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ABSTRACT 

During severe accidents the pressure boundary of reactor coolant system can be 
subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme 
deformations can be crucial to determine the consequences of severe accidents. Important 
drawback of classical continuum mechanics is idealization of inhomogenous microstructure 
of materials. Classical continuum mechanics therefore cannot predict accurately the 
differences between measured responses of specimens, which are different in size but 
geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior 
on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate 
above which it can be considered macroscopically homogeneous. The main idea is to divide 
continuum into a set of sub-continua. Analysis of macroscopic element is divided into 
modeling the random grain structure (using Voronoi tessellation and random orientation of 
crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain 
numerical solutions of strain and stress fields. The analysis is limited to 2D models.  

1 INTRODUCTION 

During severe accidents the pressure boundary of reactor coolant system can be 
subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme 
deformations of material (steel) can be crucial to determine the course of events and estimate 
the consequences of severe accidents. Therefore a lot of efforts were made during past few 
years to determine mechanical properties of polycrystalline aggregates of different sizes.  

Important drawback of classical continuum mechanics, which was not overcome by 
the existing models (e.g., Gurson-Tvergaard damage mechanics model), is idealization of 
inhomogenous microstructure of materials [1], [2]. Classical continuum mechanics therefore 
cannot predict accurately the differences between measured responses of specimens, which 
are different in size but geometrical similar. The differences between expected material 
properties obtained by classical continuum mechanics and experimental data is defined as the 
size effect. 

As a result some approaches appeared for modeling of material on mesoscopic levels 
with emphasis on predictions of the behavior of polycrystalline aggregates with consideration 
of material microstructure [2]. Approaches, which use stochastic methods to represent 
microstructure of material and anisotropic material model, were introduced only recently [2], 
[3].  
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The main goal of the paper is to propose an approach, which models elastic-plastic 
behavior on mesoscopic level, to estimate minimum size of polycrystalline aggregate above 
which it can be considered macroscopically homogeneous. The estimation of minimal size of 
mesoscopically inhomogenous, but macroscopically homogenous, material is based on 
comparing macroscopic quantities of polycrystalline aggregates.  

The main idea of proposed mesoscopic approach is to divide continuum (e.g., 
polycrystalline aggregate) into a set of sub-continua (grains). Overall properties of the 
polycrystalline aggregate are outcome of number of grains in the aggregate and properties of 
randomly shaped and oriented grains. Analysis of macroscopic element is divided into 
modeling the random grain structure (using Voronoi tessellation and random orientation of 
crystal lattice) and calculation of strain/stress field. Mesoscopic response of monocrystal 
grains is modeled with anisotropic elasticity and crystal plasticity.  

Finite element method, which proved as suitable [2], is used to obtain numerical 
solutions of strain and stress fields. The analysis is limited to two-dimensional models. 
Material parameters for pressure vessel steel 22 NiMoCr 3 7 with bainitic microstructure with 
b.c.c. crystals are used in analysis.  

2 MATERIAL MODEL 

Basic assumptions of material model are:  
• Random polycrystalline structure is represented by a Voronoi tessellation. 
• Each grain is assumed to be a monocrystal with random orientation of crystal lattice. 

Anisotropic elastic behavior of grains is assumed. 
• A model of plasticity assumes that plastic deformation is caused by crystalline slip on 

predefined slip planes of crystal lattice. Slip planes and direction are defined by 
orientation of crystal lattice, which differs from grain to grain (random orientation). 

2.1 Voronoi tessellation 
The concept of Voronoi tessellation has recently been extensively used in materials 

science, especially to model random microstructures like aggregates of grains in polycrystals, 
patterns of intergranular cracks, and composites [4], [5], [6]. A Voronoi tessellation represents 
a cell structure constructed from a Poisson point process by introducing planar cell walls 
perpendicular to lines connecting neighboring points. This results in a set of convex 
polygons/polyhedra (Figure 1) embedding the points and their domains of attraction, which 
completely fill up the underlying space. All Voronoi tessellations used for the purpose of this 
paper were generated by the code VorTess [7]. 
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Figure 1: Voronoi tessellation with highlighted grain boundaries, orientations of crystal 

lattices and finite element mesh 

2.2 Anisotropic Elasticity  
Pressure vessel steel 22 NiMoCr 3 7 has body-centered cubic crystal lattice with rather 

pronounced orthotropic elasticity. Each crystal grain is assumed to behave as a randomly 
oriented anisotropic continuum. Constitutive relations are given by the generalized Hooke’s 
law [8]: 

