
 International Conference  
 Nuclear Energy for New Europe 2002 
 Kranjska Gora, Slovenia, September 9-12, 2002 
 www.drustvo-js.si/gora2002 

0907.1 

CORRELATION LENGTH AS ESTIMATE OF THE DOMAIN 
OF INFLUENCE OF CRYSTAL GRAIN 

Igor Simonovski, Marko Kovač, Leon Cizelj 
�Jo�ef Stefan� Institute 

Reactor Engineering Division 
Jamova 39, SI-1000 Ljubljana, Slovenia 

igor.simonovski@ijs.si, marko.kovac@ijs.si, leon.cizelj@ijs.si 
 

ABSTRACT 

As a rule the continuum mechanics assumes homogeneity and isotropicity of the 
involved material. These assumptions are satisfactory for engineering load capability analysis 
and the engineering lifetime analysis of the parts that are significantly larger than the order of 
the material inhomogeneities and are only moderately deformed. However, the inhomogeneity 
of the material becomes more and more important when analyzing the initiation and 
propagation of cracks or load capability of the material in the vicinity of the limit strength. 
The inhomogeneity and anisotropicity of the material can be modeled by dividing the 
continuum into limited number of randomly shaped grains with variable material properties. 
However, this procedure is numerically quite demanding. The solution to this problem is 
envisioned by the development of methods that transfer the significant data on the 
inhomogeneity into the classical macroscopic models. The interesting method is the usage of 
the correlation length. The correlation length can be used to estimate the domain of influence 
of the individual inhomogeneities in the simulated aggregate of randomly oriented and shaped 
crystal grains. This article deals with several issues related to the calculation of correlation 
length from a 2D stress field.  

1 INTRODUCTION 

As a rule the continuum mechanics and rheology assumes homogeneity and isotropicity 
of the material involved. These assumptions are satisfactory for engineering load capability 
analysis and the engineering lifetime analysis of the parts that are significantly larger than the 
order of the material inhomogeneities and are only moderately deformed. However, the 
inhomogeneity of the material becomes more and more important when analyzing the 
initiation and propagation of cracks or load capability of the material in the vicinity of the 
limit strength. The stress in the vicinity of the inhomogeneity in the material is often 
increased. This can lead to the initialization of micro cracks that can develop into macro 
cracks and finally lead to the failure of the material. 

 
The structure of steel is in general non-homogenous and anisotropic. Material properties 

are often anisotropic and non-homogenous. The variation of the material properties 
throughout the given structural element can be modeled using stochastic methods. Gaussian 
random process is usually used. Chakraborty [1] uses it for modeling the distribution of the 
Young modulus and load in a beam element. Stochastic methods are also used for modeling 
the geometrical imperfections in the cylindrical shells. Schenk in Schuëller [2] use Gaussian 
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random process in combination with the Karhunen-Loéve expansion to model these 
imperfections. The failure limit of the shell is later calculated using the finite element method 
(FEM). Zheng in Ellingwood [3] use non-Gaussian random process to evaluate the time 
gradient of the crack size growth. 

This paper deals with estimating the domain of influence of inhomogeneties in a model 
of non-homogenous and anisotropical steel structure. The variation of the material properties 
is modeled by dividing the continuum into finite number of randomly oriented and shaped 
crystal grains. The stress and strain fields for the given loads and boundary conditions are 
then calculated using FEM method. The domain of influence of inhomogeneties is determined 
by calculating the correlation length from the stress field. 

2 THEORY 

The variation of the material properties in a model can be modeled by dividing the 
continuum into finite number of randomly oriented crystal grains of different size [4]. Crystal 
grains are generated using the Voronoi tessellation [5]. Each crystal grain is composed of 
certain number of finite elements, all having the same orientation within the crystal. Between 
the crystals the orientation of the finite elements is varying. Anisotropical elasticity material 
model is used for the finite elements. The macroscopic response of such a model depends on 
the material properties of all crystal grains with different material properties, orientation and 
boundary/load conditions of the model. Using this approach the non-homogenous structure of 
steel can be simulated. The numerical effort is however quite large. This could be reduced if 
only the essential inhomogenities are taken into the account. One way of estimating essential 
inhomogenities is to calculate the domain of influence of crystal grains. The correlation length 
is one of the criteria for estimating statistical dependency of stress field in certain direction 
and enables one to estimate the domain of influence of the individual crystal grain. 
2.1 Correlation length 

The autocorrelation function Rxx(t1,t2) of a random process x(t) is defined with the 
expression (1), where E represents mathematical expectation and ( ) ( )21 txtxf  joint probability 

density function [6]. The covariance function Kxx(t1,t2) of a random process x(t) is defined 
with the equation (2) and can be expressed using the autocorrelation function, equation (3). 

