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1 Presentation of the problem1.1 IntroductionWeak Gravitational Lensing provides a unique method to map directly the distribution ofdark matter in the universe. The measurement of the distortions that lensing induces in theimages of background galaxies, enables a direct measurement of the large-scale structures inthe universe. This method is now widely used to map the mass of clusters and superclusters ofgalaxies.Ongoing e�orts are made to improve the detection of cosmic shear on existing telescopesand future instruments dedicated to survey cosmic shear are being planned. Several methodsare used to derive the lensing shear from the shapes of background galaxies. But the shear mapobtained is always noisy. And when this shear map is converted into a map of the projectedmass �, the mass map obtained is blurred by the noise.In this report, we have tested di�erent methods of denoising in order to �lter the noisy massmap.1.2 The weak shear maps and the mass mapThe relation between the weak shear maps 
1, 
2 and the mass map � are given by :
1 = (@1 � @2) 
2 = 2@1@2 (1)where  is the potential function de�ned by � = r2 .Therefore, we have in the Fourier space:�̂(k1; k2) = k2 ̂(k1; k2)
̂1(k1; k2) = k21 � k22k2 �̂(k1; k2)
̂2(k1; k2) = 2k1k2k2 �̂(k1; k2) (2)with k2 = k21 + k22.There is a degeneracy in the �rst equation when k21 = k22 and in the second when k1 = 0 ork2 = 0. Using both equations, there is a degeneracy only when k1 = k2 = 0. The mean value of� cannot be recovered from the 
1 and 
2 maps. Noting P̂1(k1; k2) = k21�k22k2 (with P̂1(k1; k2) = 0when k21 = k22) and P̂2(k1; k2) = 2k1k2k2 (with P̂2(k1; k2) = 0 when k1 = 0 or k2 = 0), the massreconstruction consists in searching � such that :
1 = P1 � �
2 = P2 � � (3)Furthermore, the data are noisy, and the relation between the data 
1b; 
2b and �b are given by:
1b = P1 � �b +N1
2b = P2 � �b +N2 (4)where N1 and N2 can be considered as Gaussian noise with a standard deviation �n = ��Ng , where�� = 0:3, and Ng = ngA. A is the surface of the pixel and ng is the number of galaxies perarcmin2.In this report, we have simulated the noise only in two cases :3



� for spatial observations where ng = 100 gal/arcmin2,� for ground observations where ng = 20 gal/arcmin2.Then we can easily derive the noisy mass map �b by inverse �ltering by noticing that P̂ 21 +P̂ 22 = 1. Then we have in the Fourier domain :�̂b = P̂1:
̂1b + P̂2:
̂2b (5)1.3 Our Data1.3.1 Simulated DataIn this survey, we have at our disposal a simulated mass map � given by Jain Bhuvnesh fromthe university of Pennsylvania. The �eld is 3.3*3.3 degrees containing 2048*2048 pixels We canvisualize a sector of this mass map in Fig.1.
Figure 1: Simulated kappa map without noiseIn order to test our methods we have collected simulated Weak Lensing mass maps onInternet. These maps derived from ray tracing through large N-body simulations of the formationand evolution of large-scale struture. The �eld is 2*2 degrees containing 2048*2048 pixels. Fig.2we have a sector of one of these mass maps.Using the equation (3), we can derive the 
1 and 
2 maps from bhuvnesh. And we canderive the shear maps, by creating the vectors de�ned by the amplitude p
21 + 
22 and the angle0:5 � arctan 
2
1 .Fig. 3 shows the weak shear maps obtained from the simulated mass map.Then we have added a Gaussian noise to these shear maps in order to simulate the shearmaps obtained with the telescopes.By inverse �ltering, using the equation (5) the mass map with noise �b is obtained in theFourier domain. The solution obtained by inverse Fourier transform is presented in Fig. 4.In this report, we present the di�erent �lterings that we have tested on the mass map withnoise �b in order to recover the real mass map �. Thanks to the simulated mass map (withoutnoise) �, we can easily compare the results of those �lterings. For each �ltered image, we have4



Figure 2: Another simulated mass map without noise obtained on Internet
Figure 3: Shear map without noisecalculated the error as the standard deviation between the mass map � and the �ltered massmap �f : " =q< (�� �f )2 >5



Figure 4: Noisy mass map �b with ng = 1001.3.2 Real onesWe have at our disposal two galaxies catalogues obtained by space observations of the HST(Hubble Space Telescope). The �eld is 0.17*0.28 degrees. The number of galaxies per arcmin2is rather weak, only ng = 65 because exposure time is not su�cient. Fig.5, we can visualise agalaxies catalogue (the north sector). From shear catalogue, we have to make a pixelised mapwith a rather large number of galaxies per pixel. Then we have to adapt all the �lterings atthese real noisy mass maps.1.4 IsophotsIn order to make sure that the structures which we detect are not only noise, we havedevelopped a procedure to plot isophots (level lines) on level 3�, 4� and 5� over the noisy massmap or after �lterings.This procedure consists in seeking in the noisy mass map the maximum of detection for eachpixel in each scale and keeping the maximum value for each pixel among the scales. We plotthen level lines on level 3�, 4� and 5�.After the �ltering of the noisy mass map, we will overplot the curve of the isophots on the�ltered mass map. We know then which con�dence we must give to the structures detected.Fig.6, we can visualise the level lines of noisy mass map (ng = 100) overplot on the mass map(without noise).
6