 klijklij C εσ ⋅= , (1) 

where σij represents the stress tensor, Cijkl the stiffness tensor, and εkl the strain tensor. The 
elastic properties (e.g., stiffness and compliance tensor) of the polycrystalline aggregate are 
completely defined by the properties of, and interaction between, the crystal grains. Material 
parameters for elasticity are obtained from the literature for α-Fe for body-centered cubic 
crystal lattice (e.g., [9], [10]). It is assumed that small amounts of alloying elements do not 
change the elastic stiffness/compliance of a crystal grain significantly [10]. The nonzero 
components of the stiffness tensor are ciiii = 230 GPa, ciijj = 135 GPa and cijij = 117 GPa [10].  

2.3 Crystal Plasticity 
Assumtion of crystal plasticity is that plastic deformation is a result of crystalline slip 

only. It is assumed that crystalline slip is driven by resolved shear stress τ(α) [11]:  

 ( ) ( ) ( )ααα στ jiji sm ⋅⋅= , (2) 

where α-th slip system is defined by a combination of slip plane (determined by normal mi
(α)) 

and slip direction (sj
(α)) of crystal lattice. Body-centered cubic crystal lattice has three families 

of slip planes: {110}, {112}, and {123} and one family of slip directions: <111>. This leads 
to 48 possible slip systems [8]. Stress rate can be defined as:  

 ( ) ( ) ( ) ( ) ( ) ( )( )






 +−⋅=−⋅= ∑
α

αααααγεεεσ
ijji

msmsCC klijkl
p

klklijklij &&&&&
2
1 . (3) 

Rate-independent plasticity may be treated as the limit of the rate-dependent visco-plasticity 
[11]. The slipping rate γ˙(α) of the α-th slip system is determined by the corresponding 
resolved shear stress τ(α) as: 
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where a˙(α) is reference strain rate, n the strain rate sensitivity parameter and g(α)
 the current 

strain hardened state of the crystal. In the limit as n approaches infinity this power law 
approaches that of a rate-independent material.  

The current strain hardened state g(α) can be derived from: 

 ( ) ( )β

β
αβ

α γ&& ∑= hg , (5) 

where hαβ are the slip hardening moduli. More authors dealt with hardening moduli (e.g., 
[11], [12]), with all of them basing their work on empirical models. Pierce et. al. and Asaro 
[12] hardening law is used in our research. Self- (index αβ) and latent-hardening moduli (αα) 
are defined as:  

 ( )
0

02
0 sech

ττ
γγαα −

==
S

h
hhh  and ( ) ( )βαγαβ ≠= ,qhh , (6) 

where h0 is the initial hardening modulus, τ0 the yield stress, which equals the initial value of 
current strength g(α)(0), τS the break-through stress where large plastic flow initiates, γ the 
cumulative slip and q is hardening factor. 

Material parameters for plasticity are obtained from literature for rate-independent 
crystal plasticity (e.g., [8]) and from results of simple tensile test of pressure vessel steel 22 
NiMoCr 3 7 [13]. The following values were used: the strain rate sensitivity parameter n = 50, 
the reference strain rate a& (α) = 0.001 s–1, the initial hardening modulus h0 = 70 MPa, the 
break-through stress τS = 15.5 MPa, yield stress τ0 = 155 MPa and hardening factor q = 1. 

Equations (3)-(6), which describe rate-dependent elasto-plastic deformations of crystals, 
are given in incremental form for use with finite element method [11]. Large number of slip 
systems (48 for b.c.c. crystals) causes conventional time-integration scheme to become 
exceedingly inefficient [8]. This leads to a very small incremental step and long 
computational time needed to ensure solution stability. Therefore only analyses with models 
with up to 110 grains (212 in elasticity) were carried out at this time. 

2.4 Estimation of Representative Volume Element Size 
Minimal size of mesoscopically inhomogenous material, but macroscopically 

homogenous, is usually called representative volume element (RVE). At volumes of 
mesoscopically inhomogenous material larger than RVE size effect on macroscopic level 
cannot be observed [8]. Macroscopic quantities are averaged over all polycrystalline 
aggregate. A condition when RVE size is achieved is defined as [14]: 

 ( ) 1** −
≅ ijklijkl DC , (7) 

where C*
ijkl and D*

ijkl are macroscopic stiffness and compliance tensors (for polycrystalline 
aggregate) [14]. This sets the bounds below which proposed mesoscopical approach is more 
suitable to model the elastic-plastic response of material.  

