
International Conference
Nuclear Energy in Central Europe 2001
Hoteli Bernardin, Portorož, Slovenia, September 10-13, 2001
www: http://www.drustvo-js.si/port2001/ e-mail:PORT2001@ijs.si
tel.:+ 386 1 588 5247, + 386 1 588 5311 fax:+ 386 1 561 2335
Nuclear Society of Slovenia, PORT2001, Jamova 39, SI-1000 Ljubljana, Slovenia

106.1

PERFORMANCE EVALUATION OF GENETIC ALGORITHMS
ON LOADING PATTERN OPTIMIZATION OF PWRS

Mehmet Tombakoğlu, Kürşat B. Bekar, A. Özgür Erdemli
 Hacettepe University Nuclear Engineering Department,

06532 Beytepe Ankara, Turkey
  mt@nuke.hacettepe.edu.tr
kbb@nuke.hacettepe.edu.tr
aoe@nuke.hacettepe.edu.tr

ABSTRACT

Genetic Algorithm (GA) based systems are used for search and optimization problems.
There are several applications of GAs in literature successfully applied for loading pattern
optimization problems. In this study, we have selected loading pattern optimization problem
of Pressurised Water Reactor (PWR). The main objective of this work is to evaluate the
performance of Genetic Algorithm operators such as regional crossover, crossover and
mutation, and selection and construction of initial population and its size for PWR loading
pattern optimization problems. The performance of GA with antithetic variates is compared to
traditional GA. Antithetic variates are used to generate the initial population and its use with
GA operators are also discussed. Finally, the results of multi-cycle optimization problems are
discussed for objective function taking into account cycle burn-up and discharge burn-up.

1 INTRODUCTION

The main goal of in-core-fuel management activities is to meet design objectives.
Safety is major concern during the operation of a nuclear power plant, and requires the
knowledge of power distribution and depletion characteristics of the fuel assemblies from the
beginning-of-cycle (BOC) through the end-of-cycle (EOC).

Other unknowns, such as amount and enrichment of the fresh fuel assemblies, fraction
of the depleted assemblies to be removed, burnable poison (BP) requirements and core
loading pattern (LP) map, must be determined. Such calculations are required to optimize
core-loading pattern under some constraints to satisfy safety requirements and utility's
demand.  In the last 3 decades, considerable work has been completed employing several
optimization techniques in determining the core-loading pattern that minimizes the fuel cost.
With the emergence of artificial intelligence tools and further advances in computer
performance and architecture, adaptive optimization techniques were developed.  However,
these adaptive methods such as simulated annealing and genetic algorithms need to evaluate
large numbers of trial loading patterns. One of the drawbacks of these techniques is the
computational cost that mainly depends on the technique used to obtain core power
distribution and the total number of trial loading pattern evaluation.
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Genetic algorithm, first introduced by Holland [1] in 1970's is one of the stochastic
optimization techniques that have become popular in the last decades. By using genetic
algorithm, Parks developed in-core fuel management strategy that can be used to optimize
more than one parameter [2]. A loading pattern with minimum feed enrichment, maximum
burn-up and power peaking factor under given constraint was sought. DeChaine and Feltus
[3], [4] used expert knowledge concept to create an initial population of fairly good solutions
for GA optimization system. Using expert knowledge for creation of initial population, they
found the best population more rapidly. More recently, genetic algorithms were used to solve
PWR's and BWR's fuel management optimization problems.

 In this study, we shall be concerned with optimization for in-core fuel management of
PWR's via genetic algorithm, and we present performance analyses of genetic algorithm. We
present the use of GA with different objective functions. And, we discuss the effects of
objective functions on the optimization of PWR's loading pattern. We also address the
question of population sizing and diversity problem in genetic algorithms. The use of basic
genetic algorithm operators and antithetic variates to obtain new set of solutions and their
contributions to the performance of the algorithm are discussed.

The outline of this manuscript is as follows. In section 2, we introduce genetic
algorithm and its basic operators used in the modelling of optimization problem and introduce
the utilisation of non-binary genetic algorithm for the PWR optimization problem. In section
3, we examine the performance of genetic algorithms on the optimization of loading pattern
problem of Almaraz PWR's first cycle. Section 4 is devoted for the empirical results obtained
and used for the performance analyses of genetic algorithms. Last sections summarise the
results and describe avenues for future work.

