The Meson Bond Barrier to Nuclear Fission

PETER NORMAN Monash University, Victoria pnorman@surf.net.au

SUMMARY. The Coulomb barrier to nuclear fusion is sometimes described as a barrier to nuclear fission. In this paper it will be shown that it is more meaningful to describe the repulsive Coulomb force between the daughters of fission as the cause of fission rather than a barrier. In fact it is this force which breaks the meson bonds between the daughters and imparts kinetic energy to them. This process may therefore be described as a quantum jump rather than a 'tunneling'. The Bernal liquid drop layered alpha particle model of a heavy nucleus shows that the sixth layer of alpha particles is not closed and is inherently unstable. This nucleus therefore either gradually decays by radiating alpha and beta particles until most of the sixth layer has been shed or it undergoes spontaneous fission to form a heavy daughter rarely contaming less than four closed layers and a lighter daughter never containing less than three closed layers. It will be shown how each alpha decay involves the breaking of five or six meson bonds and each spontaneous fission breaks about thirty bonds.

1. Introduction

The underlying nuclear structure of heavy elements may be visualized as 6 concentric layers of alpha particles. This structure is based on Bernal's [1] model of a drop of a monatomic liquid in which hard spheres representing atoms are densely packed. This model successfully explained many properties of such liquids as well as those of metallic glasses. Norman [2].[7] showed how Bernal's model may be used to account for the size, density, quadrupole moment and binding energy levels of many nuclei if the hard spheres are alpha particles. Accordingly an oxygen 16 nucleus is modeled as a single tetrahedral layer of 4 alpha particles. A second layer of 4 alpha particles models sulfur 32, a third layer of 6 alphas models nickel 56; a fourth closed layer of 12 alphas forms the core of all nuclei containing at least 52 protons, and a fifth layer of 12 additional alphas forms a basis for those nuclei with 76 or more protons. Norman [3],[4] has also shown that this latter structure of 38 alphas constitutes the stable end point of the radioactive decay of heavy nuclei such as uranium. Furthermore, when a uranium nucleus undergoes fission induced by thermal neutrons it forms a light fragment with a core of no less than 3 alpha layers and a heavier daughter with a core of rarely less than 4 alpha layers.

2. Meson Bonds

If the inter-nucleon bond between two adjacent nucleons in a nucleus is mediated by the exchange of virtual mesons then the time averaged meson bond (MB) energy, E_m may be calculated in the following

way. Because of isospin it is assume that 6 equal meson bonds strongly bind the 2 protons and 2 neutrons of a ⁴He nucleus (alpha particle) into a tetrahedral structure. The total meson bond energy, E_{tras} of the ⁴He nucleus is defined as the empirically determined binding energy, E_{5} , of this nucleus corrected for the Coulomb repulsive energy, Ec, so that: $E_m = 6 \text{ MB} = E_b + E_c$ where $E_b = 28.3 \text{ MeV}$ and $E_c = 0.8 \text{ MeV}$. Therefore 1 MB = 4.84 MeV. The total number of meson bonds in any nucleus is equal to the value of Em for that nucleus divided by 4.84 MeV.

A table of the values of E_{b_c} , E_c , E_m and the number of MB for the decay products of U235 is provided in Appendix 1. The data that is provided in Table 3 indicates the manner in which the number of meson bonds between successive layers increases in order to balance the increasing Coulomb repulsion.

3. Alpha Decay

The net energy balance of an alpha decay may be written as follows:

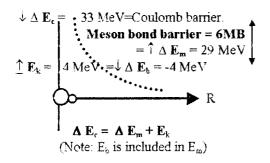
$$\Delta E_{\rm p} = E_{\rm b} \qquad (1)$$

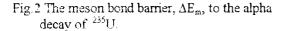
where ΔE_b is the difference between the sum of the binding energies of the two daughter nuclei and the b0inding energy of the mother nucleus. E_k is the kinetic energy of the alpha particle. This is exemplified by the alpha decay of ²³⁵U where

$$\Delta E_{\rm b} = 4({\rm MeV})$$
 and $E_{\rm k} = 4({\rm MeV})$.

