

CONFORMATIONAL ANALYSIS OF 1,3-DIOXA-2-BORACYCLOALKANES

V.V. Kuznetsov

Ufa State Petroleum Technological University
Russia, 450062, Ufa, Kosmonavtov str., 1, e-mail: kuznetsov@oil.rb.ru

In accordance with NMR ¹H results together with empirical (MM+) and quantum-chemical *ab initio* computations the potential energy surface of 1,3-dioxa-2-boracycloalkanes (the energy differences between axial and equatorial forms [ΔE , kcal/mol] and barriers of ring invertion [ΔE , kcal/mol]) has been described. The conformational behavior of six-membered rings includes axial-equatorial equilibrium between two forms of *sofa* (S and S*) over 2,5-twist-form (2,5-T).

$$\begin{array}{c} O \\ S \\ \end{array}$$

R	R ¹	method	ΔΕ	ΔE [≠]
CH ₃	Н	MM+	0.9	7.7
		MP2/6-31G*	0.6	9.1
		MP2/6-31G**	0.6	9.1
Н	CH ₃	MM+	0.8	7.0
		MP2/6-31G*	0.9	8.8
		MP2/6-31G**	0.9	8.7
		MP2/6-311G**	1.0	8.3
		MP2/D95**	0.8	7.9

The conformational behavior of seven-membered rings also includes equilibrium between two forms of *sofa*.

The theoretical ΔE^{\neq} of this process lays between 6.3 (MM+) and 9.0 (STO-3G) kcal/mol.