2 GENETIC ALGORITHMS

Genetic algorithms belong the class of stochastic methods inspired by evolution and use
both the Monte Carlo and the gradient-descent method [5].  In GA, basic genetic operators are
applied to set of selected solutions.  The selection process depends on the fitness values of the
solutions and low fitness solutions are eliminated according to the rule introduced in the
selection operator.

One of the basic GA operators is called crossover operator. Crossover operator creates
new set of solutions by swapping the part of the selected solutions using crossover operator.
Another one is called the mutation operator and used to generate new solutions called mutant
by perturbing part of the solution depending on an algorithm used in mutation.  Using genetic
operators the next set of solutions are expected to have better average fitness values when
compared with the previous set of solutions.

The main difference of the GA compared to other optimization techniques is the use of
set of initial solutions with specified population size rather than using one solution.  And
evolution process goes from one set of solutions to another set of solutions by refining them.
Thus, it guaranties to find better solutions than the previous generations as a result of the
fitness evaluation based selection rules used in selection process.  Moreover, GA does not
require derivative information and is insensitive to the problem and works well with discrete
functions.  This property of GA is especially becomes important in the Loading Pattern
optimization problems.

But, the GA results indicate that it is not always possible to guarantee to get the
complete solutions of the optimization problem.  Despite this fact, GA can be utilized by
taking advantage of some heuristic rule or by introducing heutristics in the stage of selection.
Moreover, The GA is also a robust algorithm.
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2.1 Non-binary Genetic Algorithm for Loading Pattern Optimization

In this study, we use non-binary GA for initial loading pattern optimization of the
Almaraz PWR nuclear power plant. The initial loading pattern of Almaraz reactor is
composed of seven assembly types. The number of assemblies and types used in the first
cycle were as follows:

Type 1 is 2.1  % enriched (53),
Type 2 is 3.1  % enriched (36),
Type 3 is 2.6  % enriched with 12 BP rod (4),
Type 4 is 2.6  % enriched with 16 BP rod (40),
Type 5 is 2.6  % enriched with 20 BP rod (8),
Type 6 is 3.1  % enriched with 12 BP (8),
Type 7 is 3.1  % enriched with 16 BP (8). And, the total number of assemblies was 157.

Figure 1: 2-D and 1-D LP representation of ALMARAZ reactor used in GA.

In GA, each individual is represented by a chromosome which is a 1/8 symmetric core
loading pattern, and a gene denotes the type of assembly in the 1/8 symmetric core loading
pattern and its fitness is the value of objective function.

 In this study, one and two-dimensional arrays are used to represent the LP of Almaraz
reactor as shown in Fig.1. During the evolution of loading pattern, fitness calculation is
performed with 2-Dimensional Burnup Dependent Diffusion Code developed at HUNEM,
which is based on the computer code RPM developed by Sauer and Driscoll [6]. The code
was utilized to calculate the power peaking factors at BOC and EOC, boron concentration at
BOC and cycle length.  The simulation takes less than 0.1 sec. The validation of the code was
performed using the measured data of the Almaraz nuclear power plant [7]. The main
components and flow scheme of the genetic algorithm are given in Fig. 2 .

1. Generate a set of LP for the initial generation
2. Satisfy the total number of assemblies of each type using ranking
3. Evaluate the fitness of each individual in current generation
4. Select the individuals according to fitness values
5. Apply genetic operators to each selected individual

5.a With probability PC Crossover
5.a.1 one point
5.a.2 two point
5.a.3 regional

5.a.3.1 regional with self avoiding random walk (RWSAV)
5.a.3.2 regional with non self avoiding random walk(RWNSAV)

5.b With Probability PM Mutation
6. Satisfy the total number of assembly of each type using ranking
7. Check for same LP
8.  Evaluate the fitness values of new individuals
9. Select the set of individuals according to their fitness values for new generation
10 End of search, else go to step 4.

Figure 2: Flow Scheme of GA
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One of the contributions of this study is using antithetic variates in the generation of
initial population, crossover and mutation operators. The sequence of antithetically correlated
random variables, ζ and 1-ζ, are used to generate initial loading patterns. In crossover, two-
selected individual, one having the best fitness among the others and the other one chosen
randomly are used to generate four new individuals instead of two, using the sequence of
antithetically correlated random variables. In one-point crossover randomly selected parts of
the 1-D chromosomes are combined to generate new patterns. In two-point crossover,
randomly selected regions of the 1-D chromosomes are combined to generate new patterns. In
regional crossover, 2-D chromosomes are used. Randomly selected regions of the 2-D
chromosomes are combined to generate new patterns. In the case of regional crossover
RWSAV, the regions are selected by using self-avoiding random walk and the number of
steps used in RWSAV is selected randomly. The regional crossover with non-self avoiding
random walk RWNSAV is similar to self avoiding one but visiting of the same location more
than once is allowed. After all these crossover operations, ranking is used to satisfy the
number of the assemblies of each type.