Figure 5: Galaxies catalogue - north sector
Figure 6: Isophots of the noisy mass map (ng = 100) on the mass map (without noise)2 Filterings of the noisy mass map2.1 Filterings in Fourier space2.1.1 The Gaussian �lterThe standard method consists in convolving the noisy mass map �b with a Gaussian windowZ : �f = Z � �b (6)7



Then, it is necessary to specify the standard deviation of the Gaussian (�). This correspondsto the width of the �lter. The result of the �ltering is a function of this standard deviation.
Figure 7: Error as a function of standard deviation � with ng = 100The Fig. 7 shows the variation of the error (as it de�ned earlier) between the mass map �and the �ltered mass map �f with �. The optimal value of � lies between 5 and 10 for spaceobservations (ng = 100). The Fig. 8 shows the result after such processing using a Gaussian�lter with � = 25 ((a) for observations on the ground and (b) and with � = 10 for spaceobservations).

Figure 8: Gaussian �ltering (left) with � = 25 for ng = 20 and with � = 10 for (right) ng = 100The �ltering is not su�cient, especially for the low frequencies. The smoothed image showsnot only some structures, but also residual noise. Consequently, it is di�cult to attribute anysigni�cance to these structures.In order to �lter the low frequencies too, we have tested another �lter in Fourier space : theWiener �lter. 8



2.1.2 The Wiener �lterThe Wiener �lter is an optimal �lter used for the removal of Gaussian noise from a noisyimage. The �ltering is done by multiplying the Fourier transform of the noisy image �̂b by theFourier transform of the �lter function Ŵ . The output image �f is then created by taking theinverse Fourier transform of the product :�f = W � �b (7)The �rst method consists in calculating the Fourier transform of the �lter function Ŵ ineach pixel of the image, which is given by :Ŵ (u; v) = jŜ(u; v)j2jŜ(u; v)j2+ jN̂(u; v)j2 (8)where Ŝ is the Fourier transform of the signal without noise and N̂ that of the noise .The �lter depends on the model of the noise in the given image. This application assumesthat the noise is 'white' and is constant across the image.The second method consists in calculating the variance of the signal and that of the noise onconcentric rings in the Fourier space. The Fourier transform of the �lter function Ŵ is calculatedin each ring and not in each pixel as in the �rst method. And it is given by :Ŵ (k) = < jŜ(u; v)j2 >k< jŜ(u; v)j2 >k + < jN̂(u; v)j2 >k (9)where k is the index of the rings.The equation (9) use the signal without noise. However, the image observed by the tele-scope is blurred by the noise. These two variables being decorrelated the variance < jS(u; v)+N(u; v)j2 > is simply equal to the sum of the variance of the signal and that of the noise< jS(u; v)j2 > + < jN(u; v)j2 >. We then make the assumption that the noise is Gaussian. So,< jN(u; v)j2 > is known and by simple subtraction, we derive < jS(u; v)j2 >.Initially, we calculated Ŵ for circles of which the size increased linearly. But we have noticed,by plotting the curves representing the variance of the signal and that of the noise as a functionof the index of the ring, that the noise is always dominating. So the result of �ltering is notgood. The main information (low frequencies) is in the circles of small radius.We then considered circles of which the size increased logarithmically. We can thus havesmall rings in the center and rings increasingly larger as we move away from the center of theimage (in Fourier space).Fig. 9, we have plotted the variance of the signal and that of the noise as a function of thering. We can notice that the noise is 'white' because its power spectrum is quasi-constant.Fig. 10 shows the result of this �ltering.For comparison, we have plotted (Fig.11) the Wiener function and the Gaussian functionsused in the previous Gaussian �ltering, on the same graph.The Gaussian �lter nearest to the Wiener �lter has a standard deviation lying between 5and 10. This is in accordance with the previous observations.Actually, the Wiener �lter is the optimal �lter if the image and the noise follow a Gaussiandistribution. However, this is not the case. So, in the following paragraph, we have tried another�ltering method using the wavelet transform in order to improve the quality of the �ltering.9



Figure 9: Power spectrum of the signal and that of the noise in each ring (ng = 100)
Figure 10: Filtered mass map by Wiener �lter with rings increasing in a logarithmic way (left)ng = 20 and (right) ng = 1002.2 Filterings in Wavelet space2.2.1 The \�a trous" isotropic Wavelet TransformThe \�a trous" isotropic wavelet transform algorithm decomposes an image d of nxn pixelsas a superposition of the form :d(x; y) = cJ(x; y) + JXj=1 wj(x; y);10



