Feasibility of EXAFS experiments at the Np L-edge to investigate neptunium sorption on kaolinite

T. Reich¹, S. Amayri¹, Ta. Reich¹, J. Drebert¹, A. Jermolajev¹, P. Thörle¹, N. Trautmann¹, C. Hennig, S. Sachs ¹Institute of Nuclear Chemistry, Johannes Gutenberg-Universität Mainz, Mainz, Germany

ABSTRACT. We have investigated the feasibility of Np L-edge EXAFS measurements to study the sorption of neptunium onto the reference clay kaolinite KGa-1b.

Several collaborating groups selected the kaolinite KGa-1b from the Source Clays Repository as reference clay for a broad range of investigations dealing with the interaction of actinides in the system clay, humic substances, and aquifer. During recent EXAFS measurements of uranium(VI) sorption onto kaolinite KGa-1b, we found that this kaolinite contains traces of zirconium. The energy of the Zr K-edge equals 17998 eV. Therefore, we expected a distortion of the Np L₃-edge (17610 eV) EXAFS signal at this energy or at *k* approximately equal to 9.8 Å⁻¹. In our experiment we wanted to explore the possibilities for avoiding severe distortions in the Np EXAFS signal without limiting the useful *k* range to 9.8 Å⁻¹.

EXPERIMENTAL. Two samples, 1 and 2, with different amounts of neptunium(V) sorbed on KGa-1b were prepared from a 1.8 mM Np(V) stock solution of Np-237 under the following conditions: 4 g kaolinite/L, pH 9.0, $p(CO_2) = 10^{-3.5}$ atm, I = 0.1 M NaClO₄. The total neptunium concentration for samples 1 and 2 was 8 · 10⁻⁶ and 2 · 10⁻⁵ mol/L, respectively. The neptunium uptake of samples 1 and 2 as measured by γ -spectroscopy was 300 and 510 ppm, respectively. The solid residue was loaded without drying into the EXAFS sample holder. The neptunium EXAFS spectra were measured at ROBL (ESRF, BM20) [1] at room temperature in the fluorescence mode using a 13-element Ge solid-state detector.

The following measurements were performed on these samples:

1) The Np $L\alpha_1$ -radiation at 13.9 keV was recorded as a function of photon energy across the Np L_3 -edge EXAFS region using single-channel analyzers (SCA's). The signal was corrected for detector dead time.

2) The EXAFS spectrum was measured at the Np L_2 -edge (21600 eV) by setting the SCA's to 17.8 keV to record the Np $L\beta_1$ -radiation. Dead time correction was performed as described above.

RESULTS. Figure 1 shows the Np EXAFS spectra and the corresponding Fourier transforms of sample 1 (300 ppm Np) measured at the L₃- and L₂-edges. Seven sweeps at the Np L₂-edge and six sweeps at the L₃-edge were averaged. The useful *k* range at the L₃-edge was limited to k_{max} equal to 9.4 Å⁻¹ due to the Zr K-edge absorption. The Np L₂-edge EXAFS signal could be recorded with good statistics up to k_{max} equal to 11.4 Å⁻¹. To obtain a higher resolution in the Fourier transform, it is preferable to record the Np EXAFS signal of the kaolinite samples at the Np L₂-edge instead of the L₃-edge.

Table 1 summarizes the EXAFS structural parameters of sample 1 derived from the Np L₃- and L₂-edge k^3 -weighted EXAFS spectra. The detected neptunium coordination shells and bond distances are consistent with the formation of a neptunium(V) carbonato species at the

kaolinite surface. A similar result was obtained for sample 2 (510 ppm, not shown here).

In conclusion, these test experiments showed that it is possible to study the sorption of neptunium onto kaolinite KGa-1b successfully using Np L₂-edge EXAFS spectroscopy. In future EXAFS experiments, it will be possible to study sorption samples with less than 300 ppm neptunium by collecting more than seven sweeps per sample.

ACKNOWLEDGEMENTS. This work was supported by the BMWA grant No. 02 E 9653.

REFERENCES

[1] Matz, W. et al. (1999) J. Synchrotron Rad. 6, 1076-1085.

- Fig. 1: Neptunium L-edge k³-weighted EXAFS spectra (top) and corresponding Fourier transforms (bottom) of 300 ppm Np(V) sorbed onto kaolinite at pH 9.0 under ambient conditions. Dots – raw experimental data, solid line – best theoretical fit to the data.
- Tab. 1: EXAFS structural parameters for 300 ppm Np(V) sorbed onto kaolinite at pH 9.0 under ambient conditions. Multiple-scattering paths are not listed. Coordination numbers were held constant during the final fit according to the result of previous fits.

Shell	Np L ₂ -edge		Np L ₃ -edge	
	R(Å)	$\sigma^2(\text{\AA}^2)$	R(Å)	$\sigma^2(\text{\AA}^2)$
2 x O _{ax}	1.85	0.0021	1.84	0.0010
4 x O _{eq}	2.55	0.0051	2.55	0.0054
2 x C	2.94	0.0060	2.95	0.0027
2 x O _{dist}	4.24	0.0040	4.25	0.0044
1 x Np	4.86	0.0023	4.89	0.0050