### KAERI/TR-2417/2003

ISAAC / /

가

# An Evaluation of Nodalization/Decay Heat/ Volatile Fission Product Release Models in ISAAC Code



## **Korea Atomic Energy Research Institute**

,,

"

2003 3

:

:

: ISAAC / / 7 (An Evaluation of Nodalization/Decay Heat/Volatile Fission Product Release Models in ISAAC Code)



i

•

#### SUMMARY

An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed.

According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for a optimal scheme because detailed nodalization methods have no large effect on fuel thermal-hydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

| Summary - |               | <br>     |        | ii  |
|-----------|---------------|----------|--------|-----|
|           |               | <br>     |        | iii |
|           |               | <br>     |        | iv  |
| -         |               | <br>     |        | V   |
|           |               |          |        |     |
| 1         | •••••         | <br>     | •••••• | 1   |
| 2         |               |          |        |     |
| 2.1       |               | $\leq 1$ |        |     |
| 2.2       |               |          |        |     |
| 3         | $\rightarrow$ | <br>     |        |     |
| 4         |               |          |        | 29  |
| 5         |               |          |        |     |



| 1     | 3X3   | ISAAC                   |                  |         |
|-------|-------|-------------------------|------------------|---------|
| 2     |       |                         |                  |         |
| 3     |       |                         |                  |         |
| 4     |       |                         |                  |         |
| 5     |       |                         |                  | 19      |
| 6     |       |                         |                  | 19      |
| 7     |       |                         |                  |         |
| 8     |       |                         |                  |         |
| 9     | LOCA  |                         | CsI              |         |
| 10    | LOAH  |                         | CsI              |         |
| 11    | LOCA  |                         | TeO <sub>2</sub> |         |
| 12    | LOAH  |                         | TeO <sub>2</sub> |         |
| 13    | LOCA  | $\times$ $( \bigcirc )$ | H <sub>3</sub>   |         |
| 14    | LOAH  |                         | H <sub>3</sub>   |         |
| 15    | ISAAC |                         |                  |         |
| 16    | FP    | CsI                     |                  |         |
| 17    | FP    | TeO <sub>2</sub>        | 2                |         |
| 18    | FP    | CsI                     |                  | [Kg] 43 |
| 19    | FP    | TeO <sub>2</sub>        | 2                | [Kg] 43 |
| 20    | FP    | C                       | CsI              |         |
| 21    | FP    |                         |                  | CsI     |
| ••••• |       |                         |                  |         |
| 22    | FP    |                         | CsI              |         |
| 23    | FP    |                         | CsI              |         |
| 24    | FP    |                         | С                | sI 46   |

| 25   | FP         |                | ( | /     | /                   |         |
|------|------------|----------------|---|-------|---------------------|---------|
|      | pool) C    | sI             |   |       |                     |         |
| 26   | NUREG-077  | 2 (07-C-R-90), |   |       | CsI                 |         |
| 27   | IDCOR      | (ID-C-R-90),   |   | Cs    | I                   |         |
| 28 1 | NUREG-0772 | (07-C-R-90),   |   |       | Te/TeO <sub>2</sub> | [Kg]    |
|      |            |                |   | ••••• |                     |         |
| 29   | IDCOR      | (ID-C-R-90),   |   | Те    | e/TeO <sub>2</sub>  | [Kg] 48 |









ISAAC

가

.

1

.



가

[2] (Nodalization) ISAAC 가 , PSA [3] (loop) ISAAC 가 가 (Loop Isolation Valve) (Liquid Relief Valve)7 Condenser Tank) . ISAAC (Peaking Factor), , 37 (representative channel)

,

2/3/4 2

(Degasser

가

,

(Calandria Tube)/ (Fuel Rod) (Pressure Tube)/ , , CO<sub>2</sub> 가 • 가 12 (Fuel Bundle) , 2 (mesh) 12 < .1> 380 .

.

(compartment)

< .2> : 1) 12 • (basement), 2) 3) (F/M 107), 4) (F/M 108), 5) , 6) (access area), 7) , 10) Degasser Condenser Tank, 11) , 8) , 9) (Endshield) 1, 12) 2. 18 (volume) (rupture disk) 4 (End Shield) 2 (calandria tubesheet) (ECCS), (containment spray system), (local air cooler) , / /

가 (MAAP (=12 ) ) 가 • 380 12 ( 6 , 3x3 Core Pass), 16 ( 8,4x4 Core Pass), 20 10 , 5x5 Core Pass) 12 , 6x6 ( 24 ( Core Pass) 가 (class IV (Reactor Outlet Header) LOAH)  $(=0.2594 \text{ m}^2)$ large LOCA) , 가 가 가 가 (=1.007) , < .1>ISAAC < .2/3/4/5> , 6x6

Compaq Fortran V5.3ISAAC(forrtl: severe(139): array index out of bounds for index 1 (SIGTRAP))7Compaq Fortran Compiler X5.5-2602-48C8L (Compaq





