KAERI/TR-2818/2004

Holq 2&TEA o] EAT
Theoretical Study of

Laser—-Ultrasonic Wave Generation

FTAAL AT

Korea Atomic Energy Research Institute



sl
ko

9

gy

2004

A FA



oA 253 H A H[AL Tzl A Aol #HolAE AStY 2HdE W
A A713L 1 A S5E AEshe 2agh o2 4Q =9 E slslen, o] ol&
of 71zxste] FAA] FAALNAHRE AT o 7FA] dlo]A EH9
Fejo] o3t A5 UFolAe 2ETXEE A9 Altel wek ALkeAd A,
ol A EHe] mE ded G937 & Gl dolA 23] HAIE
A ArrHe HAE AT Rayleigh W49 s|25H A5 &
A5 YA XU ES A, xHFe] S5 ALbsialar, dol
A2 EAAZ] Rayleigh W e] A5 AR HY HAE 74]’1‘}3}3
EAe =9 alv 52 dolArt Agel AbE uf FAE = Aol o
gk =olE HFd i@’\]i’i‘:}
Abstract

We discuss the theories in the generation and detection of
laser—ultrasonics and present the results obtained from the numerical
calculations based on the theories. We carry out the computation of
the spatial and temporal distributions of the temperature inside the
material. Calculating the displacement of the surface at the epicenter,
we make discussions on the characteristics of the ultrasonic wave
propagation in the thermoelatic and ablation regions. The speed and
the surface motion of the materi

al element are investigated from the solution of the Rayleigh
equation. We present the results obtained from the numerical
computations based on the theories. The Rayleigh waves generated
by the irradiation of the pulsed laser beam in the thermoelastic
region and the ablation region are discussed. Also the discussions on
the heat wave propagation caused by irradiations of the ultra-short

laser pulses are included in the appendix.
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Heat Wave Propagation in a Thin Film Irradiated by
Ultra—-short Laser Pulses

Jaegwon Yoo, Cheoljung Kim and C. H. Lim
Korea Atomic Energy Research Institute
Daejon 305-353 Korea

Abstract
A thermal wave solution of a hyperbolic heat conduction equation in a thin film is
developed on the basis of the Green's function formalism. Numerical computations
are carried out to investigate the temperature response and the propagation of the
thermal wave inside a thin film due to a heat pulse generated by ultra-short laser

pulses with various laser pulse durations and thickness of the film.

I. Introduction

Recently developed laser technologies enable one to operate lasers in the
short-pulse mode down to femtosecond region by making use of the second
harmonic generation in nonlinear photonic crystals. The time-resolved spectroscopy
with the femtosecond lasers has played an important role in the study of the phase
transition of condensed matter physics. Because of the high intensity and excellent
monochromaticity of lasers, the high—-power laser technologies have made it
possible to devise many kinds of excellent energy sources for processing materials,
such as laser marking, welding and cutting, and the inertial confinement fusion
research [1]. Also, short-pulsed lasers have been employed as a means for
generating ultrasonic transients within solids, where the laser—based ultrasonic
sources can produce wide bandwidth waves and waveforms with several desirable
characteristics in the non-destructive evaluation (NDE) [2]. Elastic waves can be
generated via several mechanisms, including thermoelastic expansion at low incident
laser powers, ablation of material at higher powers, and the evaporation of
materials coated on the surface. Among these, thermoelastic expansion is the most
desirable since any potential damage to an irradiated surface is minimized. These
fields demand the knowledge of the physical processes dealing with very large
thermal gradients or an ultra—high heating speed at the boundaries where the

classical Fourier's diffusion model is no longer valid.
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As a laser pulse is absorbed at the surface of a material, a thermal disturbance in
the medium forms a temperature distribution vyielding a heat flux which is
proportional to the temperature gradient. Combining this heat flux equation and the
energy conservation law, we can obtain an inhomogeneous diffusion equation that is
quite accurate for most classical heat conduction phenomena. The classical heat
conduction equation predicts that heat propagates at an infinite speed. As such
instantaneous propagation of heat is impossible, the diffusion equation is legitimate
only after a sufficiently long time has elapsed [3]. For situations involving a
nonequilibrium thermodynamic transition, such as very short times, extreme thermal
gradients, or temperatures near absolute zero, one must take into consideration the
lagging response in time between the heat flux and the temperature gradient. The
partial differential equation which includes the dynamic response of the relaxation
effects turns out to be a hyperbolic equation for describing the thermal wave

propagation as well as the thermal diffusion [3,4,5].