Figure 11: Comparison between the Gaussian �lters and the Wiener �lter (ng = 100)where cJ is a coarse or smooth version of the original signal d and wj represents `the detailsof d' at scale 2�j , see [4, 3] for more information. Thus, the algorithm outputs j + 1 subbandarrays of size n. (The indexing is such that, here, j = 1 corresponds to the �nest scale (highfrequencies).)Hence, we have a multiscale pixel representation, i.e. each pixel of the input signal is asso-ciated to a set of pixels of the multiscale transform.2.2.2 The multiresolution support and wavelet coe�cient thresholding1. Thresholding : A multiresolution support of an image describes in a logical or Booleanway if the data d contains information at a given scale j and at a given position (x; y). IfM (d)(j; x; y) = 1 (or = true), then d contains information at scale j and at the position(x; y).The multiresolution support will be obtained by detecting at each scale the signi�cantcoe�cients : M(j; x; y) = � 1 if wj;k is signi�cant0 if wj;k is not signi�cant (10)In the case of Gaussian noise, a coe�cient wj;x;y is signi�cant if j wj;x;y j> k�j , where �jis the noise at the scale j and k is a constant generally chosen equal to 3.One possible thresholding of the noisy mass map �b consists in setting to 0 all non signif-icant wavelet coe�cients: �ond =Wr:M:Wt:�b (11)where Wt and Wr are respectively the wavelet transform and the wavelet reconstructionoperators. 11



k is a constant generally chosen equal to 3, but actually, if we keep this value in each scale,we obtain a �ltered image with white spots. Indeed, the small scales (high frequencies)contain only noise discontinuities of which are higher than 3:�j. So, for the small scales, kis chosen equal to 4 or 5. The multiresolution support M is then equal to 0 thus making itpossible to remove the high frequency noise. Fig. 12 shows the result after such processing.
Figure 12: Mass map �ltered by the multiresolution support in wavelet space ((left) ng = 20and (right) ng = 100)2. Iterative thresholding : The solution can be improved by the Van Cittert iteration [4].This can be expressed in the following way :�n+1ond = �nond +Wr(M:Wt:�b �M:Wt:�nond)= �nond +Wr(M:Wt:Rn) (12)where Rn = d� sn is the residual at the iteration n.The Van Cittert iteration does nothing but amplify the amplitude of the already detectedpeaks.In the mass map �ltered by the multiresolution support in the wavelet space (�g. 12), wenotice that the peaks come out well. But smoothing is too strong in the low frequencies,generating kinds of steps. This is due to the multiresolution support M which is equaleither to 0 or to 1. So we have to �nd a support that would be smoother.2.2.3 Wiener-like �ltering in Wavelet spaceAfter having computed the wavelet transform of the noisy mass map, we consider a waveletcoe�cient wj;k on the scale j and we assume that its value, at a given scale and a given position,results from a noisy process, based on a Gaussian distribution. We can then use the previousWiener function in the wavelet space. But instead of calculating the �lter function for each ring,we calculate it for each scale. With a simple multiplication of the coe�cient by the Wiener �lter,we get a linear �lter. In Fig. 13, we can visualize the power spectrum of the signal and that ofthe noise for each scale. We can notice that the noise is dominating at the small scales (highfrequencies). It is only from 5th scale that the signal becomes more important than the noise.12



Figure 13: Power spectrum of the signal and that of the noise for each scale (ng = 100)In Fig.14, we have represented the Wiener weight as a function of the scale. It is in accordancewith the multiresolution support M (seen earlier) where the �rst few scales are equal to 0 inorder to remove the high frequency noise.
Figure 14: Wiener weight as a function of the scale (ng = 100)Fig.15 shows the result of this �ltering which is close to the result of the classical Wiener�ltering. 13



Figure 15: Mass map �ltered by Wiener in the wavelet space ((left) ng = 20 and (right) ng = 100)The Wiener-like �lter in the wavelet space does not enable us to detect the main structuressuch as stars or galaxies. Furthermore , low frequencies structures are too smoothed.This is because the Wiener �lter is an optimal �lter to remove the noise in a Gaussian image.But the mass map is not perfectly Gaussian. If we plot the histogram for each scale which isobtained from the wavelet transform of the mass map (Fig. 16), we notice that the histogramlooks like a Gaussian function only for the �rst scale. Then, the more we consider a larger scale,the more the histogram looks like a Gaussian function which is less and less symmetrical.
Figure 16: Histogram for scales of the wavelet transform of �In order to increase the amplitudes of some of the peaks of galaxies, an additive thresholdinghas been tested on the image obtained by Wiener-like �ltering in the wavelet space.14