(Axial Peaking Factor)

|   |                                               | 3x3 |       |        | 4x4 |       |       | 5x5  |       |       | 6x6  |       |
|---|-----------------------------------------------|-----|-------|--------|-----|-------|-------|------|-------|-------|------|-------|
|   | APF                                           |     |       | APF    |     |       | APF   |      |       | APF   |      |       |
|   | 0.879                                         | (1) | 6.542 | 0.879  | (1) | 6.542 | 0.879 | (1)  | 6.542 | 0.872 | (1)  | 6.542 |
|   | 1.048                                         | (4) | 5.016 | 1.020  | (5) | 5.844 | 0.986 | (6)  | 5.457 | 0.879 | (7)  | 6.098 |
|   | 1.079                                         | (2) | 4.244 | 1.048  | (2) | 5.147 | 1.017 | (2)  | 4.372 | 1.048 | (2)  | 5.654 |
|   | 1.091                                         | (5) | 3.382 | 1.079  | (6) | 4.449 | 1.048 | (7)  | 3.287 | 1.074 | (8)  | 5.210 |
|   | 1.074                                         | (3) | 2.520 | 1.091  | (3) | 3.752 | 1.079 | (3)  | 2.202 | 1.079 | (3)  | 4.766 |
|   | 0.872                                         | (6) | 1.659 | 1.074  | (7) | 3.054 | 1.091 | (8)  | 5.999 | 1.091 | (9)  | 4.322 |
|   |                                               |     |       | 0.994  | (4) | 2.357 | 1.074 | (4)  | 4.914 | 1.091 | (4)  | 3.879 |
|   |                                               |     |       | 0.872  | (8) | 1.659 | 1.033 | (9)  | 3.829 | 1.079 | (10) | 3.435 |
|   |                                               |     | /     | $\sim$ |     |       | 0.992 | (5)  | 2.744 | 1.074 | (5)  | 2.991 |
|   |                                               |     | /     |        | 1   |       | 0.872 | (10) | 1.659 | 1.048 | (11) | 2.547 |
|   |                                               |     |       |        |     | 1     |       | 1    |       | 0.879 | (6)  | 2.103 |
|   |                                               |     |       | -      | 1   |       | 7     | _    |       | 0.872 | (12) | 1.659 |
|   | 1.007                                         |     |       | 1.007  |     | e     | 1.007 |      |       | 1.007 |      |       |
| L | <u>,                                     </u> |     | 1     | 1      |     |       | /     | I    |       | 1     | L    | 1     |

| )                   |                     |           |
|---------------------|---------------------|-----------|
| (Broken Loop, LOCA가 | RIH2 ROH3           | loop      |
| )                   | ,                   | (Unbroken |
| Loop, LOCA가         | ROH1 RIH4           | loop )    |
| 가                   | . , 3x3             | ,         |
| 1,2,3 Broken Loop , | 4,5,6 Unbroken Loop | ,         |
| 1,4,2,5,3,6         | <u>.</u>            |           |

#### 2 3X3

### ISAAC

(1/4)

// Nodalization parameter change \*\* ICHMAX(il) : number of representive channels for loop il ICHMAX(1)=6. ICHMAX(2)=6. \*\* NTUBE(i,il) : number of pressure tubes in channel i for loop il NTUBE(1,1)=30.0 NTUBE(2,1)=30.0 NTUBE(3,1)=30.0 NTUBE(4,1)=30.0 NTUBE(5,1)=30.0 NTUBE(6,1)=40.0 NTUBE(1,2)=30.0 NTUBE(2,2)=30.0 NTUBE(3,2)=30.0 NTUBE(4,2)=30.0 NTUBE(5,2)=30.0 NTUBE(6,2)=40.0 \*\* ZFCOR(i,il) : height of pressure tubes (bottom of inner p.t. from calandria bottom) in channel i for loop il ZFCOR(1,1)=6.542 ZFCOR(2,1)=4.244 ZFCOR(3,1)=2.520 ZFCOR(4,1)=5.016 ZFCOR(5,1)=3.382 ZFCOR(6,1)=1.659 ZFCOR(1,2)=6.542 ZFCOR(2,2)=4.244 ZFCOR(3,2)=2.520 ZFCOR(4,2)=5.016 ZFCOR(5,2)=3.382 ZFCOR(6,2)=1.659 \*\* ILOOP(i,il) : flag for the channel i for loop il which is connected to channel 1 in loop 1 is in broken loop ILOOP(1,1)=0 channel 2 in loop 1 is in broken loop ILOOP(2,1)=0 ILOOP(3,1)=0 channel 3 in loop 1 is in broken loop ILOOP(4,1)=1 channel 4 in loop 1 is in unbroken loop ILOOP(5,1)=1 channel 5 in loop 1 is in unbroken loop ILOOP(6,1)=1 channel 6 in loop 1 is in unbroken loop ILOOP(1,2)=0 channel 1 in loop 2 is in broken loop channel 2 in loop 2 is in broken loop ILOOP(2,2)=0 ILOOP(3,2)=0 channel 3 in loop 2 is in broken loop ILOOP(4,2)=1 channel 4 in loop 2 is in unbroken loop ILOOP(5,2)=1 channel 5 in loop 2 is in unbroken loop ILOOP(6,2)=1 channel 6 in loop 2 is in unbroken loop \*\* FPCH(i,il) : channel peaking factor for the channel i for loop il FPCH(1,1)=0.879 FPCH(2,1)=1.079 FPCH(3,1)=1.074 FPCH(4,1)=1.048 FPCH(5,1)=1.091 FPCH(6,1)=0.872 FPCH(1,2)=0.879 FPCH(2,2)=1.079 FPCH(3,2)=1.074 FPCH(4,2)=1.048 FPCH(5,2)=1.091 FPCH(6,2)=0.872 END

3 4X4

//

(2/4)