However, equation (1) takes no account of the difference ΔE_c between the powerful repulsive Coulomb energy of the mother nucleus and the sum of

the Coulomb energies of the daughter nuclei. Adding ΔE_c to both sides of (1) gives:


 $\Delta E_{b} + \Delta E_{c} = \Delta E_{c} + E_{k}$ (2) Subtracting ΔE_{b} from both sides of (2) gives:


 $\Delta E_{c} = \Delta E_{c} - \Delta E_{b} + E_{k}$ (3) In all alpha decays $\Delta E_{c} - \Delta E_{b} = \Delta E_{m}$

where ΔE_m is the meson bond barrier being the difference between the meson energy of the mother nucleus and the sum of the meson energies of the two daughters. It can be seen in Table 1 that this difference is approximately equivalent to 6 meson bonds (namely 29.1MeV). Equation (3) may be rewritten as: $\Delta E_r = \Delta E_m + E_k$ (4)This equation was previously used in reference [4] to describe alpha decay in ²³⁸U as Coulomb breaking of the 6 meson bonds between the two daughter nuclei. In this way an alpha particle 'tunnels' through the socalled Coulomb barrier. The total energy balance (in MeV) is indicated in Figs.1and 2 for the initial decay of ²³⁵U and in Table 1 for all 10 alpha decays in the decay chain of ²³⁵U.

235U		²³¹ Th + alpha
$E_{c} = 909$		
	$\downarrow \Delta E_c = -33$	$E_c = 876$
0	0	0
$E_{b} = -1784$		
	$\downarrow \Delta E_{\rm b} = -4$	$E_{\rm b} = -1788$
		$E_{m} = -2664$
$E_{\rm m} = -2693$	$\uparrow \Delta E_m = 29$	
	$\uparrow E_{\rm h} = 4$	

Fig.1 Schematic energy balance of ²³⁵U alpha decay

Alpha Decay	ΔE _c (MeV) Released	AE _m + E _k (MeV) Absorbed
$^{233}U \rightarrow ^{231}Th + \alpha$	33	29 + 4 = 33
231 Pa $\rightarrow ^{227}$ Ac $\pm \alpha$	33	28 + 5 = 33
$^{227}Ac \rightarrow ^{223}Fr + \alpha$	32	28 + 5 = 33
227 Th $\rightarrow ^{222}$ Ra + α	33	27+6=33
223 Ra $\rightarrow ^{219}$ Rn + α	32	27 + 6 = 33
219 Rn $\rightarrow ^{21.5}$ Po $\pm \alpha$	32	25 + 6 = 31
²¹³ Po \rightarrow ²¹¹ Pb + α	31	24 + 7 = 31
$^{213}\text{At} \rightarrow ^{211}\text{Bi} + \alpha$	32	24 + 8 = 32
²¹¹ Bi \rightarrow ²⁰⁷ Tl + α	31	25+6=31
211 Po $\rightarrow ^{207}$ Pb + α .	32	24 + 8 = 32

Table 1. Energy balances for ²³⁵U alpha decay chain

4. Fission Energy Balance

The fission of a 235 U nucleus into 2 daughters each larger than an alpha particle has previously been discussed by Norman [3],[5] in terms of the layered alpha particle models of nuclear structure. In those papers it was shown that the lighter daughter never has a core of less than 14 alpha particles whereas the heavier daughter rarely has a core of less than 26 alphas.

An example of the energy balance (in MeV) involved in the fission of 235 U is illustrated in Figures 3 and 4.

at the moston of					
²³⁵ U	- >	$2n + {}^{141}Ba + {}^{92}Kr$			
$E_{c} = 909$					
	$\downarrow \Delta E_c = -325$	$E_{c} = 584$			
0	0	0			
1					
$E_{\rm b} = -1784$					
	$\downarrow \Delta E_{b} = -173$	$E_{b} = -1957$			
		$E_{\rm m} = -2541$			
$E_{\rm m} = -2693$	$\Delta E_{\rm m} = 152$				
	$\uparrow E_k = 173$				

Fig.3 Schematic energy balance of a ²³⁵U fission.

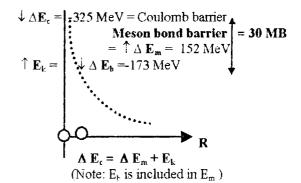


Fig.4 The meson bond barrier, $\hat{1}\Delta E_m$, to the fission of a ²³⁵U nucleus.