2.2.4 Adding a thresholding1. The Hard Thresholding : Let ~wj;x;y be the new wavelet coe�cients at the scale j, wwj;x;ythe wavelet coe�cients of the �ltered image by Wiener in the wavelet space and wj;x;y thewavelet coe�cients of the noisy mass map �b.~wj;x;y = wwj;x;y +HT(wj;x;y � wwj;x;y; k�j) (13)with : HT (x; y) = � x if j x j> y0 otherwiseThe Hard Thresholding consists in considering the di�erence between the noisy mass mapand the �ltered (by Wiener in the wavelet space) mass map. If the di�erence is higher thana threshold T (in the case of Gaussian noise, T = k:�j), it means that we have forgotten amain structure and this di�erence is added to the new image. otherwise nothing is done.Fig. 17 shows the result of this thresholding.
Figure 17: Filtered mass map by Wiener in wavelet space with an additional Hard Thresholding((left) ng = 20 and (right) ng = 100)2. The Soft Thresholding : The previous formula is still valid but with the ST function :~wj;x;y = wwj;x;y + ST (wj;x;y � wwj;x;y; k�j) (14)with : ST (x; y) = � sgn(x)(j x j �y) if j x j> y0 otherwiseAs previously, the Soft Thresholding consists in considering the di�erence between thenoisy mass map and the �ltered (by Wiener in the wavelet space) mass map. But this15



time, instead of adding the mass map value to the �ltered mass map, we add the di�erencebetween the two images. Furthermore , in this case, k is chosen twice as small as in theHard Thresholding in order not to add distortions to the image. Because k is directly usedfor the estimation of the new wavelet coe�cients.After this thresholding, new structures which can be either noise or signal can emerge.Fig. 18 shows the result of this processing.
Figure 18: Filtered mass map by Wiener in wavelet space with an additional Soft Thresholding((left) ng = 20 and (right) ng = 100)Thanks to the Hard Thresholding, the brighter structures can be isolated but their bound-aries are too sharp. Whereas, the Soft Thresholding leads to smoother boundaries. In orderto improve the quality of the �ltering a bit more, we have tested another method of �lteringin the wavelet space, using the concept of entropy.2.2.5 Multiscale Entropy Method (MEM)The entropy can be used for the general problem of data �ltering. A possibility is to considerthe entropy of a signal as the sum of the information at each scale of its wavelet transform. Andthe information of a wavelet coe�cient is related to the probability of its being due to noise.Denoting H(X) the information relative to the signal and h(wj;k) the information relative to asingle wavelet coe�cient, we de�ne :H(X) = lXj=1 NjXk=1 h(wj;k) (15)where l is the number of scales and Nj is the number of samples in the band (scale) j. ForGaussian noise, we get : h(wj;k) = w2j;k2:�2j + Cte (16)where �j is the standard deviation of the noise in the scale j.16



1. Signal and noise information : The mass map is corrupted by noise so we can decomposethe information contained in our image in two components, the �rst one (Hs) correspondingto the non corrupted part, and the other one (Hn) describing a component which is notinformative for us. For each wavelet coe�cient wj;k, we have to estimate the fractions hnand hs of h (with h(wj;k) = hn(wj;k) + hs(wj;k)). These fractions hn and hs contributerespectively to the calculation of Hn and Hs.Hence, the signal information and the noise information are de�ned by :Hs(X) = lXj=1 NjXk=1 hs(wj;k)Hn(X) = lXj=1 NjXk=1 hn(wj;k) (17)2. Filtering : The problem of �ltering �b can be expressed as follows. We look for a solution�f such that the di�erence between �f and �b minimizes the information due to the signal(we want recover all the signal) and such that �f minimizes the information due to thenoise (we want no noise). In practice, we minimize for each wavelet coe�cient wj;k :l( ~wj;x;y) = hs(wj;x;y � ~wj;x;y) + �:hn( ~wj;x;y) (18)where wj;x;y are the wavelet coe�cients of �b and ~wj;x;y the wavelet coe�cients of theimage �ltered by MEM.Thanks to the parameter �, we can control the smoothness of the solution. The higherthe value of �, the more the corrected wavelet coe�cients are reduced. There are severalkinds of regularization methods for the parameter �. To carry out this regularization,we have used an existing program (mw �lter in mr2 package) which we have adapted tothe characteristics of the noisy mass map. In Fig. 19 we can visualize the result of thisprocessing.For the observations on the ground, we obtain a �ltered image with white spots like withthe multiresolution support. Hence, if we compare visually the mass map �ltered by MEMwith the real mass map, we can say that the multiscale entropy �ltering is the best �lteringthat we have tested.
17



Figure 19: Mass map �ltered by the Multiscale Entropy Method ((left) ng = 20 and (right)ng = 100)3. Removing of the �rst two scales : The MEM Method always tries to keep a few coe�cientseven in the �rst scales. However, in the small scales, there are only noise. So, we havechosen to remove the �rst two scales. Fig. 20, shows the result of the �ltering with orwithout the �rst two scales. Fig. 21, shows the di�erence between these two images. Nostructure is distinguished, there are only noise in this image. This processing gives goodresults.
Figure 20: Mass map �ltered by the Multiscale Entropy Method ng = 20 ((left) with the �rsttwo scales and (b) without) 18