Nodalization parameter change ICHMAX(1)=8 ICHMAX(2)=8 NTUBE(1,1)=23 NTUBE(2,1)=23 NTUBE(3,1)=23 NTUBE(4,1)=23 NTUBE(5,1)=23 NTUBE(6,1)=23 NTUBE(7,1)=23 NTUBE(8,1)=29 NTUBE(1,2)=23 NTUBE(2,2)=23 NTUBE(3,2)=23 NTUBE(4,2)=23 NTUBE(5,2)=23 NTUBE(6,2)=23 NTUBE(7,2)=23 NTUBE(8,2)=29 ZFCOR(1,1)=6.542 ZFCOR(2,1)=5.147 ZFCOR(3,1)=3.752 ZFCOR(4,1)=2.357 ZFCOR(5,1)=5.844 ZFCOR(6,1)=4.449 ZFCOR(7,1)=3.054 ZFCOR(8,1)=1.659 ZFCOR(1,2)=6.542 ZFCOR(2,2)=5.147 ZFCOR(3,2)=3.752 ZFCOR(4,2)=2.357 ZFCOR(5,2)=5.844 ZFCOR(6,2)=4.449 ZFCOR(7,2)=3.054 ZFCOR(8,2)=1.659 ILOOP(1,1)=0 ILOOP(2,1)=0 ILOOP(3,1)=0 ILOOP(4,1)=0 ILOOP(5,1)=1 ILOOP(6,1)=1 ILOOP(7,1)=1 ILOOP(8,1)=1 ILOOP(1,2)=0 ILOOP(2,2)=0 ILOOP(3,2)=0 ILOOP(4,2)=0 ILOOP(5,2)=1 ILOOP(6,2)=1 ILOOP(7,2)=1 ILOOP(8,2)=1 FPCH(1,1)=0.879 FPCH(2,1)=1.048 FPCH(3,1)=1.091 FPCH(4,1)=0.994 FPCH(5,1)=1.020 FPCH(6,1)=1.079 FPCH(7,1)=1.074 FPCH(8,1)=0.872



END

FPCH(1,2)=0.879 FPCH(2,2)=1.048 FPCH(3,2)=1.091 FPCH(4,2)=0.994 FPCH(5,2)=1.020 FPCH(6,2)=1.079 FPCH(7,2)=1.074 FPCH(8,2)=0.872 4 5X5

//

(3/4)

Nodalization parameter change ICHMAX(1)=10 ICHMAX(2)=10 NTUBE(1,1)=19 NTUBE(2,1)=19 NTUBE(3,1)=19 NTUBE(4,1)=19 NTUBE(5,1)=19 NTUBE(6,1)=19 NTUBE(7,1)=19 NTUBE(8,1)=19 NTUBE(9,1)=19 NTUBE(10,1)=19 NTUBE(1,2)=19 NTUBE(2,2)=19 NTUBE(3,2)=19 NTUBE(4,2)=19 NTUBE(5,2)=19 NTUBE(6,2)=19 NTUBE(7,2)=19 NTUBE(8,2)=19 NTUBE(9,2)=19 NTUBE(10,2)=19 ZFCOR(1,1)=6.542 ZFCOR(2,1)=5.457 ZFCOR(3,1)=4.372 ZFCOR(4,1)=3.287 ZFCOR(5,1)=2.202 ZFCOR(6,1)=5.999 ZFCOR(7,1)=4.914 ZFCOR(8,1)=3.829 ZFCOR(9,1)=2.744 ZFCOR(10,1)=1.659 ZFCOR(1,2)=6.542 ZFCOR(2,2)=5.457 ZFCOR(3,2)=4.372 ZFCOR(4,2)=3.287 ZFCOR(5,2)=2.202 ZFCOR(6,2)=5.999 ZFCOR(7,2)=4.914 ZFCOR(8,2)=3.829 ZFCOR(9,2)=2.744 ZFCOR(10,2)=1.659 ILOOP(1,1)=0 ILOOP(2,1)=0 ILOOP(3,1)=0 ILOOP(4,1)=0 ILOOP(5,1)=0 ILOOP(6,1)=1 ILOOP(7,1)=1 ILOOP(8,1)=1 ILOOP(9,1)=1 ILOOP(10,1)=1 ILOOP(1,2)=0 ILOOP(2,2)=0 ILOOP(3,2)=0 ILOOP(4,2)=0 ILOOP(5,2)=0 ILOOP(6,2)=1

END

ILOOP(7,2)=1 ILOOP(8,2)=1 ILOOP(9,2)=1 ILOOP(10,2)=1 FPCH(1,1)=0.879 FPCH(2,1)=1.017 FPCH(3,1)=1.079 FPCH(4,1)=1.074 FPCH(5,1)=0.992 FPCH(6,1)=0.986 FPCH(7,1)=1.048 FPCH(8,1)=1.091 FPCH(9,1)=1.033 FPCH(10,1)=0.872 FPCH(1,2)=0.879 FPCH(2,2)=1.017 FPCH(3,2)=1.079 FPCH(4,2)=1.074 FPCH(5,2)=0.992 FPCH(6,2)=0.986 FPCH(7,2)=1.048 FPCH(8,2)=1.091 FPCH(9,2)=1.033 FPCH(10,2)=0.872 5 6X6

//

(4/4)