It does not seem possible to obtain the temperature response solution analytically
from the Green's function formalism because of a sum of oscillating terms included
in the integral kernel. In this paper, we discuss the thermal wave generation in
solids by an actual laser-pulse. We develop a thermal wave solution of the
hyperbolic heat conduction equation in a finite medium on the basis of the Green's
function formalism. We carry out numerical computations to investigate the
temperature response and the propagation of the thermal wave due to a heat pulse
generated by a laser pulse with various laser pulse durations, thicknesses of the

medium, and energy absorption depth.

II. Hyperbolic Heat Conduction Equation

We consider a finite slab-type target that is composed of a medium with constant
thermal properties and insulated boundaries. From time ¢=() the medium is
irradiated by a laser pulse depositing heat with the power density varying as the
function Qx,d On its front surface. The coordinate system and the geometry for
the laser beam at the solid surface are shown in Fig. 1. The propagation of thermal

energy 1s determined by the following hyperbolic heat conduction equation

where j k 1 are thermal conductivity, thermal diffusivity, and relaxation time of

the medium. Equation (1) differs from the diffusion equation in that a wave term
represented by is included. Thus, the thermal wave propagates with a

finite speed ¢=V /1t due to the lagging response of the thermodynamic transition
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in nonequilibrium. For insulated material, the boundary conditions on the surface (S

of the medium are

n-vIx,)=0 for xS, (2_

and the initial conditions are

Tx0=7 ad 120 ®)

where ,denotes a unit vector normal to the boundary surface §

A suitable expression for the heat deposition over a circular area due to a laser

beam is

Qx,)=E1—Rle”"fde(», (4)

where [ is the energy of the laser pulse, R is the surface reflectivity, I' is the

penetration depth. If the energy is completely absorbed at the surface (T—oo), we

can set T'e 1?=§(z). Here Ay is the spatial and temporal distribution of the laser

pulse that can be written as
Ap=-L o™ (5)
£

where t, is the rise time of the laser pulse.

For convenience in the subsequent analysis, we rewrite the hyperbolic equation in a

dimensionless form by introducing the following parameters,

__z __ L _t _b _
n= 2\/;E s rLL_ 2\/?[ ’ g_ 2,.[ s 'ép_ 2T ’ Y—Z\/?EF, (6)

Then we read the heat deposition and the temperature difference in dimensionless

forms,

adn, %) =ve ¥AY), (7)

and
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W=

= H1-RVx

(T(x,D—T)). (8)

Substituting Eq.(6), (7) and (8) into Eq. (1) we read the dimensionless hyperbolic

equation as follows

70422 —20 109, ©

where n, %) is a dimensionless heat source which is the second term in the
left-hand side of Eq. (1)

{9 23%“ [2(1—2%)% ]e_%. (10)
D

»
We solve Eq. (9) by making use of the Green's method for an impulse-type point

source that enables one to obtain the solution from a superposition of the actual

source term

G(n,€)=fvfG(rL,E;rL’,?)S(rL',?)dé’dm', (11)

where  Qn,%n’,%) is the Green's function of the problem, which satisfies the

following equation

(12)
with the boundary and initial conditions
ﬂl,aa_rlil =0 for nes (13)

ﬂﬂ’g@—n’il =Gn,5n,8)=0 a t=0.

The Green's function for the hyperbolic equation can be constructed by exploiting
the finite integral transform technique or eigenfunction expansion method [5,6],

such as

sinB (§ v)

G, En’ 1) ="* :L_g [smh(% §)+221 cos (A ,n) cos(A 0 ") |, (14)
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where A =pm/mn ,, and B,=V A?,—1. Since the substitution of Egs. (14) and (10)
into Eq. (11) results in a complicated integral of exponential functions with
oscillating terms, it does not seem possible to find any analytic solution in a closed
form. In performing numerical computations, the infinite series of the oscillating
terms must be handled with a great care to reduce the numeric errors and to

enhance the computational efficiency.

