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Summary

The fault tree quantification uncertainty from the truncation error has been of great concern
for the reliability evaluation of large fault trees in the probabilistic safety assessment (PSA) of
nuclear plants. The truncation limit is used to truncate cut sets of the gates when quantifying the
fault trees. This report presents measures to estimate the probability of the truncated cut sets,
that is, the amount of truncation error. The functions to calculate the measures are programmed
into the new fault tree quantifier FTREX (Fault Tree Reliability Evaluation eXpert) and a

Benchmark test was performed to demonstrate the efficiency of the measures.

The measures presented in this study are calculated by a single quantification of the fault
tree with the assigned truncation limit. As demonstrated in the Benchmark test, lower bound of
truncated probability (LBTP) and approximate truncation probability (ATP) are efficient
estimators of the truncated probability. The truncation limit could be determined or validated by
suppressing the measures to be less than the assigned upper limit. The truncation limit should be
lowered until the truncation error is less than the assigned upper limit. Thus, the measures could
be used as an acceptability of the fault tree quantification results. Furthermore, the developed
measures are easily implemented into the existing fault tree solvers by adding a few subroutines

to the source code.
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FTREX[15] 3/4 [18]
3/4
[19] 1 49
3,477 2,501
1 3/4 NPP

Initiator group Number of initiators
Large LOCA 6 (4 for cold legs and 2 for hot legs),
Medium LOCA 6 (4 for cold legs and 2 for hot legs)

LOCA (a) |Small LOCA 1
Reactor vessel rupture 1
Steam generator tube rupture 2 (for steam generators 1 and 2)
Interfacing system LOCA 1
Large secondary side breaks 2 (for steam generators 1 and 2)
Loss of main feedwater transient 1
Loss of condenser vacuum transient 1
Loss of offsite power 1

Transients |Station blackout (b) NA (d)
General transient 23
Loss of component cooling water train 1
Loss of 4.16KV AC bus 1
Loss of 125V DC bus 2 (for 125V DC bus A and B)
ATWS (c) NA

2,4,

(a) loss of cooland accident

(b) loss of offsite power * loss of AC power

(c) initiators transferred to anticipated transient without scram (ATWS) * failure of reactor trip
(d) NA: Not applicable
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2. 3/4 NPP Benchmark
Truncation PPk |P+BTP | PeraTP Y | TP @) | LBTP, ATP, TU % | LBTU. % | ATU, % | Run time
k limit MCSs (a) MCSs (b) . . . . . .
1.0E-k % P % Pis % in Eq. (10) | in Eq. (11) | in Eq. (12) | in Eq. (18) | in Eq. (19) | in Eq. (20) | (seconds)
8 1.0E-08
257 80,965 76.76 83.08 103.26 | 5.100E-06 | 1.389E-06 | 5.818E-06 23.20 7.61 25.67 0.42
9 1.0E-09
1.205 270,306 89.33 93.20 105.78 | 2.340E-06 | 8.497E-07 | 3.611E-06 10.70 415 15.55 0.56
10 | 10810
s842| 1,840,383 95.45 97.72 103.84 | 9.990E-07 | 4.980E-07 | 1.841E-06 455 232 8.08 0.88
1 1.0E-11 27207 7.872.462 98.44 99.36 10235 | 3.420E-07 | 2.014E-07 | 8.583E-07 1.56 0.92 3.82 1.69
12 | 1oE12
99,922 | 25,603,438 99.49 99.83 100.88 | 1.110E-07 | 7.289E-08 | 3.037E-07 0.51 033 137 3.59
13 1.0E-13
342488 | 86,589,221 99.85 99.96 100.31 | 3.400E-08 | 2.487E-08 | 1.020E-07 0.16 0.11 0.46 8.03
14 | 1.0B-14
1,103,758 | 320,228,727 99.96 99.99 100.10 | 9.000E-09 | 8.041E-09 | 3.241E-08 0.04 0.04 0.15 19.00
15 1.0E-15
3,436,562 | 964,350,847 99.99 100.00 100.04 | 2.000E-09 | 2.455E-09 | 9.936E-09 0.01 0.01 0.05 4381
16 LOE-16 116903 408 NA (¢) 100.00 100.00 100.01 | 0.000E+00 | 7.188E-10 | 2.889E-09 0.00 0.00 0.01 149.41

(a) MCSs that have probabilities larger than the truncation limit (See Section 2.2)

(b) MCSs that are truncated when expanding the modules at Step 4 (See Section 2.2)

(c)F n Eq.(7) and
@TR~R’-R =

(e) NA: Not applicable since the number is beyond the size of the 32 bit integer variable

R’ =P,

F}s_a
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