Nodalization parameter change ICHMAX(1)=12 ICHMAX(2)=12 NTUBE(1,1)=15 NTUBE(2,1)=15 NTUBE(3,1)=15 NTUBE(4,1)=15 NTUBE(5,1)=15 NTUBE(6,1)=15 NTUBE(7,1)=15 NTUBE(8,1)=15 NTUBE(9,1)=15 NTUBE(10,1)=15 NTUBE(11,1)=20 NTUBE(12,1)=20 NTUBE(1,2)=15 NTUBE(2,2)=15 NTUBE(3,2)=15 NTUBE(4,2)=15 NTUBE(5,2)=15 NTUBE(6,2)=15 NTUBE(7,2)=15 NTUBE(8,2)=15 NTUBE(9,2)=15 NTUBE(10,2)=15 NTUBE(11,2)=20 NTUBE(12,2)=20 ZFCOR(1,1)=6.542 ZFCOR(2,1)=5.654 ZFCOR(3,1)=4.766 ZFCOR(4,1)=3.879 ZFCOR(5,1)=2.991 ZFCOR(6,1)=2.103 ZFCOR(7,1)=6.098 ZFCOR(8,1)=5.210 ZFCOR(9,1)=4.322 ZFCOR(10,1)=3.435 ZFCOR(11,1)=2.547 ZFCOR(12,1)=1.659 ZFCOR(1,2)=6.542 ZFCOR(2,2)=5.654 ZFCOR(3,2)=4.766 ZFCOR(4,2)=3.879 ZFCOR(5,2)=2.991 ZFCOR(6,2)=2.103 ZFCOR(7,2)=6.098 ZFCOR(8,2)=5.210 ZFCOR(9,2)=4.322 ZFCOR(10,2)=3.435 ZFCOR(11,2)=2.547 ZFCOR(12,2)=1.659 ILOOP(1,1)=0 ILOOP(2,1)=0 ILOOP(3,1)=0 ILOOP(4,1)=0 ILOOP(5,1)=0 ILOOP(6,1)=0 ILOOP(7,1)=1 ILOOP(8,1)=1

ILOOP(9,1)=1 ILOOP(10,1)=1 ILOOP(11,1)=1 ILOOP(12,1)=1 ILOOP(1,2)=0 ILOOP(2,2)=0 ILOOP(3,2)=0 ILOOP(4,2)=0 ILOOP(5,2)=0 ILOOP(6,2)=0 ILOOP(7,2)=1 ILOOP(8,2)=1 ILOOP(9,2)=1 ILOOP(10,2)=1 ILOOP(11,2)=1 ILOOP(12,2)=1 FPCH(1,1)=0.872 FPCH(2,1)=1.048 FPCH(3,1)=1.079 FPCH(4,1)=1.091 FPCH(5,1)=1.074 FPCH(6,1)=0.879 FPCH(7,1)=0.879 FPCH(8,1)=1.074 FPCH(9,1)=1.091 FPCH(10,1)=1.079 FPCH(11,1)=1.048 FPCH(12,1)=0.872 FPCH(1,2)=0.872 FPCH(2,2)=1.048 FPCH(3,2)=1.079 FPCH(4,2)=1.091 FPCH(5,2)=1.074 FPCH(6,2)=0.879 FPCH(7,2)=0.879 FPCH(8,2)=1.074 FPCH(9,2)=1.091 FPCH(10,2)=1.079 FPCH(11,2)=1.048 FPCH(12,2)=0.872

END

|      |          |         |         | [ (     | ( )]    |
|------|----------|---------|---------|---------|---------|
|      |          | 3x3     | 4x4     | 5x5     | 6x6     |
|      | Loop 1/2 | 22553   | 22985   | 22642   | 21700   |
| LOAH |          | (=6.26) | (=6.38) | (=6.29) | (=6.03) |
|      |          | 148560  | 147175  | 147672  | 146926  |
|      |          | (=41.3) | (=40.9) | (=41.0) | (=40.8) |
|      | Loop 1   | 9150    | 12020   | 12014   | 9224    |
|      |          | (=2.54) | (=3.34) | (=3.34) | (=2.56) |
| LOCA | Loop 2   | 11166   | 11533   | 11559   | 11293   |
|      |          | (=3.10) | (=3.20) | (=3.21) | (=3.14) |
|      |          | 143310  | 143536  | 144048  | 143459  |
|      |          | (=39.8) | (=39.9) | (=40.0) | (=39.8) |

-

(

FP

)

72

/

/

)

|      |                  |      |      |      | [%]  |  |  |  |
|------|------------------|------|------|------|------|--|--|--|
|      |                  | 3x3  | 4x4  | 5x5  | 6x6  |  |  |  |
|      | CsI              | 39.0 | 40.5 | 40.8 | 39.2 |  |  |  |
|      | TeO <sub>2</sub> | 71.1 | 69.3 | 69.2 | 70.4 |  |  |  |
| LOAH | Te               | 20.9 | 22.6 | 22.7 | 21.8 |  |  |  |
|      | Н3               | 95.8 | 95.8 | 95.8 | 96.0 |  |  |  |
|      | CsI              | 32.2 | 29.8 | 29.5 | 32.0 |  |  |  |
|      | TeO <sub>2</sub> | 27.8 | 25.5 | 25.1 | 27.7 |  |  |  |
| LOCA | Te               | 0    | 0    | 0    | 0    |  |  |  |
|      | Н3               | 94.9 | 94.8 | 95.0 | 94.8 |  |  |  |



6 1 3

(7)

(14)

5

W\$020610.vsd 02-06-10

9

EL. 23'6" (7.16 m)

EL. 3'6" (1.07 m) ↓ 14)