It will now be shown that in each of these fission processes the separation of the 2 initial unstable daughters involves the breaking of approximately 30 meson bonds. This will be indicated in Table 2 by a number of examples of fission ranging across the bimodal fission spectrum of 235 U. In this Table the numbers refer to the meson bonds associated with the terms of the equations. The derivation of the bonds in each nucleus is to be found in Appendix 2.

	eutrons: 2 Day	Broken Bonds between daughters:		
²³⁵ U →	$n + {}^{157}Sm +$	⁷⁷ Zn		
556	363	164	29	
²³⁵ U →	$2n + {}^{144}Ba +$	⁸⁹ Kr		
556	327	198	31	
$^{235}U \rightarrow$	2n + ¹⁴¹ Ba +	⁹² Kr		
556	325	201	30	
²³⁵ U →	$n + {}^{140}Xe +$	⁹⁴ Sr		
556	316	210	30	
$^{235}U \rightarrow$	$2n + {}^{132}Sn +$	¹⁰¹ Mo		
556	294	230	32	
²³⁵ U →	n + ¹²⁸ Sn +	^{10€} Mo		
556	290	236	30	
²³³ U →	$3n + 10^{\circ}Pd +$	¹¹⁶ Pd		
556	261	261	34	

Table 2 Meson bonds involved in the creation of the initial products of ²²⁵U fission.

The effective source of energy in breaking the bonds and imparting kinetic energy to the daughters is the excessive Coulomb repulsion energy, ΔE_c , in the metastable ²³⁵U nucleus just as in alpha decay.

Each of the daughters listed in Table 2 is intrinsically unstable due to an excess of neutrons. Stability is quickly restored in each nucleus as several neutrons are converted into protons by successive β decays. The release of energy occurs as new meson bonds complete the formation of new alpha particles in each daughter nucleus.

5. A Fission Mechanism

From this analysis it can be seen that very little, if any, energy is needed to destabilize a ²³⁵U nucleus in order for either alpha decay or fission to occur. In both cases the so-called 'Coulomb Barrier' is the cause of fission rather than a barrier. Furthermore it is more appropriate in each case to describe the process of 'tunneling' as a quantum jump in a manner analogous to the process of a gamma decay in an excited nucleus or of ionization of an atom. In alpha decay and fission the fundamental difference between the concepts of tunneling and jumping arises from the decision to either ignore or consider the Coulomb force and energy inside the nucleus. The mechanism for fission consistent with the layered alpha particle model is based on the bond structures of closed layer nuclei as first outlined in reference [6] and as listed below in Table 3. Noting that there is a total of 60 meson bonds between layers 4 and 5 it appears that in the fission process about 30 of these bonds are broken after the uranium nucleus is destabilized either by deformation or the absorption of a thermal neutron.

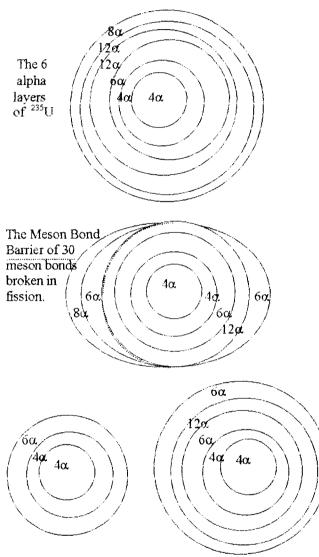

Layer	1	2	3	4	5	6
Alphas/	4	4	ó	12	12	16
Layer						
MB in	4x6	4x6	6x6	12x6	12x6	16x6
Layer	=24	=24	=36	=72	= 72	= 96
MB ex	4x3/2	4x3	óx4	12x4	12x5	16x6
Layer	=6	=12	=24	= 48	= 60	=96
MB	24+6	24+12	36+24	72+48	72+60	96+96
in + ex	=30	=36	=60	=120	=132	=192
Closed	₈ O ₈	16S16	28Ni28	52 Te ₇₆	76 Os 116	108Hs157
Nucleus						
MB	-	-	-	24x2	40x2	49x1
N-Z				=48	=80	=49
MB	30	30+36	66+60	126+120	246+132	378+192
Core		=66	=126	=246	=378	=570
MB	30	66	126	48+246	80+378	49+570
Total			l	=294	=458	=619
(Model)						
MB	29	67	127	296	456	646
Total	ĺ					
(Data)				L		

Table 3. The bond structure of the layered models of nuclei with closed layers compared with the total number of bonds based on calculations of E_m .