The mutation operator makes random changes in the type of the assembly located at
random point chosen from 1-D chromosome. Mutation operator is also used with antithetic
variates and after mutation two new patterns are generated instead of one. After mutation, the
ranking is also applied. During the evolution of individuals, the number of new patterns
generated in each step is fixed to the population size used in GA run.

In loading pattern optimization problems, the previous works indicate that there exists
very diverse set of objective functions used in optimization problems. Mainly, they include
two factors. One of them is the minimization of power peaking factors and the other one is the
maximization of cycle length.  In our study, we use six objective functions.

These objective functions are defined as follows:

Where;
Bc is cycle burnup (MW/D/kgHM),
Bd is discharge burnup of assembly type 1,
ppf is the maximum power peaking factor during the cycle,
bor is the boron concentration at the beginning of cycle at hot zero power with Xe equilibrium (ppm),
BCset is cycle burnup penalty factor,
ppfset is the power peaking  penalty factor,
borset  is the boron concentration  penalty factor,

w1 is cycle burnup weighting factor,
w2 is the power peaking weighting factor,
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w3 is the boron concentration weighting factor,

w1, w2 and w3 are used to fix the boundaries of the search space of the problem.

3 GA RESULTS FOR LP OPTIMIZATION OF ALMARAZ REACTOR

The results of GA with the objective functions given in Section 2.1., are presented in
Table I. The results are obtained using 300 generation with population size 8. The table shows
that, the objective function used in the fitness evaluation effects the search space, at the same
time, there exist strong dependence on the form of the objective function used in GA.

Table 1. GA results with different objective functions

Objective
Function Function Parameters ppfBOC PpfEOC BC BD Boron

F1 1.391 1.373 17.790 20.441 1134.01
F11

------
1.387 1.379 17.811 22.721 1116.89

F2 1.197 1.379 16.479 18.826 937.10
F22

ppfset=1.40
Borset=950

1.380 1.371 16.136 20.708 947.43
F1 1.263 1.300 17.105 18.289 1068.44
F11

------
1.287 1.275 16.648 20.819 1033.29

F2 1.192 1.296 16.080 17.435 939.99
F22

ppfset=1.30
Borset=950

1.294 1.263 15.835 19.249 941.77
F1 1.206 1.220 16.674 18.393 1054.03
F11

------
1.218 1.219 16.117 18.446 1070.27

F2 1.238 1.240 15.688 18.117 944.31
F22

ppfset=1.22
Borset=950

1.256 1.252 15.650 18.434 939.89
F3 1.247 1.271 15.766 17.707 932.22
F33

w1=10 w2=270 w3=2
1.174 1.204 15.675 18.181 930.54

ALMARAZ original loading pattern 1.215 1.191 15.162 17.453 937.01

In the case of using F1 as an objective function, the results become sensitive to the
power peaking factors (ppf). EOC ppf values determine the cycle length. To maximize the
cycle length, leakage reactivities need to be minimized. The decrease of ppf constraint is
results in an increase in EOC leakage reactivity.

Using F2 as an objective function determines the boron concentration and power
peaking factors. Boron concentration constraint forces to minimize the ppf values at the BOC
to increase the leakage reactivity to minimize boron concentration.

Figure 3: Work-space search Figure 4: Work-space search
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Fig.3 and 4 show the sensitivity analyses of weight factors used in objective function
F3.  In this case, the search space is increased and the results depend on the penalty factors
and weights.  The weights used in F3 determine the optimum loading pattern and the solution
depends on weights used in F3. As can be seen from Fig.3 for w1 to w2 ratio is about 0.1 and
w3 is equal to 0.1, cycle burnup values reaches above 18 MWday/kg and the boron
concentration is about 1100 ppm. When we increase the penalty factor (w3), the cycle burnup
decreases and the boron concentration is less than 950 ppm. The increase of the w3 used in
fitness evaluations mainly effects the loading pattern to maximize the BOC leakage reactivity
to reduce boron concentration. As a result of that the EOC leakage reactivity increases and the
cycle burnup decreases.

Using the objective functions F11, F22 and F33, discharge burnup of assembly type 1 is
increased, while the cycle burnup values remain in the range of cycle burnup obtained by
using objective functions F1, F2 and F3.