[II. Numerical Results and Discussion

Substituting Egs. (14) and (10) into Eq. (11) turns out to be a complicated integral
of oscillating terms that does not return the final result in any analytic expression.
We write a series of computer codes [7,3] for computing the numerical integration
of Eq. (11) which demands lots of CPU times. We performed the numerical
calculation for a thin aluminum film that has thermal diffusivity x=1,0x10"4m?/s
and relaxation time t=292 5x]()~ s With theses data the thermal wave speed in the
aluminum film is calculated as ¢=V a/t=2000m/s- The normalized length unit p
and time unit g are equivalent to () Jum and 5(ps, respectively. The penetration
length 1 and the reflectance pR of the radiation field on the conductor can be
estimated from the classical theory of skin depth V' 9/wpo, where ¢ p, and ¢ are
the angular frequency of the electromagnetic wave, the permeability, and the

conductance of the metal, respectively.

We present our numerical results in Figs. 2 ~8. Notice that the temperatures at the
irradiation spot are the same in Figs. 2 ~4 while those are different in Figs. 5 ~8
since the laser power densities are different as we used various laser pulse
duration times and material penetration depths. Thus we mean the temperature as
the normalized scale of the temperatures in discussing our numerical results

hereafter.

For the fixed penetration length '=() (Qlum and laser pulse duration time t,= 20ps:
the temperature profiles in Fig. 2, 3 and 4 are calculated with different film
thicknesses [ =(0.1um 0.2um and () 3um Figure 2 clearly shows that a pulse-type
thermal wave is formed inside the film and the wave is reflected at the ends a few
times until the thermal energy is diffused out. Figure 4 which is the case of 3
times thicker than that of Fig. 3 shows that the thermal wave fades out right after
reflecting at the other side of the film. The speed of the thermal wave can easily
be calculated by measuring the time interval between peak-to-peak temperature at

either end of the film which is the twice of the time traveled the distance ],
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For the fixed penetration length T©'=( (Qlum and thickness [ —=( lum the
temperature profiles in Fig. 2, 5 and 6 are calculated with different pulse duration
times f, =20ps: 10ps: and 5(ps. Figure 5 clearly shows that the temporal and
spatial profiles of the thermal wave are sharper than those of Fig. 2 and much
sharper than those of Fig. 6. Since the time to reach the other side of the film is
almost equal to the laser pulse duration time in the case of Fig. 6, the propagating
and the reflected thermal waves crosses around the center of the film where two

thermal energies are added up.

For the fixed thickness [ —=( Ium and pulse duration time f =20ps. the
temperature profiles in Fig. 2, 7 and 8 are calculated with different penetration
lengths '=0.0lume 0.002ume and (.05um Figure 7 clearly shows that the temporal
and spatial profiles of the thermal wave are sharper than those of Fig. 2 and much
sharper than those of Fig. 8. Thus, we can generate sharper thermal wave profiles
by making use of shorter laser pulses and the shorter penetration length by

adopting high—frequency lasers.

In this paper we considered 1+ 1 dimensional model of the heat propagation in the
metalic medium initiated by the irradiation of ultra—short laser pulses. To account
for the short pulse relaxation time we included the second order derivative of the
temperature with respect to time into the classical heat diffusion equation and
obtained the 1+ 1 dimensional the heat wave equation whose solution is equivalent
to the plane wave solution in 3+ 1 dimensions. Since the shorter relaxation time
yields the faster heat propagation speed, the temperature diffuses much quicker in
the metal than in the insulator. This model can be utilized to determine the thermal
relaxation time experimentally by measuring the time interval between
peak-to-peak temperature on the surface. However, further theoretical and
numerical investigations are planned to deal with the 3-dimensional heat wave
equation with appropriate boundary conditions for more realistic model for the heat

wave propagation in the medium..
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Figures

Figure 1. Schematics of short-pulse laser Figure 2. Temperature profile in a film

heating system. with n;=1. An=(.1. and §,=(.4.
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Figure 3. Temperature profile in a film Figure 4. Temperature profile in a film

with n,=2. An=0.1. and §,=0.4. with n, =3, An=0.1. and §,=0.4.

Figure 5. Temperature profile in a film Figure 6. Temperature profile in a film

with n,=1. An=0.1. and §,=0.2: with n,=1. An=0.1. and §,=1.0-

1

Figure 7. Temperature profile in a film Figure 8. Temperature profile in a film
with n,=1, An=(.(2, and t,=0.4- with n,=], An=(.5 and £,=0.4-
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