Equation (7) is in general not valid for polycrystalline aggregates smaller than RVE. 
The different behavior of both tensors is governed by the size of the aggregate and 
macroscopic boundary conditions [11]: macroscopic stiffness tensor therefore assumes stress 
driven boundary condition, while macroscopic compliance tensor assumes displacement 
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driven boundary condition. With general relations between stresses and strains in mind (as for 
instance described in equation (1)), equation (7) can be simplified by using macroscopic 
equivalent stresses <σeq>: 

 
deqseq σσ ≅ , (8) 

where indexes s and d denote stress and displacement driven boundary conditions, 
respectively. This simplified condition is sufficient to present the crucial trends [5]. Some 
authors (e.g., [15]) have used an extrapolation to estimate RVE size. The extrapolation is 
based on size of polycrystalline aggregate, which is smaller than RVE size. Relation between 
stiffness and compliance tensors for that polycrystalline aggregate can be written as [15]: 

 ( )RVEijmnklmnijkl VVOIDC +=⋅ ** , (9) 

where VRVE represents RVE size, V size of polycrystalline aggregate smaller than RVE, Iijmn 4-
th rank unit tensor and O estimate of residuum. With equation (8) and proportionality between 
number of grains in polycrystalline aggregate and its size in mind, one can use:  

 ( )RVE

deq

seq
iiO+= 1

σ

σ
, (10) 

where iRVE represents number of grains in RVE and i number of grains size in polycrystalline 
aggregate smaller than RVE. A RVE is achieved, when residuum O is smaller than 1% [15]. 

3 RESULTS 

Results of the proposed numerical approach are presented in this section. Examples of 
macroscopic response of polycrystalline aggregates with different orientation of crystal lattice 
are shown.  

3.1 Strain/stress Curves 
Figure 2 shows a relationship between macroscopic equivalent (Von Mises) stress and 

macroscopic equivalent strain for 30 cases with different orientations of crystal lattice for 14-
grain polycrystalline aggregate with displacement and stress boundary conditions. 
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Figure 2: A relationship between macroscopic equivalent stress and macroscopic 

equivalent strain with displacement (left) and stress driven boundary conditions (right) 
A scatter of curves due to different orientations of crystal lattice within plasticity is 

clearly visible. Nevertheless curves within elasticity nearly coincide, but with quite distinctive 
scatter of yield points. Stress boundary condition in average causes conventional time-
integration schemes to be even more inefficient. This leads to fewer different randomly 
orientated crystal lattices with stress boundary condition to be analyzed (without severe 
decrease of incremental steps). 

3.2 Estimation of RVE Size within Elasticity 
Analyses in elasticity were carried out on models with 14, 23, 53, 110 and 212 grains. 

30 different random orientations of crystal lattices and 2 boundary conditions (stress and 
displacement boundary conditions) were analyzed for each model. Analyses were carried out 
at macroscopic stress p11 = 200 MPa and p22 = 100 MPa (Figure 1). Results were compared 
with an analytical solution for macroscopically homogenous material obtained by continuum 
elasticity model with material parameters: E = 210 GPa and ν = 0.29 [4]. Results are shown in 
Figure 3 (left), where d in the legend refers to displacement boundary condition, s refers to 
stress boundary condition and ave refers to average values (averaged over 30 different 
randomly orientated crystal lattices with displacement or stress boundary conditions). The 
number following abbreviation denotes number of grains of polycrystalline aggregates. 
Analytical solution (classical continuum mechanics) for macroscopic homogenous material 
(<εeq> = 0.0515% and <σeq> = 96.2 MPa) is also shown.  

A tendency towards decrease of scatter of results as number of grains in the models 
increases can be observed. Average values of stresses and strains (for both boundary 
conditions) show a clear trend towards analytical solution with increasing number of grains in 
the model. With residuum for 212-grain aggregate (equation(10)) over 1%, one can conclude 
that RVE has not been achieved. 
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Figure 3: Scatter of macroscopic equivalent strain/stress (left) and convergence of 

macroscopic equivalent stresses in elasticity (right) 
To estimate RVE size in elasticity, macroscopic equivalent stresses were taken at 

macroscopic equivalent strain of <εeq> = 0.0515 % (in accordance with the analytical 
solution). Figure 3 (right) shows macroscopic equivalent stresses and scatter depending on 
number of grains in polycrystalline aggregate for displacement (denoted as d) and stress 
(denoted as s) driven boundary conditions. Extrapolation lines are drawn in accordance with 
equation (9). 