Figure 21: Di�erence between the previous images with and without the �rst two scales4. The choice of the threshold and the FDR-ThresholdingThe threshold k:� is selected so that all the wavelet coe�cients higher than k:� are un-touched. Initially, we used a �xed value of k (typically defaulted to 3) for all the scales.But we have plotted the curves representing the standard deviation between the �lteredmass map �f and the real mass map � as a function of the number of scale, for three �xedvalue k = 3, k = 4 and k = 5 (Fig. 22) and we have noticed that according to the scalethere are a given threshold value that is better than others. For example, the noise havegreater variations for the larger scale.
Figure 22: (left) ng = 20 and (right) ng = 100Consequently, we have decided to take a di�erent threshold value for each scale. The resultseems to be good. We have plotted again the curves representing the standard deviationbetween the �ltered mass map �f and the real mass map � as a function of the numberof scale for two �xed value k = 3 and k = 4 and for k variable (Fig. 23). We noticed that19



the result obtained with a variable threshold is almost always better.
Figure 23: (left) ng = 20 and (right) ng = 100But a basic problem remains : choosing the suitable threshold for a given scale for allkinds of data. Without an objective method for selecting these thresholds we have toadjust these thresholds to give desirable results each time.The FDR (False Discovery Rate) method has been developped recently and allows us tocontrol the average fraction of false detections made over the total number of detectionsperformed and also o�ers an e�ective way to select thresholds that is automatically adap-tative across data.The FDR is given by the ratio : FDR = ViaDa (19)where Via are the number of pixels truly inactive declared activeand Da are the number of pixels declared activeThis procedure controlling the FDR speci�es a rate � between 0 and 1 and ensures thaton average FDR is no bigger than �.E(FDR) � TiV :� � � (20)The unknown factor TiV is the proportion of truly inactive pixels. For analyses of smallerinterest regions, it might be useful to estimate TiV and choose � accordingly.The FDR procedure is as follows :Let P1; :::; Pn denote the p values from the N tests, listed from smallest to largest.Let : d = maxfj : Pj < j:�cN :N g (21)where cN = 1, if p values are statistically independants.Now, declare actived all the pixels whose p values are less than or equal to Pd.20



Graphically, this procedure corresponds to plotting the Pj versus jN , superposing the linethrough the origin of slope �cN , and �nding the last point at which Pj falls below the line.As previously, Fig. 24 shows the curves representing the standard deviation for each scalebetween the �ltered mass map �f and the real mass map �. The result obtained with themass map �ltered with arbitrary thresholds per scale is in solid line. And we have plottedin dotted lines these obtained with the fdr-thresholds per scale for di�erent � values.We can notice that for ground observations (ng = 20), the FDR method don't reallyimproved the standard deviation per scale but enables us to adapt the thresholds auto-matically. For space observations (ng = 100), on the contrary, the FDR method enablesus to improve considerably the standard deviation per scale and the thresholds are alsoautomatically adaptative.For space observations, as we can see it on Fig. 25, there is a noticeable di�erence betweenthe mass map �ltered with the fdr-thresholds and arbitrary variable thresholds. In fact,Fig. 26, we have plotted over the real mass map (slightly smoothed) the isophots of thetwo �ltering results. The fdr-thresholding allows us to detect more clusters.
Figure 24: (left) ng = 20 and (right) ng = 1005. The addition of a loop to raise the level of the �ltered imageThe result of the �ltering by multiresolution Entropy can be improved by an iteratingprocess. Its goal is to recover the information lost during the reconstruction by the oppositeWavelet Transform because the Wavelet Transform is not reversible.This process consists in adding to the map Ii, for each iteration i, a Residual obtained bythe opposite Wavelet Transform of the di�erence between the corrected wavelet coe�cientsand the wavelet coe�cients calculated from the map reconstructed at the iteration i-1. Theconvergence is rather fast, approximately 5 iterations are enough.Fig.27 on the left, we have the mass map reconstructed by MEM without an iterativeprocess and on the right, we have the mass map reconstructed by MEM with 5 iterationsfor ng = 100. The levels of the image of right-hand side are recovered better.2.3 Conclusion about the �lterings of the noisy mass mapWe have summarized the results of each �ltering in the following array, by calculating foreach �ltering the standard deviation between the �ltered mass map �f and the real mass map�. 21



Figure 25: Kappa �ltered (left) with arbitrary thresholds per scale and (right) with the fdr-thresholds per scale
Figure 26: Isophots of the noisy mass map �ltered (left) with arbitrary thresholds per scale and(right) with the fdr-thresholds per scale�lter / ng 20 100Gaussian Filter (� = 10) 0.0302 0.0239Gaussian Filter (� = 25) 0.0278 0.0259Wiener Filter (1D) in Fourier space 0.0261 0.0234Multiresolution Support Filtering 0.0276 0.0236Wiener Filter in Wavelet space 0.0260 0.0235Additional Hard Thresholding 0.0263 0.0231Additional Soft Thresholding 0.0258 0.0228MEM Filter (k=5) 0.0284 0.0229MEM Filter (k=5, without the �rst two scales) 0.0267 0.0227MEM Filter (k=variable, without the �rst two scales) 0.0268 0.0229MEM Filter (k=variable, without the �rst two scales + i=5) 0.0259 0.022722