According to the liquid drop model of fission triggered by the absorption of a thermal neutron the nucleus undergoes oscillations until the nucleus becomes elongated like an egg rather than spherical. According to the layered alpha particle model it is at this stage that part of the outer 2 layers (the egg white) separates from the inner core of 4 layers (the egg yolk) when 30 meson bonds are broken by the Coulomb force acting between the 2 daughters as illustrated in Fig.5.

6. Conclusion

The Bernal liquid drop alpha particle model of a heavy nucleus shows that the sixth layer of alpha particles is not closed and is inherently unstable so that the nucleus either gradually decays or undergoes spontaneous fission. It decays by radiating alpha and beta particles until most of the sixth layer has been shed. The alpha decay may be construed as the release of repulsive Coulomb energy that breaks six meson bonds and imparts kinetic energy to the alpha particle. In this way the alpha particle jumps rather than "tunnels" through the Coulomb barrier. By contrast, in beta decay energy is released when a neutron decays to form a proton and electron at the same time as four new meson bonds are formed. Together these two sources of energy balance the additional repulsive Coulomb energy generated by the new proton in the daughter nucleus and impart kinetic energy to the beta particle and anti-neutrino as explained in reference [4]. Uranium fission is similar to alpha decay and involves the Coulomb breaking of about 30 meson bonds to separate at least 14 alphas simultaneously as a light daughter. Both daughters subsequently become more stable by a sequence of beta decays.

Lightest Daughter

Heaviest Daughter

Figure 5. An illustration of the fission of a 235 U nucleus modeled as a liquid drop of 6 layers of alpha particles.

7.Appendix 1.

Binding, Coulomb and Meson Bond Energies (in MeV) of decay products of ²³⁵U

A	Р	N	E _b	E,	Em	MB
²³⁵ U	92	143	1784	909	2693	556
²³¹ Pa	91	140	1760	894	2654	548
²³¹ Th	90	141	1760	875	2635	544
²²⁷ Th	90	137	1736	880	2616	540
²²⁷ Ac	89	138	1737	860	2597	537
²²³ Ra	88	135	1714	846	2560	529
²²³ Fr	87	136	1713	827	2540	525
²¹⁹ Rn	86	133	1691	813	2504	517
²¹⁵ At	85	130	1670	799	2469	510
²¹⁵ Po	84	131	1670	780	2450	506
²¹¹ Po	84	127	1650	785	2434	503
²¹¹ Bi	83	128	1650	766	2416	499
²¹¹ Pb	82	129	1649	748	2397	495
²⁰⁷ Pb	82	125	1629	752	2381	492
²⁰⁷ Tl	81	126	1628	734	2362	488

8. Appendix 2.

Binding, Coulomb and Meson Bond Energies of some fission products of ²³⁵U.

Α	Р	N	E _b (MeV)	E _c (MeV)	E _m (MeV)	MB
²³⁵ U	92	143	1784	909	2693	556
¹⁵⁷ Sm	62	95	1286	469	1755	363
¹⁴⁴ Ba	56	88	1190	394	1584	327
¹⁴¹ Ba	56	85	1174	397	1571	325
¹⁴⁰ Xe	54	86	1161	370	1530	316
¹³² Sn	50	82	1103	323	1424	294
¹²⁸ Sn	50	78	1072	326	1403	290
¹¹⁶ Pd	46	70	980	284	1265	261
¹⁰⁶ Mo	42	64	899	244	1143	236
¹⁰¹ Mo	42	59	866	248	1113	230
⁹⁴ Sr	38	5ó	808	207	1015	210
⁹² Kr	36	56	783	187	970	201
⁸⁹ Kr	36	53	767	189	956	198
⁷⁷ Zn	30	47	657	137	794	164

9. References

[1] Bernal, J.D. (1960) Nature, (London), 185, 68.

- [2] Norman, P. (1993) Eur. J. Phys., (Bristol), 14, 36.
- [3] Norman, P (1997) Proc. ANA, 97, (Sydney), 131-4.
- [4] Norman, P. (2001) Proc. ANA, 01, (Sydney)113-5.
- [5] Norman, P. (1998) Proc. Nat. Cong. AIP
 - (Freemantle), 25.
- [6] Norman, P. (2001) Proc. ANA, 01, (Sydney)116-9.
- [7] Norman, P. [2003] J. Nucl. Part. Phys. G. 29, B23-28.