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saddle points at a given asymmetry. In our first attempt
we have assumed a Gaussian distribution of the saddle
point populations peaked at the symmetry with the
width corresponding to 30 units in mass. Having such
a population of saddle points we ran a dynamical
program with fluctuations (Langevin equations) from
saddle to scission and look at masses and kinetic
energies of fragments. Results of these calculations
with a relatively poor statistics so far show very nice
behaviour of the energy distribution being in a good

agreement with the experiment (Fig. 2).
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Fig.2 Energy distribution of fission fragments.

Nucleus Collisions
by J.Blocki, L.Shvedov, J.Wilczynski

Energy-angle distributions of  deep-inelastic
nucleus-nucleus collisions at moderate energies of
about 10-15 MeV/nucleon reveal correlations between
the average energy loss and the average scattering
angle, which can be interpreted in terms of the
"classical dissipative deflection function" - known as
Wilczynski diagram. An example of this correlation
measured [1] for the *Kr + 'Er reaction at E(*Kr) =
8.18 MeV/nucleon is shown in Fig. 1. Basic features
of this correlation can be reproduced within our
macroscopic dynamic model, in which we solve
numerically the classic Lagrange-Rayleigh equations
of motion in the distance-deformation space [2],
assuming one-body dissipation mechanism (3], and
using the Yukawa-plus-exponential folding potential
[4] corrected for shell effects and exact nuclear masses
[5]. Predictions of this classical model are shown in
Fig. 1 by black squares indicating the calculated final
energy and scattering angle for a given value of the
angular momentum. The solid line joins results
obtained for I-values in the range from 1=160 to 1=430.
This line, representing the classical dissipative
deflection function, perfectly follows the ridge in the
landscape of the double differential cross section,
d*c/dedE, descending from the maximum for grazing
collisions ((=350) down to the region of deep-inelastic
events occurring at smaller (-values,

For the mass distribution (Fig. 3) a trace of the
desired peaks at A~93 and A,~143 is observed,
however still the most probable splitting is around
symmetry. We are going to continue these
investigations trying to make more meaningful
assumptions for the initial conditions [1].
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Fig.3 Mass distribution of fission fragments.

Deterministic and Langevin-dynamics Simulation of Deep Inelastic Nucleus-
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Fig.1 Contour diagram of the double differential cross section
d0/dOdE in the *Kr + '%Er reaction, as a function of the scattering
angle and the total kinctic energy, compared with the dissipative
deflection function calculated within our one-body dissipation
model. The contour diagram of the cross-section distribution is
taken from Ref. [1].

A more realistic description of the nucleus-nucleus
dynamics requires inclusion of stochastic effects, first
of all those associated with thermal fluctuations. In the
proposed approach [6] we solve the Langevin
equations of motion in which stochastic white-noise
term is added to the Rayleigh conservative and
dissipative forces used in our deterministic version of
the model. The width of the thermal fluctuations is
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determined by the fluctuation-dissipation theorem
(Einstein relation). The contour diagram of the energy-
angle distribution of the events generated with the
Langevin dynamics for the same **Kr + '®Er reaction
is shown in Fig. 2.
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Fig.2  Energy-angle distribution of the events generated with lhe

Langevin  dynamics for the BKr+1Er  reaction  a
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2.4 Empirical Nucleus-Nucleus Potential Deduced ¥From Fusion Excitation Functions

by K.Siwek-Wilczynska", J. Wilczynski

Existing data on near-barrier fusion excitation
functions for 48 medium and heavy nucleus-nucleus
systems have been analyzed using a simple "diffused-
barrier formula” derived assuming the Gaussian shape
for the barrier height distributions. Examples of
selected fusion excitation functions analyzed in this
way are shown in Fig. 1. The obtained mean values of
the barrier height have been then used for
determination of the parameters of the empirical
nucleus-nucleus potential, assumed to have Saxon-
Woods shape. (For details see Ref. [1].)
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Fig.1 Fusion excitation functions measured for the 1604 1M gm
(2], "O+'*W (3], and '"'0+*®Pb [3] reactions (full circles)
compared with predictions (solid lines) of the "diffused barrier
formula" [1] for values of the mean barrier By, the barrier
distribution width w, and the radius parameter R,; obtained with the
least-square method.
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The mean barrier heights calculated with this
potential are reproduced with an accuracy of about
1 MeV, while other frequently used potentials, i.e., the
proximity potential and the Akyiiz-Winther potential,
considerably overpredict the experimental values,
especially for heavy systems (see Fig. 2).
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Fig.2 Comparison of experlmental barrier heights By with
theoretical predictions for the Akyiiz-Winther potential [4],
proximity potential [5] and the proposed "empirical potential”.

In order to predict fusion excitation functions with
the "diffused-barrier formula", we propose a simple
method of theoretical prediction of the second





