 라 다소 차이를 보이고 있으며 그 차이는 고 Re수로 갈수록 커지는 경향을 보인다. 이는 핵연료봉 마찰손실이 지지격자 압력손실에 비해 매우 작은 값 을 갖는 상황에서 마찰손실 측정지점이 지지격자 근처에 위치하여 이 지점 에서의 지지격자 압력손실이 크게 영향을 미친 결과로 분석된다.

5. 결 론

핵연료를 지지하고 수력적 혼합을 증진시켜 열적 여유도를 높이기 위한 경수로 핵연료 지지격자들의 수력 성능 실험을 수행하였다. 성능실험 대상으 로 세 가지 지지격자(Plain, Focus, Hybrid)를 선정하였다. 정확한 실험을 위 하여 실험장치 및 계측기의 안정된 정상상태 유지가 요구되었는데 유량은 1 %, 온도 0.4 % 및 압력 1 %의 표준편차 이내로 안정된 측정값을 유지하였 다. Test section에서의 압력강하 측정구간은 6 곳이었는데 지지격자의 압력 강하 측정이 3곳, 핵연료봉 마찰손실 측정이 2 곳이었으며 한 곳은 핵연료봉 과 지지격자의 압력손실을 측정하였다. 지지격자 압력강하는 test section 입 구 및 출구에서 배관의 입, 출구 효과가 작용하여 중간 지지격자의 압력강하 보다 크게 측정되었으며(최대 10 %), 마찰손실은 핵연료봉 상, 하단의 차이 가 별로 없었다. 핵연료봉과 지지격자를 포함한 압력강하 측정값(DP-6)은 핵연료봉과 지지격자 각각의 압력강하(DP-3, DP-4) 측정값을 합산한 것보다 다소 크게 나타났는데 이는 측정탭의 위치가 지지격자에 가까이 있어 국지 적 유동교란 영향을 받는 것이 원인일 것으로 판단된다.

지지격자의 압력손실계수는 Plain 지지격자가 가장 낮으며 Hybrid 지지격자 의 손실계수는 날개의 저항으로 전반적으로 7~10 % 높게 나타났다. 또한 Focus 지지격자는 저 Re수에서는 Hybrid 지지격자의 손실계수와 비슷한 값 을 나타내었으나 고 Re수로 갈수록 압력손실계수가 떨어져 Plain 지지격자 의 값과 비슷한 값을 나타내었다.

핵연료봉의 마찰손실계수는 test section 상, 하단이 서로 차이를 보이고 있 는데 이는 지지격자 부근에 위치한 측정탭이 마찰손실에 비해 상대적으로 큰 지지격자 압력손실의 영향을 받아 차이가 발생한 것으로 판단된다.

따라서 향후 지지격자 성능실험에 있어서는 압력 측정탭의 위치 선정에 있 어 지지격자에 의한 국지적 유동교란 영역을 벗어난 안정된 유동 지점을 택 하는 것이 오차를 줄일 수 있는 방법으로 여겨진다.

Location	Tag Name	Variable	Model	Calibration Range	Error
	FT-1(3.0 ")	m	HOX3-40-650-T-1 (RPM51S)X-F1SS-CE	0~40.899 kg/s	±0.32 %
Loop	FT-1(1.5 ")	m	HO11/2X11/2-8-130-T-1 (RPM51S)X-F1SS-CE	0∼8.188 kg/s	±0.31 %
LOOD	PT-1	Р	Rosemount 3051CG	0~600 KPa	±0.05 %
	TE-1 T V		Watlow, T-type, Unground	0∼200 °C	±0.4 %
	DP-1	Р	Rosemount 3051CD	0~60 KPa	±0.05 %
	DP-2	Р	Rosemount 3051CD	0~60 KPa	±0.05 %
Test	DP-3	Р	Rosemount 3051CD	0~60 KPa	±0.05 %
Section	DP-4	Р	Rosemount 3051CD	0~60 KPa	±0.05 %
	DP-5	Р	Rosemount 3051CD	0~60 KPa	±0.05 %
	DP-6	Р	Rosemount 3051CD	0~150 KPa	±0.05 %

표 2.1-1 계측기 기술사양

표 2.1-2 유량계 교정자료

Flowmeter Type	Voltage	Hertz	GPM	Mass Flow (Kg/s)
	1.248	32.54	8.044	0.506
	1.463	60.81	15.033	0.946
	1.782	102.72	25.416	1.599
	2.084	142.56	35.243	2.217
FT-1	2.376	180.86	44.713	2.813
1.5", SN95181	2.707	223.91	55.47	3.489
	3.186	286.82	71.025	4.468
	3.756	360.51	89.568	5.634
	4.366	439.93	109.39	6.881
	5.005	523.25	130.161	8.188
	1.247	31.47	39.998	2.516
	1.559	71.37	90.729	5.707
	1.867	110.62	140.652	8.848
	2.182	150.6	191.893	12.071
FT-1	2.504	191.53	244.199	15.362
3", SN95182	3.112	268.45	342.991	21.577
	3.752	349.86	447.014	28.120
	4.352	425.9	544.517	34.254
	4.608	458.51	586.336	36.885
	5	508.31	650.154	40.899