Figure 27: (left) i = 0 and (right) i = 5 for ng = 100We notice that the Wiener �lter with an additional Soft Thresholding is the one that gives the�ltered mass map �f nearest to the mass map � according to the standard deviation estimator.Hence, the standard deviation does not seem to be the best estimator of the quality of the�ltering. This is because, it makes an average on the entire image whereas we rather want tocompare the images pixel by pixel. Indeed, when we estimate the quality of the �ltering visually,it is the Multiscale Entropy Method which gives the best result.The Gaussian �lter is the �lter that gives the coarsest result. The main peaks are found, butthe edges remain vague.The Wiener �lter gives good results in the Fourier space but is better when applied in thewavelet space. In the Fourier space, the �ltered image obtained by Wiener has some spots ofnoise. But, the additional Hard and Soft Thresholding improve the quality of the �ltering. Wenotice that when we use the standard deviation estimator, for the observations on the ground,this improvement is not notable. This con�rms what we have said earlier about the validity ofthe standard deviation estimator.In order to improve the quality of the estimator, we have plotted the curves representingthe standard deviation between the �ltered mass map �f and the real mass map � for eachscale. In Fig. 28, we have compared the Gaussian �ltering (�=10), the Wiener �ltering (1D),the Multiresolution Support �ltering and the MEM �ltering (k=variable).According to the standard deviation per scale estimator, the Multiscale Entropy Methodgives the best result. In Fig. 29, Fig. 30, Fig. 31 and Fig. 32, we have compared (image toimage) the Wiener �lter and the MEM �lter with the mass map � for each scale starting fromthe third scale. We can notice that the Wiener �lter is optimal for the �rst scales because thesignal is more or less Gaussian. For the others scales, there are more structures which arise withthe Wiener �lter than with the MEM �lter but there are more false detections.To conclude, we can say that the Multiscale Entropy Filtering (with a k variable and afterhaving removed the �rst two scales) is the best method that we have tested as it enables us todetect all the main structures of the mass map without doing too much false detections.23



Figure 28: (left) ng = 20 and (right) ng = 100
Figure 29: scale 3 - ng = 100
Figure 30: scale 4 - ng = 1003 Filterings of the noisy mass map with a lack of dataWe have ended this survey by looking what would happen with the di�erent �lters, if somedata were missing in the image. 24



Figure 31: scale 5 - ng = 100
Figure 32: scale 6 - ng = 1003.1 Missing DataSometimes during the observations, an incident can cause a loss of data in the image. Thiscan be due either to a defect of the camera CCD, generating a dark line or a dark row in theimage, or to the presence of a very bright star in the �eld of vision which forces us to removethis part of the image or something else,... In order to modelize this problem, we make a squarezone take the value 0 in the shear maps 
1 and 
2. By inverse �ltering, we have derived thenoisy mass map �b in which we can also visualize the lack of data (Fig. 33). We were then ableto test the di�erent �lterings seen earlier on this noisy mass map with a "hole".3.2 Filterings in Fourier space3.2.1 The Gaussian �lterIn Fig. 34, we have represented the result of the Gaussian �ltering on the noisy mass mapwith the "hole" (for observations on the ground ng = 20 and for space observations ng = 100).The result is quite good : we can notice that the square edges are smoothed.25



Figure 33: Noisy mass map with a "hole" (ng = 100)
Figure 34: Noisy mass map with a "hole" �ltered by a Gaussian � = 5 ((left) ng = 20 and(right) ng = 100)3.2.2 The Wiener �lterFig. 35, shows the result of the Wiener �ltering on the noisy mass map with the "hole" (forobservations on the ground ng = 20 and for space observations ng = 100) in the Fourier space.In this case, we notice that this processing gives a very bad result and that the "hole" appearsin the �ltered image. For ng = 20, nothing is recovered. For ng = 100, the image is slightlyblurred. In order to understand this bad result, let us see how the Wiener weight is calculated.The pixel values of the "hole" are used to calculate the weight. Thus, the variance of the signaldecreases on some of the rings compared to the value it would have without the "hole". TheWiener weight decreases in the same way and the structures are consequently a�ected.26



Figure 35: Noisy mass map with a "hole" �ltered by the Wiener �lter ((left) ng = 20 and (right)ng = 100)3.3 Filterings in Wavelet spaceAs soon as we work in the wavelet space, the "hole" disappears except for the Wiener �lteringin the wavelet space for the reason mentioned earlier. The "hole" disappears because it is onlypresent in the small scales (high frequencies) and we have already seen that in the mutiresolutionsupport, the �rst few scales are equal to 0 in order to suppress the high frequency noise. Thus,the "hole" is also removed.3.3.1 The multiresolution support and wavelet coe�cient thresholdingIn Fig. 36, we have represented the result of the �ltering by the wavelet coe�cient thresh-olding on the noisy mass map with the "hole" (for observations on the ground ng = 20 andfor space observations ng = 100). The presence of the "hole" in the data does not disturb the�ltering of the other part of the image.3.3.2 Wiener-like �ltering in Wavelet spaceThe result of the Wiener-like �lter in the wavelet space is as bad as the classical Wiener�lter in the Fourier space.3.3.3 Multiscale Entropy �lteringFig. 37 shows the result of the Multiscale Entropy Filtering on the noisy mass map with the"hole" (for observations on the ground ng = 20 and for space observations ng = 100).The image �ltered by MEM is not much a�ected by the presence of the "hole". Indeed,when we minimize the information due to the noise in �f , we remove the high frequency noiseand consequently the "hole" disappears because it is only present in the small scales. But wealso minimize the information due to the signal of the di�erence between �f and �b and this canslightly disturb the result. 27