( ) ( ) ( )[ ] ( ) ( ) ( )∫ ∫ ⋅⋅⋅⋅=⋅= 2121212121 ,,
21

dxdxxxfxxtxtxEttR txtxxx  (1) 

( ) [ ]( ) [ ]( )[ ])()()()(, 221121 txEtxtxEtxEttKxx −⋅−=   (2) 

( ) ( ) ( )[ ] ( )[ ]212121 ,, txEtxEttRttK xxxx ⋅−=      (3) 

For stationary random processes the joint probability density function ( ) ( )21 txtxf  depends 

only upon the difference t2-t1. Consequently, the autocorrelation and covariance functions also 
only depend upon the difference t2-t1. If in addition to the stationarity, the average value of the 
random process is zero, then the autocorrelation and covariance functions of the process 
involved are equal, expressions (4) and (5). 

( ) ( ) ( ) ( ) 12121221 ,,0, ttttRttRttRttR xxxxxxxx −==−=−=  (4) 

( ) ( ) ( ) ( )[ ] ( )[ ] ( )tRttxExEtRttKtK xxxxxxxx =−⋅−=−=
==
43421321

0

12

0

12 0   (5) 

For covariance functions of the form given by the equation (6), the correlation time τ 
can be defined as the value of the parameter t for which the envelope of the covariance 
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function falls to the Kxx(0)/e, Figure 1. In cases where parameter t represents length, the 
correlation time is referred to as correlation length and symbol λ is used for it. 

( ) ( ) ( )teKtK t
xxxx ⋅⋅⋅= − ωτ cos0 /       (6) 

t

K
xx

(t
)

0

Kxx(0)

Kxx(0)/e

ττττ  
Figure 1: Correlation time definition 

Let us assume that we have a vector of data g for which we want do determine the 
correlation length. First the autocorrelation function is estimated using discrete correlation 
theorem, expression (7). In expression (7) symbol Gk presents discrete Fourier 
transformaction of vector g and symbol * stands for complex conjugation. First we calculate 
the discrete Fourier transform of vector g to obtain Gk. Next we multiply, index by index, the 
vector Gk with the *

kG . Finally we calculate the inverse Fourier transform of the product 
*
kkGG  to determine autocorrelation function. Correlation length is calculated from the 

envelope of the autocorrelation function. Instantaneous envelope of function f(t) is defined 
with the expression (8), where H(t) presents the Hilbert transform of function f(t), expression 
(9). 

( ) 1)(,2,1,0,,Autocorr * −=⇔ GlengthkGG kkj Kgg   (7) 

 ( ) ( ) ( )22 )()( tHtftA +=       (8) 

 ( ) ( ) ( )∫
∞+

∞−
⋅⋅

−⋅
= ττ

τπ
df

t
tH 1       (9) 

 

3 ESTIMATING CORRELATION LENGTH OF A STRESS FIELD 

The 0.4 by 0.28 [mm] size finite element model is loaded with p1=800 [MPa] and 
p2=100 [MPa] as shown in Figure 2 (left). The model is composed out of 212 randomly 
oriented and sized crystal grains, Figure 2 (right), obtained by using Voronoi tessellation [7]. 
The stress and strain fields are calculated using FEM. Anisotropical elasticity material model 
is used. The material properties for the reactor pressure vessel 22 NiMoCr 3 7 with bainitic 
microstructure and b.c.c. crystal lattice have been applied in the FEM model and are given in 
[7]. 
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Figure 2: Boundary/load conditions (left), the crystal grains with finite element mesh (right) 

Correlation length is calculated from the von Mises stress field Misesσ that is determined 
for every Gaussian integration point of the finite element, equation (10). In the equation (10) 
the ijs  presents the deviator stress tensor while ijδ  stands for the Cronecker δ  tensor. The 
calculated von Mises stress field is shown in Figure 3. For the correlation length calculation 
the von Mises stress is assumed to be a random variable. 
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Figure 3: Von Mises stress field 