Pressure (KPa)	PT-1 (Volt)	DP-1 (Volt)	DP-2 (Volt)	DP-3 (Volt)	DP-4 (Volt)	DP-5 (Volt)	DP-6 (Volt)
0	1	1.001	1.001	1	1.001	1	0.999
10	-	1.669	1.6695	1.6685	1.67	1.6705	-
20	-	2.336	2.3375	2.3355	2.3385	2.3385	-
30	-	3.004	3.0055	3.0015	3.0065	3.006	1.8005
40	-	3.6725	3.6735	3.6685	3.6755	3.6745	_
50	50 – 4.341		4.342	4.3355	4.3445	4.343	_
60	_	5.009	5.01	5.003	5.0135	5.0105	2.603
90	_	_	_	_	_	_	3.404
120	_	_	_	_	_	_	4.2065
150	-		I	-	-	_	5.009
200	2.334		I			_	_
300	3.0005					_	_
400	3.667	_	_	_	_	_	_
500	4.334	_	_	_	_	_	_
600	5.0005	_	_	_	_	_	_

표 2.1-3 압력계 교정자료

표 2.2-1 지지격자의 기하학적 사양

Dimension (mm)	Hybrid	Plain	Focus
Rod Array	5 x 5	5 x 5	5 x 5
Rod Diameter	9.5	9.5	9.5
Rod Pitch	12.8	12.8	12.6
Strap Thickness	0.48	0.48	0.43
Strap Width	66.6	66.6	65.86
Vane Angle (°)	35	-	22

표 3.2-1 지지격자 성능실험 Test Matrix

시쳐스거	Reynolds	Flow Rate	Average Velocity
실업군지	Number	(kg/s)	(m/s)
1	10000	2.5521	0.896
2	11220	2.8635	1.006
3	12589	3.2128	1.128
4	14125	3.6049	1.266
5	15849	4.0447	1.421
6	17783	4.5383	1,594
7	19953	5.0920	1.788
8	22387	5.7133	2.007
9	25119	6.4105	2.252
10	28184	7.1927	2.526
11	31623	8.0703	2.835
12	35481	9.0550	3.180
13	39811	10.1599	3.568
14	44668	11.3996	4.004
15	50119	12.7906	4.492
16	56234	14.3511	5.041
17	63096	16.1024	5.656
18	70795	18.0672	6.346
19	79433	20.2717	7.120
20	89125	22.7452	7.989
21	100000	25.5205	8.963

그림 2.1-1 Cold Test Loop -I 실험장치 개략도

R(

> 17.

그림 2.1-2 냉각수 저장탱크 도면

FT-1 (SN95182)

그림 2.1-3 유량계 교정식

그림2.1-4 압력계 교정식 (X축: Volts, Y축: KPa)

그림 2.2-1 Test Section의 기하학적 사양

그림 2.2-2 Test Section (5x5 Fuel Rod Assembly)

그림 2.2-3 Spacer Grid (Focus)

그림 2.2-4 Spacer Grid (Hybrid)

그림 2.2-5 Spacer Grid (Plain)

(a) Data Reduction 전

(b) Data Reduction 후

그림 4.1-1 FT-1(1.5 ") 유량계에서의 Data Sampling (Test Case : DP-VFA-Hybrid-1.5)

그림 4.1-2 저유량에서의 중간지지격자 차압(DP-3) Data Sampling (Test Case : DP-VFA-Hybrid-1.5)

그림 4.1-3 저유량에서의 Loop 온도(TC-1) Data Sampling (Test Case : DP-VFA-Hybrid-1.5)

(a) Data Reduction 전

(b) Data Reduction 후

그림 4.1-5 고유량에서의 중간지지격자 차압(DP-3) Data Sampling (Test Case : DP-VFA-Hybrid-3.0)

그림 4.1-6 고유량에서의 Loop 온도(TC-1) Data Sampling (Test Case : DP-VFA-Hybrid-3.0)

그림 4.2-1 중간 지지격자에 대한 입, 출구 지지격자의 압력강하 차이 비교 (Test Case : DP-VFA-Hybrid)

Flow Rate (kg/s)

그림 4.2-2 상단 핵연료봉 마찰손실에 대한 하단 핵연료봉의 마찰손실 차이 비교 (Test Case : DP-VFA-Hybrid)

그림 4.2-3 지지격자와 핵연료봉 압력손실에 대한 측정치 비교 (DP-6, DP-3+DP-4)

(a) Form Loss Coefficient of K1

(b) Form Loss Coefficient of K2

(c) Form Loss Coefficient of K3

그림 4.2-4 지지격자의 압력손실 계수 비교

(a) Friction Loss Coefficient of Lower Part

(b) Friction Loss Coefficient of Upper Part

그림 4.2-5 핵연료봉의 마찰손실 계수 비교

부 록

Summary of Test Results

Summary of Test Results for 5x5 FA Pressure Drop Test

Test Case : DP-VFA-Hybrid-1.5 (2002-02-28)

(1) Geometric Data

T/S (WxD) = 68mm x 68mm Rod Dia. = 9.5 mm Pitch = 12.6 mm

$$A = At/s - Arods$$

= 68*68 - 25*(3.14/4*9.5**2)
= 2852 mm2
P = Pt/s + Prods
= 4*68 + 25*(3.14*9.5)
= 1018 mm
Dh = 4*A/P
= 4*2852/1018
= 11.2 mm