1

WS020611.VSD 02-06-11

2

6

↓<sup>(13)</sup>















12 LOAH





14 LOAH

 $H_3$ 

ISAAC

•

[4] . 235U, 239Pu, 241Pu, 238U

ORIGEN

t

$$(\text{irradiation time}) \quad 4.6 \qquad 4$$

$$3 \qquad .$$

$$\frac{P(t)}{P_o} = \frac{1}{200} \left[ F_U(t) + F_{NP}(t) + G(t,T) \sum_{i=1}^{3} f_i F_i(t,T) \right] \qquad (3-1)$$

$$(1) \qquad F_u \qquad F_{NP} \qquad 2^{29} U \qquad 2^{29} Np \qquad (actinide)$$

$$, \qquad 2^{29} U \qquad 2^{29} Np \qquad (actinide)$$

$$F_U(t) = 0.474CR(1+\alpha)e^{-\lambda_U t}$$

$$.$$

$$F_{NP}(t) = 0.419CR(1+\alpha) \left\{ \left[ \frac{\lambda_U}{\lambda_U - \lambda_{NP}} \right] e^{-\lambda_W t} - \left[ \frac{\lambda_{NP}}{\lambda_U - \lambda_{NP}} \right] e^{-\lambda_U t} \right\}$$

$$. \qquad U (2^{29} U \qquad ) = 4.91 \times 10^{-4} [^{-1}]$$

$$N_p (2^{29} Np \qquad ) = 3.41 \times 10^{-6} [^{-1}]$$

$$(1) \qquad F_i \qquad (fissile) \qquad 2^{25} U/2^{41} Pu \ (i=1), \qquad 2^{29} Pu$$

$$(i=2), \qquad 2^{28} U \ (i=3)$$

.

$$F_{i}(t,T) = \sum_{j=1}^{23} \frac{\alpha_{ij}}{\lambda_{ij}} e^{-\lambda_{i}t} (1 - e^{-\lambda_{j}T})$$
,  $\alpha_{ij}$   $\lambda_{ij}$   $37^{\frac{1}{2}}$  237<sup>1</sup>  
ANSUANS  
(3-1) G (activation)  
(conservative upper bound)  
 $G(t,T) = 1.0 + 6.5 \times 10^{-5} (\frac{t}{t+20000})T^{0.4} \frac{\beta}{r}$   
, (burnup to enrichment ratio)  $\beta/r$   
(Mwd/metric tonne)  
 $238$  200MeV 7<sup>1</sup>  
 $\beta = E/938000$   
,  $867$  (=7.5 x  $10^{7}$ ) 7<sup>1</sup>  
()  $< .8> < .15>$  1000  
5000

가 . , ISAAC 가

,

pool,

,

,

,

,

,







Te

,

가

(gravitational settlement),

,

,



| [ ]       | P(t)/P0 [%] |
|-----------|-------------|
| 0         | 6.53        |
| 1         | 6.09        |
| 10        | 4.81        |
| 100       | 3.28        |
| 1,000     | 2.05        |
| 10,000    | 1.04        |
| 100,000   | 0.571       |
| 1,000,000 | 0.234       |



15 ISAAC





$$F = 1 - 1[1 - 4(\tau_h/\pi)^{1/2}] [1 - 4(\tau_\theta/\pi)^{1/2} + \tau_\theta]$$
(4-1)

$$t = (0),$$
  
 $D_c = UO_2$  (oxidant)

 $D_c (m^2/s) = 9.9 \text{ x } 10^{-3} e^{(-28600/T)}$ 



,

A,B

,

| FP        | 1000 < T < 2200         |         | T > 2200                |         |  |
|-----------|-------------------------|---------|-------------------------|---------|--|
|           | А                       | В       | A                       | В       |  |
| Xe, I, Cs | 1.65 x 10 <sup>-7</sup> | 0.00667 | 1.89 x 10 <sup>-5</sup> | 0.00451 |  |
| Те        | 2.96 x 10 <sup>-8</sup> | 0.00667 | 1.17 x 10 <sup>-5</sup> | 0.00404 |  |

FP



IDCOR/EPRI FTEREL . "0" Te Zr (MCCI) Zr Te FTEREL NUREG-0772 "0" NUREG-0772 40% Zr ( , FTENUR ( = 90%) ). FP (< .9> (IDCOR NUREG-0772 FP ) IDCOR (blockage) Telluride Te 70-90% Zr Te (IDCOR Te "FTENUR" ) "FTEREL" NUREG-0772 (bounding conditions) (Reactor  $(=0.2594 \text{ m}^2)$ Outlet Header) 가 가 (=0.87) 가 가

1 (MSSV) 2 (crash cooldown) MSSV7 , LOCA 가 30 가 가 . LOCA 가 5.56 MPa , LOCA 1 3.3 , 가 23 , 33 MSSV ISAAC < .10> [8] (early release) 가 (MCCI) (late release) CsI Zr ( Zr =75%) Te 가 • ( spike가 ) 3) ( ( + + ) ISAAC < .11> (< .12> ) < .16/17> < .18/19> CsI Te

0.87

.