Figure 36: Noisy mass map with a "hole" �ltered by the multiresolution support ((left) ng = 20and (right) ng = 100)
Figure 37: Noisy mass map with a "hole" �ltered by the Multiscale Entropy Method withoutthe �rst two scales ((left) ng = 20 and (right) ng = 100)3.4 Conclusion about the �lterings of the noisy mass map with a lack of dataThe present study shows that it is a mistake to consider the pixels of the "hole" when wecalculate the Wiener weight and to perform the Multiscale Entropy �ltering. This is because the"hole" does not contain any information. We propose three solutions. The �rst one consists incalculating the weight or performing the MEM �ltering without taking into account the pixelsof the "hole". The second one, only for the Wiener �ltering, is to create a noisy map with a"hole" to calculate the corresponding < jN̂(u; v)j>. The third one, only for the MEM Methodconsists in removing the �rst two scales. The Fig. 38 shows the wavelet coe�cients of the massmap with a "hole". we can notice that the hole is quite visible on the �rst two scales, thosewhich we removed. It then starts to disappear and it is not visible anymore. Consequently, the28



in
uence of the hole is rather weak when the �rst two scales are removed.

Figure 38: Wavelet coe�cients for each scale of the wavelet transform of � with a "hole"
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4 Program4.1 Organization in the folder prog WLIn this folder, we have performed all �lterings on the noisy mass map �b for the WeakLensing.This folder itself is divided into two folders. In the �rst, we gathered all �lterings on simulatedimages and in the second one gathered all �lterings on real images.The simulation folder itself is divided into three folders. In the �rst, are gathered all �lteringsperformed on a mass map from bhuvnesh. The second one, gathered all �lterings on a simulatedmass map collected on Internet. And in the third one we have tried to simulate mass map fromthe caracteristics of some real images collected (noise level, pixel size, number of galaxies perarcmin2,...) In all this sub-folders, we have a folder data in which we can �nd the simulatedmass map, a folder devl in which we can �nd all the IDL routines used in this survey and a folderimages in which we have saved the noisy mass map and all the �ltered images (in the format.�ts). There is a folder save ps, in which we have saved a few images in the format .ps. anda folder courbes xdr, in which we have saved a few interesting graphics in the format .xdr. Areadme �le in each of these folders describes how each image and graphics have been generated.The real folder itself is divided into two folders. In the �rst are all �lterings on images fromthe observations on the ground and in the second one are all �lterings on images from the spaceobservations. In all this sub-folders, we have a folder data in which we can �nd the noisy massmap, a folder devl in which we can �nd all the IDL routines used in this survey and a folderimages in which we have saved all the �ltered images (in the format .�ts). A readme �le ineach of these folders describes how each image has been generated.4.2 Organization in the folder prog hole WLIn this folder we have performed all the �lterings on the noisy mass map with a lack of datafor the Weak Lensing. All the �le are quite similar to the �les of the "prog WL" folder. Themain di�erence is in the procedure kappa hole.pro that calculate the mask of the hole for all thescales which is used then by all the �ltering procedures and in the procedure rec kap hole.prothat calculates the noisy mass map, it calls bruit gaus hole which puts a Gaussian noise on 
1and 
2 (like bruit gaus in the previous folder) and also adds a "hole" in the data.4.3 IDL routines4.3.1 IDL Process routine : rec kap (or rec kap hole in the folder prog hole WL)The program rec kap(or rec kap hole in the folder prog hole header) calculates the noisy mass map �bfrom the simulate mass map.rec kap, a, n g, s, noi1, noi2, kb, mbwhereinput :a = the mass map (�le structure)n g = the number of galaxies per arcmin2output : 30



s = the rms of the noisenoi1 = the array of the noise added to gamma1noi2 = the array of the noise added to gamma2kb = the noisy mass mapmb = the noisy mass map (�le structure)4.3.2 IDL Process routine : rec kap gausThe program rec kap gaus calculates the convolution between the noisy mass map and a Gaus-sian window.rec kap gaus, kb, sigma, k gauswhereinput :kb = the noisy mass mapsigma = the rms of the Gaussian windowoutput :k gaus = the �ltered mass map4.3.3 IDL Process routine : rec kap wiener 1dThe program rec kap wiener 1d calculates the solution given by the Wiener �ltering (classicalmethod 1D) by calculating the weight of the Wiener �lter for each ring (the radius increasinglogarithmically) of the imagerec kap wiener 1d, mb, sigmae, n g, L, Vs, Vn, W, k w1dwhereinput :mb = the noisy mass map (�le structure)sigmae = the rms of gamma1 and gamma2n g = the number of galaxies per arcmin2output :L = the radius of the concentric circleVs = the standard deviation of the signal for each ringVn = the standard deviation of the noise for each ringW = the weight of the wiener �lter for each ringk w1d = the �ltered mass map 31