(2) Test Loop Conditions

Run	Sampling	Mass Flow Ra	lass Flow Rate Loop Pressure (PT-1) Loop Temperature Water Properties		Water Properties		Avg. Vel.	Reynolds			
#		Avg. (Kg/s)	Std.	Avg. (Kpa)	Std.	Avg. ('C)	Std.	Viscosity(Kg/m/s)*e3	Density(kg/m3)	(m/s)	Number
1	99	2.554	0.019	27.419	0.037	24.154	0.072	0.9082	997.4	Q.898	11043
2	100	2.874	0.017	28.506	0.038	25.437	0.040	0.8819	997.1	1.011	12797
3	100	3.214	0.013	29.825	0.034	25.454	0.048	0.8816	997.1	1.130	14315
4	100	3,596	0.012	31.469	0.065	25.111	0.044	0.8885	997.1	1.264	15892
5	100	4.029	0.014	33.503	0.038	24.703	0.062	0.8968	997.3	1.416	17641
6	100	4.533	0.018	36.073	0.067	24.429	0.056	0.9025	997.3	1.594	19722
7	100	5.007	0.012	38.614	0.058	25.140	0.058	0.8879	997.1	1.761	22144
8	100	5.686	0.013	42.740	0.044	25.340	0.063	0.8839	997.1	1.999	25261
9	101	6.412	0.017	47.641	0.057	24.918	0.045	0.8924	997.2	2.255	28217
10	99	7.193	0.011	53.533	0.049	24.444	0.055	0.9022	997.3	2.529	31308
				1							

(3) Pressure Drop Informations

Run	Sampling	1st S/G (DP-	-1)	2nd S/G (DP	-3)	3rd S/G (DP-	-5)	Form Lo	ss Coefficie	ent (K)
#		Avg. (Kpa)	Std.	Avg. (Kpa)	<u>Std</u> .	Avg. (Kpa)	Std.	K1 (DP-1)	K3 (DP-3)	K5 (DP-5)
1	99	0.708	0.007	0.667	0.005	0.671	0.004	1.763	1.659	1.670
2	100	0.860	0.011	0.819	0.011	0.831	0.007	1.689	1.609	1.631
З	100	1.043	0.018	0.998	0.020	1.016	0.006	1.638	1.568	1.596
4	100	1.274	0.021	1.225	0.030	1.259	0.011	1.599	1.537	1.580
5	100	1.560	0.019	1.510	0.030	1.559	0.009	1.560	1.509	1.558
6	100	1.935	0.015	1.873	0.024	1.942	0.008	1.528	1.479	1.534
7	100	2.296	0.014	2.238	0.018	2.326	0.007	1.486	1.448	1.505
8	100	2.875	0.022	2.801	0.028	2.934	0.010	1.443	1.405	1.472
9	101	3,566	0.023	3.496	0.032	3.668	0.011	1.407	1.379	1.447
10	99	4.398	0.026	4.314	0.039	4.548	0.012	1.379	1.353	1.426
				1		1				

DP-VFA-Hybrid-1.5

Run	Sampling	1st Section (DP~2)	2nd Section (DP-4)		
#		Avg. (Kpa)	Std.	Avg. (Kpa)	<u>Std</u> .	
1	99	0.582	0.007	0.610	0.008	
2	100	0.720	0.007	0.747	0.010	
3	100	0.886	0.012	0.914	0.022	
4	100	1.095	0.021	1.117	0.027	
5	100	1.354	0.027	1.376	0.027	
6	100	1.689	0.015	1.703	0.020	
7	100	2.018	0.011	2.021	0.015	
8	100	2.547	0.019	2.546	0.027	
9	1 01	3.190	0.019	3.176	0.027	
10	99	3.965	0.032	3.931	0.037	

2) Pressure Loss for Rod Bundles

<u></u>	
Friction Loss	s Coefficient (f)
<u>f2 (DP-2)</u>	f4 (DP-4)
0.03119	0.03269
0.03044	0.03158
0.02998	0.03090
0.02960	0.03018
0.02916	0.02963
0.02872	0.02897
0.02812	0.02817
0.02752	0.02752
0.02711	0.02699
0.02678	0.02655

– A2 –

Summary of Test Results for 5x5 FA Pressure Drop Test Test Case : DP-VFA-Hybrid-3.0 (2002-02-28)

(1) Geometric Data

T/S (WxD)	= 68mm x 68mm
Rod Dia.	= 9.5 mm
Pitch	= 12.6 mm

$$A = At/s - Arods$$

= 68*68 - 25*(3.14/4*9.5**2)
= 2852 mm2
P = Pt/s + Prods
= 4*68 + 25*(3.14*9.5)
= 1018 mm
Dh = 4*A/P
= 4*2852/1018
= 11.2 mm

(2) Test Loop Conditions

Run	Sampling	Mass Flow Ra	ate	Loop Pressure	(PT-1)	Loop Tempe	rature	Water Properties	3	Avg. Vel.	Reynolds
#		Avg. (Kg/s)	Std.	Avg. (Kpa)	Std.	Avg. ('C)	<u>S</u> td.	Viscosity(Kg/m/s)*e3	Density(kg/m3)	(m/s)	Number
10	86	7.216	0.045	53.303	0.074	24.135	0.046	0.9086	997.4	2.537	31187
11	90 '	8.088	0.090	60.242	0.085	25.547	0.069	0.8797	997	2.844	36104
12	99	9.040	0.028	68.988	0.112	25.689	0.019	0.8769	997	3.179	40485
13	100	10.130	0.029	80.120	0.106	25.201	0.068	0.8867	997.1	3.562	44863
14	100	11.367	0.030	93.832	0.138	24.782	0.089	0.8952	997.3	3.996	49863
15	100	12.785	0.028	111.574	0.147	24.248	0.055	0.9062	997.4	4.494	55403
16	100	14.359	0.025	133.304	0.170	24.285	0.048	0.9055	997.4	5.048	62271
17	100	16.103	0.036	159.739	0.278	24.693	0.041	0.8970	997.3	5.661	70498
18	100	18.007	0.033	192.076	0.352	25.023	0.064	0.8902	997.2	6.331	79436
19	100	20.291	0.035	235.112	0.493	25.397	0.064	0.8827	997.2	7.134	90271
20	100	22.759	0.048	286.295	0,607	25.672	0.031	0.8772	997.1	8.003	101890
_21	100	25.565	0.044	351.841	0.625	25.798	0.020	0.8747	997.1	8.990	114779