FSAR

•

가 CsI , CsI IDCOR "ID") ( 5 ) NUREG-0772 ( "07") 가 3 ( 1.5 (< .16> ). IDCOR 가 . NUREG-0772 FP가 1000°C 2200°C 가 (exponentially) 1700°C-1800°C 1-2% . Te , IDCOR "B") (FTEREL=0, 20%) NUREG-0772 ( IDCOR 3 NUREG-0772 , IDCOR . 가 (FTEREL=1, "R"), IDCOR (< .17> ). blockage candling ( "C"(=candling) "NC"(=no candling)) (blockage) IDCOR NUREG-0772 Te CsI ( ), ( ), , ), ( CsI / / pool) ( , .20>, < .21>, < .22>, < .23>, < .24>, ( ) < .25> <





### 9 ISAAC

1. FPRAT

- +1 OR -1 : NUREG-0772 MODEL
- +2 OR -2 : IDCOR/EPRI STEAM OXIDATION MODEL (Cubiciotti)
- + sign: release rates defined by correlations
- sign: releases further limited by saturation vapor pressure for nonvolatiles and structure

The + sign is useful when the IDCOR blockage model is selected (ICANDL=0), since flow in core compts can go to zero during blockage, thus stopping releases. The - sign is useful when no blockage is allowed (ICANDL=1) and there is always bulk flow. The + sign also is useful for sensitivity. The - sign allows the physical mechanism of saturation to be considered for release. However, diffusion coefficients, vapor pressures and geometry are quite uncertain.

- 2. FTEREL
- 1 : TELLURIUM (TE) IS RELEASED IN-VESSEL;

0

■ 0 : TE IS TO BE TOTALLY BOUND UP WITH ZIRCALLOY (0 IS BEST-ESTIMATE)

This applies to Cubiciotti (IDCOR/EPRI) fission product releases calc's only. (see model parameter FPRAT above) Experimental evidence has shown that significant amount released Te tends to bind with unoxidized Zr. This parameter is not to be confused with model parameter FTENUR below.

3. FTENUR 0.9 Oxidized Zr mass fraction limit.

This applies to NUREG-0772/Kelly fission product releases calc's only. (see model parameter FPRAT above) If calculated oxidized Zr nodal mass fraction is less than this limit, then the Te release rate is limited, otherwise the Te release rate is not limited, as recommended in NUREG-0956. Experimental evidence has shown that significant amount of released Te tends to bind with unoxidized Zr. This parameter is not to be confused with model parameter FTEREL above.

// FN=loca5.inp

ISAAC

SENSITIVITY ON TITLE LLOCA BREAK AT ROH 3(100%), 0.2594 M2 NO ECC & NO AFW, SG CRASH COOLING AVAILABLE, SPRAYS UNAVAILABLE, LAC UNAVAILABLE MANUAL SCRAM AT 0.87 SEC, NO MODERATOR COOLING, NO END SHILED COOLING END // TITLE CARD SHOULD END WITH "END" START TIME IS 0. // KEY WORD END TIME IS 72 hours PRINT INTERVAL IS 7200. PARAMETER CHANGE // KEY WORD // TO PREVENT THE END SHIELD FROM BECOMING SOLID XWRB0(11)=4.0 XWRB0(12)=4.0 // TO PREVENT THE END SHIELD FROM BECOMING SOLID FBB(1)= 3 // BREAK LOCATION IS LOOP1 ROH ZBB(1)=10.696 // BREAK ELEVATION ABB(1)=0.2594 // ROH GUILLOTINE BREAK SIZE PFFJ(18)=0.419E7 // Containment failure pressure // NUREG-0772 model // FPRAT=+1 FPRAT=+2 // IDCOR Oxidation model // Te bound up with Zr (as Telluride) // FTEREL=0 FTEREL=1 // Te released in-vessel NFN=6 : NO. OF LOCAL AIR COOLER 11 // NCHILL=6 : NO. OF CHILLER END INITIATORS PS BREAK(S) FAILED // SPRAY OFF IEVNT(432)=1 // ECCS OFF IEVNT(422)=1 IEVNT(424)=1 IEVNT(426)=1 // CLOSE ALL MSIV'S IEVNT(439)=1 IEVNT(440)=1 IEVNT(441)=1 IEVNT(442)=1 // END SHILED COOLING OFF IEVNT(460)=1 // LAC forced OFF at first IEVNT(428)=1 IEVNT(430)=1 END IF TIM >= 0.87 // TRIP TIME FROM FSAR MANUAL SCRAM // STOP MAIN & AUX FEEDWATER AFTER SCRAM

(

)