Trend toward analytical solution and decrease of scatter with increasing number of 
grains is again clearly visible. Preliminary RVE size is estimated from equation (9). Based on 
equation (10), the preliminary estimation of RVE size is 280 grains, which corresponds to a 
polycrystalline aggregate of about 0.3 mm in size. Although these results are only estimations, 
one can nevertheless conclude that results are within expected from literature (e.g., [15]). 

3.3 Estimation of RVE Size within Plasticity 
Analyses in plasticity were carried out on models with 14, 23, 53, and 110 grains. 30 

different random orientations of crystal lattices and 2 boundary conditions (stress and 
displacement boundary conditions) were analyzed for each model. Analysis was performed at 
macroscopic stress p11 = 1000 MPa and p22 = 500 MPa (Figure 1).  

Very small incremental step is needed to ensure solution stability due to inefficiency of 
conventional time-integration scheme [8]. Hence, long computational time is necessary to 
obtain reasonable solution. A small initial step of 1% of total stress scale was used in 
plasticity, which nevertheless leaded to premature end of some analyses. Even smaller time 
step or unconventional time-integration schemes (e.g., [8]) should be used in the future. At 
this stage, the above-mentioned numerical difficulties did not allow for all 30 different 
randomly orientated crystal lattices to be analyzed. Nevertheless, the available results enable 
us to show and explain the essential tendencies.  

Average values of macroscopic equivalent stresses and strains were calculated over all 
different randomly orientated crystal lattices for each model and boundary condition. Results 
are shown in Figure 4 (left), where d in the legend refers to displacement boundary condition, 
s refers to stress boundary condition and ave refers to average values (for displacement and 
stress boundary conditions). The number following abbreviation denotes number of grains of 
polycrystalline aggregates. A tendency towards decrease of scatter of results with increasing 
number of grains in the models can be observed. Average values of stresses and strains (for 
both boundary conditions) show a clear trend towards a common average value with 
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increasing number of grains in the model. Residuum (equation (10)) with 110-grain aggregate 
is around 5% therefore one can conclude that RVE has not been achieved. 
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Figure 4: Scatter of macroscopic equivalent strain/stress (left) and convergence of 

macroscopic equivalent stresses in plasticity (right) 
The same approach to estimate preliminary RVE size as in elasticity was used. 

Macroscopic equivalent stresses were taken at macroscopic equivalent strain of <εeq> = 1%. 
Figure 4 (right) shows macroscopic equivalent stresses and scatter depending on number of 
grains in polycrystalline aggregate for displacement (denoted as d) and stress (denoted as s) 
driven boundary conditions. Extrapolation lines are drawn in accordance with equation (9). 

A tendency toward a common average value and smaller scatter is visible. Preliminary 
estimation of RVE size is 750 grains, which corresponds to a polycrystalline aggregate of 0.6 
mm in size, with residuum (equation (10)) of 1%.  

4 SUMMARY 

A numerical approach, which models elastic-plastic behavior on mesoscopic level, was 
proposed to estimate minimum size of polycrystalline aggregate above which it can be 
considered macroscopically homogeneous. An estimation of minimal size of mesoscopically 
inhomogenous, but macroscopically homogenous, material is crucial to estimate limits of 
classical continuum mechanics. An approach combines the most important mesoscale features 
and compatibility with conventional continuum mechanics to model elastic-plastic behavior. 
Explicit modeling of the random grain structure is used. Grains are regarded as monocrystals 
(modeled with anisotropic elasticity and crystal plasticity). 

Proposed approach enables estimation of minimum size of polycrystalline aggregate 
above which it can be considered macroscopically homogeneous. The RVE size above which 
polycrystalline aggregate can be considered macroscopic homogeneous within elasticity is 
estimated to 280 grains, which corresponds to a specimen of about 0.3 mm in size. The RVE 
size within plasticity is estimated to 750 grains, which corresponds to a specimen of about 0.6 
mm in size. The RVE sizes set the bounds below which proposed mesoscopical approach is 
more suitable to model the elastic-plastic response of material.  
 Finalization of RVE estimates in elasticity and plasticity is foreseen in the near future. 
This will include integration of non conventional time-integration scheme. 
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