(3) Pressure Drop Informations

Run	Sampling	1st S/G (DP-	-1)	2nd S/G (DP	-3)	3rd S/G (DP-	-5)	•	Form Lo	Form Loss Coefficie
#		Avg. (Kpa)	<u>Std</u> .	Avg. (Kpa)	Std.	Avg. (Kpa)	<u>S</u> td.		<u>K1 (DP-1)</u>	<u>K1 (DP-1) K3 (DP-3)</u>
10	86	4.370	0.035	4.292	0.049	4.526	0.017	-	1.362	1.362 1.337
11	90	5.337	0.037	5.236	0.038	5.556	0.018		1.323	1.323 1.298
12	99	6.551	0.046	6.447	0.053	6.865	0.021		1.300	1.300 1.280
13	100	8.113	0.057	7.980	0.062	8.523	0.022		1.283	1.283 1.261
14	100	10.024	0.064	9.830	0.077	10.543	0.032		1.259	1.259 1.234
15	100	12.466	0.072	12.289	0.094	13.154	0.037		1.238	1.238 1.220
16	100	15.470	0.063	15.245	0.089	16.339	0.030		1.218	1.218 1.200
17	100	19.160	0.061	18.876	0.082	20.289	0.045		1.199	1.199 1.181
18	100	23.615	0.059	23.280	0.072	25.106	0.040		1.181	1.181 1.165
19	100	29.525	0.065	29.124	0.076	31.597	0.042		1.163	1.163 1.148
20	100	36.603	0.063	36.005	0.085	39.276	0.061		1.146	1.146 1.127
21	100	45.684	0.079	44.930	0.088	49.254	0.077		1.134	1.134 1.115

DP-VFA-Hybrid-3.0

Run	Sampling	1st Section (I	DP-2)	2nd Section ((DP-4)
#		Avg. (Kpa)	<u>Std</u> .	Avg. (Kpa)	<u>Std.</u>
10	86	3.943	0.040	3.921	0.046
11	90	4.848	0.033	4.804	0.042
12	99	5.984	0.049	5.921	0.054
13	100	7.431	0.063	7.376	0.066
14	100	9.220	0.074	9.132	0.076
15	100	11.499	0.091	11.388	0.079
16	100	14.282	0.092	14.124	0.081
17	100	17.634	0.090	17.462	0.086
18	100	21.693	0.096	21.455	0.079
19	100	27.104	0.097	26.739	0.077
20	100	33.536	0.094	32.989	0.079
21	100	41.558	0.111	40.819	0.083

2) Pressure Loss for Rod Bundles

. <u> </u>	
Friction Loss	s Coefficient (f)
f2 (DP-2)	f4 (DP-4)
0.02647	0.02632
0.02589	0.02565
0.02558	0.02531
0.02530	0.02511
0.02494	0.02470
0.02459	0.02435
0.02421	0.02394
0.02376	0.02353
0.02338	0.02312
0.02300	0.02269
0.02262	0.02225
0.02221	0.02182

Summary of Test Results for 5x5 FA Pressure Drop Test

Test Case : DP-VFA-Plain-1.5 (2002-03-02)

(1) Geometric Data

T/S (WxD) = 68mm x 68mm Rod Dia. = 9.5 mm Pitch = 12.6 mm

```
A = At/s - Arods
= 68*68 - 25*(3.14/4*9.5**2)
= 2852 mm2
P = Pt/s + Prods
= 4*68 + 25*(3.14*9.5)
= 1018 mm
Dh = 4*A/P
= 4*2852/1018
= 11.2 mm
```

(2) Test Loop Conditions	(2)	Test	Loop	Conditions	\$
--------------------------	-----	------	------	------------	----

Run	Sampling	Mass Flow Ra	ate	Loop Pressure	(PT-1)	Loop Tempe	rature	Water Properties	S	Avg. Vel.	Reynolds
#		Avg. (Kg/s)	Std.	Avg. (Kpa)	Std.	Avg. ('C)	Std.	Viscosity(Kg/m/s)+e3	Density(kg/m3)	(m/s)	Number
1	102	2.543	0.017	27.091	0.035	25.691	0.015	0.8769	997	0.894	11387
2	98	2.862	0.017	28.128	0.032	25.682	0.014	0.8770	997	1.007	12817
3	100	3.231	0.013	29.528	0.048	25.659	0.008	0.8775	997	1.136	14457
4	200	3.609	0.011	31.045	0.031	25.583	0.017	0.8790	997	1.269	16122
5	100	4.044	0.016	32.944	0.048	25.366	0.042	0.8834	997.1	1.422	17979
6	100	4.535	0.015	35.342	0.047	24.737	0.052	0.8961	997.2	1.594	19872
7	100	5.090	0.014	38.261	0.057	24.265	0.062	0.9059	997.4	1.789	22065
8	100	5.741	0.013	42.003	0.067	24.201	0.088	0.9072	997.4	2.018	24850
9	100	6.420	0.014	46.249	0.044	24.708	0.083	0.8967	997.3	2.257	28114
10	100	7.223	0.012	51.790	0.071	25.550	0.028	0.8797	997	2.540	32244