Since stress is a 2D variable, the vector of suitable data for the correlation length 
calculation has to be extracted. This can be done in the following way, Figure 2: i) an 
integration point for which the correlation length is to be calculated is selected, ii) a direction   
for searching integration points is chosen, iii) interpolation is applied to obtain the equally 
spaced vector from the points found, iv) the correlation length is calculated for the selected 
direction, v) the procedure is applied for other directions and finally the correlation length is 
determined as the average value of correlation lengths for the selected directions. In the 
presented work 12 predefined directions were used: from 0 [o] up to 360 [o] in the intervals of 
30 [o]. 
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Figure 4: Correlation length 

Figure 4 shows the calculated correlation length. The red color represents the highest 
values while the white color represents the lowest values. Red lines of high correlation length 
values, extending from one to the other side are clearly visible. These lines are present 
because the correlation function of a stationary process gives only the information on the 
correlation of points in the vector g that are separated by certain amount of distance. This 
information is valid for the whole vector g, so in a sense we do not have any local information 
on the correlation. The longer the extracted vector g is, the ever more distant crystal grains are 
taken into the account in the correlation length calculation, and the less information we have 
on the local domain of influence of a given crystal grain. One way of dealing with this 
deficiency is to further limit the search area when searching for the integration points for the 
vector g. We can demand that no integration point must lie outside the certain search radius R 
from the selected integration point, Figure 2 (left). Figure 5 shows the calculated correlation 
length with the search radius R=0.1 [mm] with the superimposed crystal grain boundaries. 
The search radius R is roughly 4 times the average size of a crystal grain (0.023 [mm]). 

We can see that the red lines lengths have decreased significantly−a direct consequence 
of the more localized search area. The highest value of the correlation length has also 
decreased. The values of the correlation length are lower at the borders of the model. In these 
areas the number of found points in the search area for selected direction could be zero. For 
these instances the correlation length cannot be calculated and is set to zero. In the averaging 
process this reduces the calculated correlation length. The maximal correlation length value is 
λmax=0.0457 [mm], corresponding to roughly twice the average size of a crystal grain. The 
average value of the correlation length is λave=0.025 [mm], only slightly above the average 
crystal grain size. The correlation length histogram is very similar to the histogram of a 
Gaussian random process, Figure 6. If we take into the account the correlation length standard 
deviation 0.0059 [mm] and presume that the correlation length distribution is indeed 
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Gaussian, then 68 [%] of the calculated correlation lengths are larger then the average crystal 
grain size. 
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Figure 5: Correlation length, search radius R=0.1 [mm] 
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Figure 6: The correlation length and finite element size histograms 
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4 CONCLUSIONS 

The preliminary results for estimation of a domain of influence of a crystal grain in 
elasticity have been presented. The domain of influence has been estimated with the 
calculation of a correlation length in several directions and then averaged over these 
directions. The correlation length is assumed to be a measure of the crystal grain domain of 
influence.  

The correlation length is influenced by several factors. The first factor is the von Mises 
stress function in the selected direction. The stress distribution in the selected direction 
depends on the crystals, their directions and boundary/load conditions of the aggregate. If the 
stresses in these directions are correlated then the correlation length is large. On the other 
hand, if the stresses are more random, the correlation length is smaller. The tessellation 
process, which generates the crystal grains, therefore influences the correlation length. The 
second factor is the size of the search area. Since local information on the domain of influence 
of a single crystal grain is needed, the search area for the Gaussian integration points should 
be relatively small. However, if the search area is too small the number of found integration 
points could be too small for obtaining meaningful results. In the presented work a search 
radius has been introduced for limiting the size of search area. It has been shown, that this 
reduces the length of the highest correlation length values, see Figures 4 and 5. The 
alternative to this method would be calculating 2D autocorrelation function on a window of 
fixed size. 

The results obtained show that on the average the correlation length is larger than the 
average crystal grain size. The maximal correlation length value is λmax=0.0457 [mm], 
corresponding to roughly twice the average size of a crystal grain. The average value of the 
correlation length is λave=0.025 [mm], only slightly above the average crystal grain size. The 
correlation length distribution for the whole model is very similar to the Gaussian distribution. 
If one takes into the account the correlation length standard deviation 0.0059 [mm] and 
presumes that the correlation length distribution is indeed Gaussian, then 68 [%] of the 
calculated correlation lengths are larger then the average crystal grain size. 

The presented paper deals only with the correlation length of a model with the elasticity 
material model. The future work will focus on the calculation of correlation length with the 
crystal plasticity material model.  
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