4 MODELLING OF GA PERFORMANCE

To perform performance analyses, we simplify the results by developing an empirical
model of the observed performance curves similar to the method given in the thesis of Kubalı
[5], in which GA implemented for the TSP (Travelling Salesman Problem). Since, the GAs
are stochastic algorithms, the observations fluctuate around the mean and we can approximate
f(patt) as;

where f∞ is the best fitness values available in the library, f(patt) and f(0) are the expected
values of the fitness functions as a function of fitness evaluations  and population size for a
given GA run.  The best fitness values of the initial generation depend on population size.

Further, f(patt) denotes the expected best fitness value in the tth generation of a given
GA run with patt fitness evaluation. Since, the completion time mainly correlated with the
total number of fitness evaluation, patt, the total number of fitness evaluations performed until
the tth generation, is used in the empirical model.

The governing equation for the rate of convergence is given by

To perform performance analyses, we used Eq.7, and α value is determined using linear
regression method. Optimum population sizing problem and the contribution of using
antithetic variates in the generation of the initial population and in evolution process is
analysed using the alpha values obtained from the performance data of GA run.

4.1 Effects of Initial Population and Size on the Performance of  GA

Initial population size and the random numbers used to generate the initial population
strongly effects the convergence rate and f(0).  f(0) is the supremum of the fitness values over
all individuals of initial population. Fig 5 shows the performance of the GA for initial
population sizes 4, 8, 16, 32 and 64 as a function of generation number. The diversity of
initial population increases when we use antithetic variates. And, the resulting alpha values
with and without using antithetic variates are summarised in Fig. 6.
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As shown in Fig.5, increasing of population size enables faster convergence as a
function of iteration number. However, total fitness evaluation and amount of computation
per generation also increases with population size. Therefore, as summarised in Fig. 6, the α
values of population size 4 and 8 are greater than the alpha values of population size 16, 32
and 64.  The previous results of GA for TSP [5] indicate that the optimum size that maximizes
the convergence rate and minimizes the expected run time is between 7 and 8 with square
logarithmic convergence. Using the probabilistic models of GA, Goldberg showed that the
convergence is logarithmic and the optimum population size is about 3.  The results of LP
optimization problem using GA support the results of Kubali [6], Goldberg [8] and they are in
agreement.

4.2 Effects of Crossover Operators and Antithetic variates on the Performance of GA

For fixed population size, Fig.7 and Fig.8 show the performance of GA using one-point,
two-point, and regional with RWSAV and RWNSAV.  The use of antithetic variates in
crossover and mutation operators increases the search space and the convergence rates. The
results show that, the use of antithetic variate increase the convergence rates compared to
standard GA runs. Two-point and regional crossover operators give better results compared to
one point crossover operator.

Figure 5: Fitness as a function of iteration # Figure 6: Fitness as a function of evaluation
#

Figure 7: Fitness as a function of generation # Figure 8: Fitness as a function of generation #
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5 CONCLUSION

The GAs are quite successful for LP optimization problems, since the objective is to
search for results better than the acceptable ones. Moreover, as pointed out in the study of
Kubali, it is also possible to find the best solution by using number of independent runs.

In this study, we showed that the objective function used in fitness evaluation effects the
search space. Using discharge burnup as one of the parameter in fitness evaluations gives
better results compared to using cycle burnup. As shown in Table I, the increase of ppf
constraint increases the effects of using discharge or cycle burnup on LP optimization
problem. Another important factor is related to boron constraint. The reduced boron
concentrations favour high leakage core and reduce BOC ppf values.

We also showed that, one could use GA with population size of order 8 and perform
successive cycles to obtain target solution compared to runtime of GA with larger population
size. Of course our analyses based on serial computing, and in the case of parallel computing,
population size is correlated to the number of available nodes used in parallel algorithm, and
it can be as large as possible depending on the available node number.

We also demonstrate that the rate of convergence is increased using antithetic variates
on the generation of initial population, and during GA operations. The search-space and
diversity of the population are also increased using antithetic variates. Moreover, it should be
pointed out that the computational costs of GA algorithm with the diffusion code used in
fitness evaluations are small enough to make detailed search within one hour.  It takes one
minute to make 600 evaluations in PC with 900 MHz AMD processor. Our results indicate
that using 20-node parallel computer cluster in GA reduces the total computation cost of GA
run with 30000 evaluation into order of a few minutes.
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