(3) Pressure Drop Informations

Run	Sampling	1st S/G (DP-	·1)	2nd S/G (DP	-3)	3rd S/G (DP-	-5)	Form Lo	ss Coefficie	ent (K)
#		Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	K1 (DP-1)	<u>K3 (DP-3)</u>	<u>K5 (DP-5)</u>
1	102	0.649	0.007	0.594	0.006	0.601	0.004	1.629	1.490	1.507
2	98	0.795	0.009	0.735	0.007	0.746	0.005	1.574	1.456	1.477
3	100	0.980	0.021	0.910	0.021	0.931	0.005	1.523	1.413	1.446
4	200	1.186	0.028	1.115	0.029	1.138	0.008	1.477	1.389	1.418
5	100	1.455	0.023	1.374	0.031	1.410	0.012	1.443	1.362	1.399
6	100	1.792	0.017	1.694	0.020	1.747	0.008	1.414	1.336	1.378
7	100	2.206	0.013	2.094	0.017	2.163	0.009	1.381	1.311	1.355
8	100	2.734	0.020	2.598	0.023	2.697	0.010	1.346	1.279	1.328
9	100	3.342	0.025	3.176	0.027	3.311	0.011	1.316	1.250	1.303
10	100	4.138	0.029	3.926	0.033	4.109	0.012	1.286	1.221	1.278
]						

DP-VFA-Plain-1.5

Run	Sampling	1st Section (I	DP-2)	2nd Section	(DP-4)
#		Avg. (Kpa)	<u>Std.</u>	Avg. (Kpa)	Std.
1	102	0.560	0.007	0.585	0.006
2	98	0.702	0.005	0.723	0.007
3	100	0.880	0.019	0.903	0.019
4	200	1.083	0.020	1.101	0.029
5	100	1.345	0.024	1.357	0.030
6	100	1.656	0.017	1.666	0.022
7	100	2.046	0.013	2.046	0.020
8	100	2.536	0.019	2.537	0.021
9	100	3.103	0.024	3.090	0.029
10	100	3.821	0.027	3.784	0.037
]					

2) Pressure Loss for Rod Bundles

Friction Loss	Coefficient (f)
f2 (DP-2)	f4 (DP-4)
0.03027	0.03158
0.02991	0.03082
0.02945	0.03023
0.02906	0.02954
0.02872	0.02899
0.02815	0.02832
0.02760	0.02760
0.02689	0.02691
0.02631	0.02620
0.02558	0.02533

Summary of Test Results for 5x5 FA Pressure Drop Test Test Case : DP-VFA-Plain-3.0 (2002-03-02)

(1) Geometric Data

T/S (WxD)	= 68mm x 68mm
Rod Dia.	= 9.5 mm
Pitch	= 12.6 mm

$$A = At/s - Arods$$

= 68*68 - 25*(3.14/4*9.5**2)
= 2852 mm2
P = Pt/s + Prods
= 4*68 + 25*(3.14*9.5)
= 1018 mm
Dh = 4*A/P
= 4*2852/1018
= 11.2 mm

(2) Test Loop Conditions

Run	Sampling	Mass Flow Ra	ate	Loop Pressure	(PT-1)	Loop Tempe	rature	Water Properties	8	Avg. Vel.	Reynolds
#		Avg. (Kg/s)	Std.	Avg. (Kpa)	Std.	Avg. ('C)	Std.	Viscosity(Kg/m/s)+e3	Density(kg/m3)	(m/s)	Number
10	86	7.223	0.037	51.562	0.073	24.719	0.015	0.8965	997.3	2.539	31640
11	90	8.099	0.038	58.279	0.104	24.729	0.019	0.8963	997.3	2.847	35485
12	99	9.044	0.031	66.291	0.118	24.491	0.026	0.9012	997.3	3.180	39412
13	100	10.109	0.033	76.358	0.101	24.372	0.015	0.9037	997.4	3.554	43927
14	100	11.391	0.023	89.560	0.100	24.381	0.019	0,9035	997.4	4.004	49510
15	100	12.759	0.026	105.349	0.153	24.479	0.024	0.9014	997.3	4.486	55588
16	100	14.420	0.028	126.573	0.171	24.617	0.015	0.8986	997.3	5.070	63020
17	100	16.108	0.037	150.527	0.206	24.588	0.018	0.8992	997.3	5.663	70346
18	100	18.048	0.035	181.011	0.283	24.516	0.025	0.9006	997.4	6.345	78697
19	100	20.294	0.040	220.266	0.321	24.443	0.018	0.9021	997.4	7.134	88344
20	100	22.776	0.040	268.138	0.470	24.437	0.011	0.9023	997.4	8.007	99128
21	100	25.605	0.052	329,363	0.503	24.516	0.010	0.9006	997.4	9.001	111650