4.3.4 IDL Process routine : rec kap ondThe program rec kap ond performs the �ltering by the multiresolution method using wavelettransformrec kap ond, a, kb, n g, ny, s, M, W, k ondwhereinput :a = the mass map (�le structure)kb = the noisy mass mapn g = the number of galaxies per arcmin2ny = the number of scaless = the rms of the noiseoutput :M = the mutiresolution supportW = the di�erent scale planek ond = the �ltered mass map4.3.5 IDL Process routine : rec kap ond iterThe program rec kap ond iter performs a multiresolution �ltering using the wavelet transformand improved by the Van Cittert iterationrec kap ond iter, a, kb, n g, ny, s, ni, M, W, k ond1, k ondiwhereinput :a = the mass map (�le structure)kb = the noisy mass mapn g = the number of galaxies per arcmin2ny = the number of scaless = the rms of the noiseni = number of iterationoutput :M = the mutiresolution supportW = the di�erent scale planek ond1 = the �ltered mass map for ni=1k ondi = the �ltered mass map for ni=i 32



4.3.6 IDL Process routine : rec kap ond wlThe program rec kap ond wl performs a �ltering using the wavelet transform and the Wiener�lterrec kap ond wl, a, kb, ny, s, noi1, noi2, Wk, Wn, Wkb, Wkrec, k ond wlwhereinput :a = the mass map (�le structure)kb = the noisy mass mapny = the number of scaless = the rms of the noisenoi1 = the array of the noise added to gamma1noi2 = the array of the noise added to gamma2output :Wk = each scale of the wavelet transform for the mass mapWn = each scale of the wavelet transform for the noiseWkb = each scale of the wavelet transform for the noisy mass mapWkrec = each scale of the wavelet transform for the map retracedk ond wl = the array of the map retraced4.3.7 IDL Process routine : rec kap ond wl htThe program rec kap ond wl ht performs a �ltering using the wavelet transform, the Wiener�lter and a additional High Thresholdingrec kap ond wl ht, a, kb, ny, s, noi1, noi2, k ond wl, k ond htwhereinput :a = the mass map (�le structure)kb = the noisy mass mapny = the number of scaless = the rms of the noisenoi1 = the array of the noise added to gamma1noi2 = the array of the noise added to gamma2output :k ond wl = the array of the map rebuilt without Hard Thresholdingk ond ht = the array of the map rebuilt 33



4.3.8 IDL Process routine : rec kap ond wl stThe program rec kap ond wl st performs a �ltering using the wavelet transform, the Wiener�lter and a additional Soft Thresholdingrec kap ond wl st, a, kb, ny, s, noi1, noi2, k ond wl, k ond stwhereinput :a = the mass map (�le structure)kb = the noisy mass mapny = the number of scaless = the rms of the noisenoi1 = the array of the noise added to gamma1noi2 = the array of the noise added to gamma2output :k ond wl = the array of the map rebuilt without Soft Thresholdingk ond st = the array of the map rebuilt4.3.9 IDL Process routine : rec kap entropieThe program rec kap entropie performs a �ltering using the multiscale entropy method (forobservations on the ground n g = 20 or space observation n g = 100)rec kap entropie, a, kb, n g, k entropiewhereinput :a = the mass map (�le structure)kb = the noisy mass mapn g = the number of galaxies per arcmin2output :k entropie = the array of the map rebuilt by the multiscale entropy method4.3.10 IDL Process sub-routinemy kappa to gamma is called by rec kap to calculate gamma1 and gamma2 from kappamy gamma to kappa is called by rec kap to calculate kappa from gamma1 and gamma2bruit gaus (or bruit gaus hole in the folder prog hole WL) is called by rec kap to put Gaussiannoise on gamma1 and gamma2 (and in the folder prog hole WL in addition to the noise itsimulates a "hole" in the data )variance is called by rec kap w1d to calculate the standard deviation of each ring of the image34



seuil detec is called by rec kap ond to calculate the rms of noise for each scalesim bruit is called by rec kap ond to calculate the map of the simulated noisemrs is called by rec kap ond to calculate the multiresolution support M of the noisy mass maphard t is called by rec kap ond wl ht to calculate the mutiresolution support by Hard Thresh-oldingsoft t is called by rec kap ond wl st to calculate the mutiresolution support by Soft Thresholding4.3.11 IDL Process routines usefulpixelise enables us to make a pixelised map from anothermk gamma enables us to make a pixelised map from shear catalogueM isophot enables us to calculate the value of maximum detection for each pixel of the maphisto enables us to plot the normalised histogram of a map4.3.12 IDL Process routines of readingrd map enables us to read the mass map simulated from bhuvneshrd map net1 enables us to read the �rst simulated mass map collected on Internetrd map net2 enables us to read the second simulated mass map collected on Internetrd gcat enables us to read the galaxies catalogue of the observations on the groundrd gcat goods enables us to read the galaxies catalogue of the space observations4.3.13 IDL Process routines of writing or savingplt colbar, plt evec, plt image, plt shear kappa, plt shear gamma , plt gamma, plt gcat are usedto plot the images.ops, cps, opub, cpub are used to save our images in the .ps formatmk jpeg is used to save our images in the .jpeg format
35
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