// STOP MAIN & AOX FEEDWATER AFTER SCRAW IEVNT(455)=1 IEVNT(456)=1 IEVNT(457)=1 IEVNT(458)=1 END

```
// LOCA SIGNAL OCCURS, SG MSSVS OPEN AFTER 30 SECONDS
11
                    and LAC manually ON
       IF PPS(1) < PLOCA
        SET TIMER 1
          IEVNT(428)=0
11
          IEVNT(430)=0
//
//
          IEVNT(427)=0
//
          IEVNT(429)=0
       END
       WHEN TIMER 1 > 30.
        IEVNT(465)=1
         IEVNT(466)=1
        IEVNT(467)=1
        IEVNT(468)=1
       END
      FUNCTION
         FDECAY = (QDECAY(1)+QDECAY(2))/QCR0*100.0
         FMFCSIC = MFPCOT(2)/MFP0(2)
         FMFTEO2C = MFPCOT(3)/MFP0(3)
         FMFTE2C = MFPCOT(11)/MFP0(11)
         FMFH3C = MFPCOT(13)/MFP0(13)
         FMFCSICM = MFPCMT(2)/MFP0(2)
         FMFTEO2CM = MFPCMT(3)/MFP0(3)
     END
      PLOTFIL 91
                    // THERMAL HYDRAULIC general plot file (SYM)
         PPS(1), TGPS(1), TWPS(1), MWPS(1), MSTPS(1)
         PPS(2), TGPS(2), TWPS(2), MWPS(2), MSTPS(2)
         WWBRK(1), WGBRK(1), WWSB(1), WGSB(1), MFSTSB(1)
        WWBRK(2), WGBRK(2), WWSB(2), WGSB(2), MFSTSB(2)
         PPZ, MWPZ, WWSR(1), WGSR(1)
         PUS(1), PBS(1), ZWUS(1), ZWBS(1), TGBS(1), TWBS(1), QSGTOT(1)
        PUS(2), PBS(2), ZWUS(2), ZWBS(2), TGBS(2), TWBS(2), QSGTOT(2)
        FDECAY, TCRHOT(1), TCRHOT(2), MWCT, MWRB(2), MACUM, PRB(8)
        MCR(1), MCR(2), MCMTCT, MCMTB(1), MCMTB(2)
        MFCSIP, MFCSICT, MFCSIC, MFCSIPS(1), MFCSIPS(2), FREL(2)
        FMFCSIC,FMFTEO2C,FMFTE2C,FMFH3C,FMFCSICM,FMFTEO2CM
        MFPPST(2),MFPCTT(2),MFPCRT(2),MFPCOT(2),MFPCMT(2),MFPREL(2)
        MFPPST(3),MFPCTT(3),MFPCRT(3),MFPCOT(3),MFPCMT(3),MFPREL(3)
        MFPPST(11), MFPCTT(11), MFPCRT(11), MFPCOT(11), MFPCMT(11), MFPREL(11)
        MFPPST(13), MFPCTT(13), MFPCRT(13), MFPCOT(13), MFPCMT(13), MFPREL(13)
     END
      WHEN TIM > 50000. S
      TTPRNT=10000.
      FND
      WHEN TIM > 100000. S
       TTPRNT=20000.
      END
      WHEN TIM > 5000. S
      TDFQMX=100.
      END
      WHEN TIM > 10000. S
      TDFQMX=300.0
```

```
END
```

## 11 FP

| LLOCA                                        |                                        |          | II                             | DCOR Mode            | el (             | )                                 | NURE     | G-0772 Model         |  |
|----------------------------------------------|----------------------------------------|----------|--------------------------------|----------------------|------------------|-----------------------------------|----------|----------------------|--|
|                                              | (MFPC                                  | OT/MFP0) |                                |                      |                  |                                   | ( ,      | )                    |  |
| ➤ CT = 140000 (IDCOR)<br>120000 (NUREG-0772) |                                        |          | Blockage allowed No (ICANDL=0) |                      | No Block<br>(ICA | No Blockage allowed<br>(ICANDL=1) |          | Blockage=N/A         |  |
| ► CCI (=40                                   | 0hr) (total) Zr                        | = 75%    | CsI [%]                        | TeO <sub>2</sub> [%] | CsI [%]          | TeO <sub>2</sub> [%]              | CsI [%]  | TeO <sub>2</sub> [%] |  |
| $ZrO_2$ Limit                                | In-Vessel                              | СТ       | 20.7                           | 0.0                  | 22.4             | 0.0                               | 5.0      | 0.0                  |  |
| =90%                                         | (FTEREL=0)                             | 3        | 30.9                           | 22.8                 | 32.7             | 23.3                              | 44.5     | 30.9                 |  |
|                                              | In-Vessel<br>Te released<br>(FTEREL=1) | CT       | 22.3                           | 22.3                 | 22.3             | 22.3                              | FTEREL=0 |                      |  |
|                                              |                                        | 3        | 32.1                           | 27.8                 | 32.2             | 27.8                              |          |                      |  |
| $ZrO_2$ Limit (FTENLIR)                      | ETEREI –N/A                            | СТ       |                                | -/_                  | +                |                                   | 4.9      | 0.0                  |  |
| =70%                                         |                                        | 3        |                                |                      |                  |                                   | 44.5     | 30.9                 |  |
| ZrO <sub>2</sub> Limit<br>(FTENUR)           | FTEREI N/A                             | СТ       |                                | N                    | √A               |                                   | 4.8      | 0.7                  |  |
| =1%                                          |                                        | 3        |                                |                      |                  | 44.2                              | 30.6     |                      |  |

FP

## 12 ISAAC

| FREL(1)     | mass fraction of noble/inert aerosol released from containment to environment - |
|-------------|---------------------------------------------------------------------------------|
| FREL(2)     | mass fraction of CsI released from containment to environment                   |
| FREL(3)     | mass fraction of TeO2 released from containment to environment                  |
| FREL(4)     | mass fraction of SrO released from containment to environment                   |
| FREL(5)     | mass fraction of MoO2 released from containment to environment                  |
| FREL(6)     | mass fraction of CsOH released from containment to environment                  |
| FREL(7)     | mass fraction of BaO released from containment to environment                   |
| FREL(8)     | mass fraction of La2O3/etc released from containment to environment             |
| FREL(9)     | mass fraction of CeO2 released from containment to environment                  |
| FREL(10)    | mass fraction of Sb released from containment to environment                    |
| FREL(11)    | mass fraction of Te2 released from containment to environment                   |
| FREL(12)    | mass fraction of UO2/etc released from containment to environment               |
| FREL(13)    | mass fraction of tritium released from containment to environment               |
| MAIRC       | airborne mass of gas/aerosol (w/o noble gas) in containment kg                  |
| MFCSIC      | mass fraction of CsI in containment (including calandria vault)                 |
|             | (which exists in both containment atmosphere and corium pool)                   |
| MFCSIP      | mass fraction of CsI left in fuel channel -                                     |
| MFCSICT     | mass fraction of CsI left in calandria tank -                                   |
| MFCSIPS(IL) | mass fraction of CsI left in primary system loop IL -                           |
| MFPCOT(IG)  | total mass of released fission product IG in containment kg                     |
|             | excluding unreleased fission product mass from corium                           |
| MFPPST(IG)  | total mass of released fission product IG in primary system kg                  |
|             | excluding unreleased fission product mass from corium                           |
| MFPCMT(IG)  | total mass of unreleased fission product IG in corium kg                        |
|             | located in containment (= outside fuel channel)                                 |
| MFPCTT(IG)  | total FP mass released in calandria tank kg                                     |
| MFPCRT(IG)  | total mass of unreleased fission product IG in corium kg                        |
|             | located in-vessel (= inside fuel channel)                                       |
| MFPBST(IG)  | total released fission product mass into broken SG kg                           |
| MFPREL(IG)  | total FP mass released from containment kg                                      |