(3) Pressure Drop Informations

Run	Sampling	1st S/G (DP-	-1)	2nd S/G (DP-	-3)	3rd S/G (DP-	-5)	Form Lo	ss Coefficie	ent (K)
#		Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	<u>K1 (DP-1)</u>	K3 (DP-3)	K5 (DP-5)
10	86	4.106	0.033	3.890	0.037	4.071	0.014	1.277	1.210	1.266
11	90	5.060	0.035	4.792	0.034	5.038	0.019	1.252	1.185	1.246
12	99	6.200	0.050	5.864	0.052	6.191	0.023	1.230	1.163	1.228
13	100	7.627	0.048	7.217	0.065	7.637	0.022	1.211	1.146	1.213
14	100	9.487	0.052	9.011	0.067	9.529	0.027	1.186	1.127	1.192
15	100	11.759	0.061	11.115	0.076	11.806	0.032	1.172	1.108	1.176
16	100	14.777	0.057	14.010	0.082	14.880	0.034	1.153	1.093	1.161
17	100	18.220	0.047	17.210	0.082	18.336	0.036	1.139	1.076	1.147
18	100	22.591	0.053	21.345	0.075	22.765	0.038	1.125	1.063	1.134
19	100	28.197	0.061	26.672	0.077	28.477	0.045	1.111	1.051	1.122
20	100	34.983	0.065	33.158	0.084	35.488	0.043	1.094	1.037	1.110
21	100	43.747	0.082	41.560	0.097	44.436	0.058	1.083	1.029	1.100

DP-VFA-Plain-3.0

2) Pressure Loss for Rod Bundles

Run	Sampling	1st Section (I	DP-2)	2nd Section (DP-4)
#		Avg. (Kpa)	Std.	Avg. (Kpa)	Std.
10	86	3.791	0.037	3.762	0.037
11	90	4.658	0.031	4.612	0.033
12	99	5.708	0.048	5.631	0.055
13	100	7.008	0.056	6.887	0.058
14	100	8.643	0.062	8.499	0.068
15	100	10.654	0.076	10.418	0.078
16	100	13.255	0.076	12.942	0.072
17	100	16.193	0.083	15.782	0.076
18	100	19.872	0.080	19.353	0.074
19	100	24.614	0.096	23.930	0.077
20	100	30.303	0.103	29.431	0.074
21	100	37.499	0.111	36.367	0.080

Friction Loss	Coefficient (f)
f2 (DP-2)	f4 (DP-4)
0.02539	0.02520
0.02481	0.02457
0.02438	0.02405
0.02397	0.02355
0.02328	0.02289
0.02287	0.02236
0.02227	0.02175
0.02181	0.02126
0.02132	0.02076
0.02089	0.02031
0.02041	0.01983
0.01999	0.01939

Summary of Test Results for 5x5 FA Pressure Drop Test Test Case : DP-VFA-Focus-1.5 (2002-03-04)

(1) Geometric Data

- T/S (WxD) = 68mm x 68mm
 - Rod Dia. = 9.5 mm Pitch = 12.6 mm

$$A = At/s - Arods$$

= 68*68 - 25*(3.14/4*9.5**2)
= 2852 mm2
P = Pt/s + Prods
= 4*68 + 25*(3.14*9.5)
= 1018 mm
Dh = 4*A/P
= 4*2852/1018
= 11.2 mm

(2) Test Loop Conditions

Run	Sampling	Mass Flow Ra	ate	Loop Pressure	(PT-1)	Loop Tempe	rature	Water Propertie	S	Avg. Vel.	Reynolds
#		Avg. (Kg/s)	Std.	Avg. (Kpa)	Std.	Avg. ('C)	Std.	Viscosity(Kg/m/s)*e3	Density(kg/m3)	(m/s)	Number
1	100	2.553	0.018	27.513	0.031	25.247	0.028	0.8857	997.1	0.898	11320
2	100	2.850	0.016	28.503	0.034	25.206	0.019	0.8866	997.1	1.002	12622
3	100	3.220	0.014	29.913	0.038	25.113	0.034	0.8885	997.1	1.132	14232
4	100	3.603	0.011	31.510	0.041	25.056	0.032	0.8896	997.2	1.267	15906
5	100	4.053	0.013	33.563	0.047	25.021	0.024	0.8903	997.2	1.425	17877
6	101	4.534	0.017	36.004	0.038	24.951	0.016	0.8917	997.2	1.594	19966
7	99	5.079	0.012	38.985	0.058	24.840	0.019	0.8940	997.2	1.786	22311
8	100	5.673	0.011	42.575	0.053	24.752	0.027	0.8958	997.2	1.995	24867
9	100	6.422	0.017	47.537	0.059	24.756	0.040	0.8957	997.2	2.258	28158
10	100	7.208	0.013	53.305	0.080	24.717	0.033	0.8965	997.3	2.534	31574

(3) Pressure Drop Informations

Run	Sampling	1st S/G (DP-	-1)	2nd S/G (DP	-3)	3rd S/G (DP-	-5)	-	Form Lo	ss Coefficie	ent (K)
#		Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	Avg. (Kpa)	Std.		K1 (DP-1)	K3 (DP-3)	K5 (DP-5)
1	100	0.709	0.008	0.666	0.005	0.685	0.005	-	1.764	1.656	1.705
2	100	0.853	0.008	0.806	0.006	0.838	0.004		1.705	1.609	1.674
3	100	1.055	0.016	1.000	0.018	1.041	0.005		1.651	1.565	1.629
4	100	1.281	0.022	1.224	0.023	1.280	0.006		1.601	1.530	1.599
5	100	1.574	0.019	1.511	0.019	1.586	0.006		1.554	1.492	1.566
6	101	1.918	0.021	1.844	0.021	1.950	0.007		1.514	1.456	1.539
7	99	2.337	0.018	2.263	0.016	2.396	0.007		1.470	1.423	1.507
8	100	2.839	0.021	2.748	0.023	2.928	0.008		1.431	1.385	1.476
9	100	3.540	0.025	3.427	0.031	3.670	0.010		1.392	1.348	1.443
10	100	4.356	0.034	4.220	0.040	4.538	0.014		1.360	1.318	1.417
						<u> </u>		-			

DP-VFA-Focus-1.5

Run	Sampling	1st Section (DP-2)	2nd Section ((DP4)
#		Avg. (Kpa)	Std.	Avg. (Kpa)	Std.
1	100	0.582	0.009	0.606	0.009
2	100	0.720	0.009	0.743	0.009
3	100	0.901	0.017	0.925	0.020
4	100	1.118	0.022	1.130	0.029
5	100	1.394	0.018	1.398	0.019
6	101	1.717	0.014	1.714	0.025
7	99	2.112	0.013	2.097	0.020
8	100	2.588	0.018	2.560	0.029
9	100	3.244	0.025	3.199	0.028
10	100	4.018	0.037	3.940	0.040

2) Pressure Loss for Rod Bundles

Friction Loss	s Coefficient (f)
f2 (DP-2)	f4 (DP-4)
0.03120	0.03248
0.03099	0.03197
0.03035	0.03116
0.03009	0.03042
0.02966	0.02974
0.02919	0.02914
0.02861	0.02840
0.02810	0.02780
0.02748	0.02710
0.02702	0.02650

Summary of Test Results for 5x5 FA Pressure Drop Test Test Case : DP-VFA-Focus-3.0 (2002-03-04)

(1) Geometric Data

T/S (WxD)	= 68mm x 68mm
Rod Dia.	= 9.5 mm
Pitch	= 12.6 mm

Pitch =
$$12.6 \text{ mm}$$

$$A = At/s - Arods$$

= 68*68 - 25*(3.14/4*9.5**2)
= 2852 mm2
P = Pt/s + Prods
= 4*68 + 25*(3.14*9.5)
= 1018 mm
Dh = 4*A/P
= 4*2852/1018
= 11.2 mm

(2) Test Loop Conditions

Run	Sampling	Mass Flow R	ate	Loop Pressure	(PT~1)	Loop Tempe	rature	Water Properties	3	Avg. Vel.	Reynolds
#		Avg. (Kg/s)	<u>S</u> td.	Avg. (Kpa)	<u>Std.</u>	Avg. ('C)	Std.	Viscosity(Kg/m/s)*e3	Density(kg/m3)	(m/s)	Number
10	78	7.209	0.041	52.967	0.069	24.269	0.050	0,9058	997.4	2.534	31254
11	93	8.083	0.042	59.868	0.094	24.866	0.044	0.8935	997.2	2.842	35526
12	94	9.054	0.024	68.357	0.087	25.648	0.056	0.8777	997	3.184	40509
13	100	10.192	0.029	79.594	0.117	25.950	0.042	0.8718	996.9	3.585	45910
14	100	11.412	0.028	92.519	0.136	26.228	0.017	0.8663	996.9	4.014	51733
15	100	12.739	0.023	108.207	0.143	26.215	0.011	0.8666	996.9	4.480	57726
16	100	14.391	0.026	129.894	0.171	26.165	0.009	0.8675	996.9	5.062	65147
17	100	16.143	0.033	155.459	0.234	26.085	0.013	0.8691	996.9	5.678	72944
18	100	18.014	0.034	185.415	0.286	25.967	0.015	0.8714	997	6.335	81180
19	100	20.261	0.036	225.336	0.451	25.704	0.027	0.8766	997.1	7.125	90765
20	100	22.701	0.038	273.443	0.472	25.465	0.033	0.8813	997.2	7.982	101154
_21	100	25.514	0.051	334.806	0.588	25.007	0.090	0.8905	997.3	8.970	112516

(3) Pressure Drop Informations

Run	Sampling	1st S/G (DP-	-1)	2nd S/G (DP	-3)	3rd S/G (DP-	3rd S/G (DP-5)			Form Loss Coefficient (K)		
#		Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	Avg. (Kpa)	Std.	<u>+</u>	<u><1 (DP-1)</u>	K3 (DP-3)	<u>K5 (DP</u>	
10	78	4,299	0.030	4.171	0.039	4.498	0.018	-	1.342	1.302	1.40	
11	93	5,268	0.038	5.117	0.045	5.534	0.018		1.308	1.271	1.37	
12	94	6,435	0.038	6.260	0.049	6.799	0.019		1.273	1.239	1.34	
13	100	7.995	0.049	7.771	0.050	8.480	0.025		1.248	1.213	1.32	
14	100	9.766	0.047	9.493	0.054	10.396	0.025		1.216	1.182	1.29	
15	100	11.933	0.048	11.587	0.061	12.722	0.028		1.193	1.158	1.27	
16	100	14.916	0.045	14.460	0.075	15.929	0.031		1.168	1.132	1.24	
17	100	18.416	0.046	17.844	0.070	19.706	0.035		1.146	1.110	1,226	
18	100	22.498	0.057	21.780	0.077	24.125	0.042		1.125	1.089	1.20	
19	100	27.913	0.070	27.027	0,070	30.027	0.045		1.103	1.068	1.18	
20	100	34.370	0.069	33.283	0.078	37.108	0.056		1.082	1.048	1.168	
21	100	42.633	0.073	41.233	0.085	46.163	0.069		_1.063	1.028	1.15	