[Kg]





CsI





CsI







27 IDCOR

(ID-C-R-90),

CsI



| 1. | (2003 ), ISAAC<br>7t.          |   | / | / | /   |
|----|--------------------------------|---|---|---|-----|
| 2. | (1995), 7                      |   |   | 2 | PSA |
|    | ISAAC .                        |   |   |   |     |
| 3. | (1997), 7<br>TR 93N110 97 67-2 | 2 |   |   | 가,  |
|    | 1R.95INJ10.97.07-2.            |   |   |   |     |

- 4. "Decay Heat Power in Light Water Reactors," Revised American National Standard, ANSI/ANS-5.1-1979, 1979.
- 5. KAERI(1995), MAAP-WS: Severe Accident Program for Wolsong Plant, FAI/95-76.
- 6. Industry Degraded Core Rulemaking Program(1983), Analysis of In-Vessel Core Melt Progression, IDCOR Report 15.1B.
- 7. USNRC(1981), Technical Bases for Estimating Fission Product Behavior During LWR Accidents, NUREG-0772.
- 8. (2002),

, KAERI/TR-2350/2002.



| BIBLIOGRAPHIC INFORMATION SHEET |                 |                                                                                                  |                                                                   |               |                     |           |                   |  |
|---------------------------------|-----------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---------------|---------------------|-----------|-------------------|--|
| Performing Org.<br>Report No.   |                 |                                                                                                  | Sponsoring Organization<br>Report No.                             |               | Standard Report No. |           | INIS Subject Code |  |
| KAERI/TR-2417/2003              |                 |                                                                                                  |                                                                   |               |                     |           |                   |  |
| Title/Subtitle Ar               |                 | n Evaluation of Nodalization/Decay Heat/Volatile Fission Product Release<br>Models in ISAAC Code |                                                                   |               |                     |           |                   |  |
| Main Author Yong                |                 | -Mann Song (KAERI, Thermal-hydraulic Safety Research)                                            |                                                                   |               |                     |           |                   |  |
| Author Soo                      |                 | Soo-Y                                                                                            | Yong Park, Dong-Ha Kim (KAERI, Thermal-hydraulic Safety Research) |               |                     |           |                   |  |
| Pub. Place                      | Taejon          |                                                                                                  | Pub. Org.                                                         | KAERI         |                     | Pub. Date | March 2003        |  |
| Page                            | Page 58p        |                                                                                                  | Fig. & Tab.                                                       | Yes ( O ), No | ()                  | Size      | A4                |  |
| Note                            | 20              | 2002 Mid-Long Term Project                                                                       |                                                                   |               |                     |           |                   |  |
| Classified                      | sified Open ( C |                                                                                                  | ), Outside ( ), Class                                             |               | Report Type         |           | Technical Report  |  |
| Sponsoring Org.                 |                 |                                                                                                  |                                                                   | Cont          | ract No.            |           |                   |  |
| Abstract                        |                 |                                                                                                  | $\sim$                                                            |               |                     |           |                   |  |

An ISAAC computer code, which was developed for a Level-2 PSA during 1995, has developed mainly with fundamental models for CANDU-specific severe accident progression and also the accident-analyzing experiences are limited to Level-2 PSA purposes. Hence the system nodalization model, decay model and volatile fission product release model, which are known to affect fission product behavior directly or indirectly, are evaluated to both enhance understanding for basic models and accumulate accident-analyzing experiences. As a research strategy, sensitivity studies of model parameters and sensitivity coefficients are performed. According to the results from core nodalization sensitivity study, an original 3x3 nodalization (per loop) method which groups horizontal fuel channels into 12 representative channels, is evaluated to be sufficient for a optimal scheme because detailed nodalization methods have no large effect on fuel thermalhydraulic behavior, total accident progression and fission product behavior. As ANSI/ANS standard model for decay heat prediction after reactor trip has no needs for further model evaluation due to both wide application on accident analysis codes and good comparison results with the ORIGEN code, ISAAC calculational results of decay heat are used as they are. In addition, fission product revaporization in a containment which is caused by the embedded decay heat, is demonstrated. The results for the volatile fission product release model are analyzed. In case of early release, the IDCOR model with an in-vessel Te release option shows the most conservative results and for the late release case, NUREG-0772 model shows the most conservative results. Considering both early and late release, the IDCOR model with an in-vessel Te bound option shows mitigated conservative results.

SubjectISAAC, CANDU, PHWR, severe accident, core nodalization, decay heat, fissionKeywordsproduct