DP-VFA-Focus-3.0

Rur 1st Section (DP-2) 2nd Section (DP-4) Sampling # Avg. (Kpa) Avg. (Kpa) Std. Std. 3.930 10 78 3.985 0.043 0.040 11 93 4.884 0.036 4.805 0.044 0.047 5.875 0.050 6.002 12 94 0.054 0.049 7.301 13 100 7.459 14 100 9.129 0.068 8.903 0.061 15 0.066 10.870 0.058 100 11.158 13.549 0.069 16 0.070 100 13.957 0.065 17 0.076 16.706 100 17.212 0.078 18 100 21.008 0.086 20.380 100 19 26.052 0.103 25.263 0.079 0.076 20 100 32.105 0.108 31.111 0.109 0.075 21 100 39.809 38.586

2) Pressure Loss for Rod Bundles

Friction Loss Coefficient (f)			
f2 (DP-2)	f4 (DP-4)		
0.02680	0.02643		
0.02612	0.02570		
0.02558	0.02504		
0.02508	0.02455		
0.02448	0.02388		
0.02402	0.02340		
0.02354	0.02285		
0.02307	0.02239		
0.02262	0.02194		
0.02217	0.02150		
0.02177	0.02109		
0.02137	0.02071		

		서 지	정 보	야	식		
수행기관보	고서번호	위탁기관보고서번호 표준보고서번호 INIS 주기		S 주제코드			
KAERI/TR-2	2229/2002						
제목 / 니	부제	5x5 봉다발 지지격자 압력강하실험					
주저자 및 (AR, TR등의 ²	부서명 경우 주저자)	장석규 (열수력안전연구팀)					
연구자 및	부서명	김복득, 천세영 (열수력안전연구팀)					
출 판 지	대전	발행기관	한국	한국원자력연구소		발행년	2002
페이지	58 p.	도 표	있음(○), 없음()		크 기	Cm.	
참고사항							
비밀여부	공개(○ 급비밀), 대외비(), !		보고ㅅ]종류	기술보고서	
연구위탁기	연구위탁기관		계약	번호			
초 록 (15	5-20 줄)						

복합유동 날개 지지격자(Hybrid type)의 수력 성능 검증을 위하여 압력강하실험을 수행하였다. 또한, 지지격자의 성능비교를 위하여 독일 KWU에서 개발한 분리형 날개 지지격자(Focus)와 reference용으로 Hybrid형 지지격자에서 날개를 제거한 지지격자(Plain)들에 대한 수력적 실험을 수행하였다. 실험은 상온, 상압 수력실험장치인 Cold Test Loop-I에서 수행하였다. 각 지지격자들 에 대한 수력실험을 위하여 test section은 5x5 핵연료다발에 대하여 3개의 지지격자를 장착하도록 하였다. 측정변수로 지지격자 및 핵연료봉 구간에 대한 차압을 측정하였으며 loop의 실험조건을 일정하게 맞추기 위하여 유량, 온도 그리고 압력들을 측정하면서 실험조건으로 제어하였다. 지지격자의 압력손실계수는 Plain 지지격자가 가장 낮으며 Hybrid 지지격자의 손실계수는 날개의 저항으로 전반적으로 7~10 % 높게 나타났다. 핵연료봉의 마찰손실계수는 test section 상, 하단이 서로 차이를 보여 압력 측정탭을 지지격자에 의한 국지적 유동교란 영역을 벗어난 안정된 유동 지점을 택하는 것이 요구되었다.

주제명키워드	체서그ㅂ스그 니ㄹ	특히하. 기기거기	나로 중 하나 게	아러소시 미카소시	
(10단어내외)	액언뇨수구노, 단류	구온압, 시시석사,	단규온압될게,	압덕근실, 마찰근실	

	BIBLI	OGRAPHIC	INFO	ORMATION SHI	EET		
Performin Report	g Org. No.	Sponsoring O Report No.	rg.	Stamdard Report N	o. INIS Su	INIS Subject Code	
KAERI/TR-2	2229/2002						
Title / Su	btitle	Pressure Drop Test of the Spacer Grids on 5x5 Fuel Rod Bundles					
Project Ma and Depar	nager rtment	S. K. Chang (Thermal-hydraulic Safety Analysis Team)					
Researcher Departme	and ent	B. D. Kim, S. Y. Chun (Thermal-hydraulic Safety Analysis Team)				sis Team)	
Publication Place	Taejon	Publisher	KAERI		Publication Date	2002	
Page	58 p.	Ill. & Tab.	Yes(\circ), No ()		Size	Cm.	
Note							
Classified	Open(O	, Restricted(), Document Report Type		Technical R	eport		
Sponsoring	Org.			Contract No.			

Abstract (15-20 Lines)

The pressure drop test was performed to verify the hydraulic performance of hybrid type spacer grid. And also, for the comparison of the hydraulic performance of the hybrid type spacer grid, the pressure drop tests were performed for the splitted vane type spacer grid (FOCUS) which had been developed in KWU and the reference spacer grid which has no vanes. The tests were conducted at the hydraulic test loop facility, Cold Test Loop–I. Three spacer grids are installed on the 5x5 fuel assembly for the tests. The differential pressure drops are measured for the spacer grids and the fuel rods. The loop flow rate, system pressure and temperatures are measured and controlled for the test conditions. The pressure loss coefficient of the plain spacer grid is lowest. The pressure loss coefficient of the Hybrid spacer grid is $7 \sim 10$ % higher than the plain spacer grid due to the mixing vane resistance. The friction loss coefficients of the fuel rods are different from upper and lower part. There is need to correct the locations of the pressure taps to avoid the local unstable region due to the spacer grids.

Subject Keywords	Fuel rod subchannel, Turbulence mixing, Spacer grid,
(About 10 words)	Turbulence mixing vane, Pressure loss, Friction loss