KAERI/TR-2820/2004

가 가

Truncation Uncertainty of the Fault Tree Analysis in the Probabilistic Safety Assessment of Nuclear Power Plants

2004. 11. 17

:		
:	(가)
:	(가)

(probabilistic safety assessment, PSA)
. (truncation limit)
(cut sets)
(truncated probability)
FTREX (Fault Tree Reliability Evaluation eXpert) 7,
Benchmark .
. Benchmark
LBTP(lower bound of truncated probability) ATP(approximate truncation probability)
(top
probability) .
71

(truncation error)

.

가

.

,

event

Summary

The fault tree quantification uncertainty from the truncation error has been of great concern for the reliability evaluation of large fault trees in the probabilistic safety assessment (PSA) of nuclear plants. The truncation limit is used to truncate cut sets of the gates when quantifying the fault trees. This report presents measures to estimate the probability of the truncated cut sets, that is, the amount of truncation error. The functions to calculate the measures are programmed into the new fault tree quantifier FTREX (Fault Tree Reliability Evaluation eXpert) and a Benchmark test was performed to demonstrate the efficiency of the measures.

The measures presented in this study are calculated by a single quantification of the fault tree with the assigned truncation limit. As demonstrated in the Benchmark test, lower bound of truncated probability (LBTP) and approximate truncation probability (ATP) are efficient estimators of the truncated probability. The truncation limit could be determined or validated by suppressing the measures to be less than the assigned upper limit. The truncation limit should be lowered until the truncation error is less than the assigned upper limit. Thus, the measures could be used as an acceptability of the fault tree quantification results. Furthermore, the developed measures are easily implemented into the existing fault tree solvers by adding a few subroutines to the source code.

1	
1	
2	BINARY DECISION DIAGRAM
3	
2	
1	
2	
3	
4	
3	
4	
	25

1.	
2.	
3.	
4.	21
5.	
6.	

1.	3/4 NPP	•••••	
2.	3/4 NPP	Benchmark	

:

:

C_i	i	(minimal cut set, MCS)
$C_i^{\scriptscriptstyle k}$		1×10^{-k}
$\overline{C}_{i}{}^{\scriptscriptstyle k}$		1×10^{-k}
$\hat{C}_i^{\scriptscriptstyle k}$		1×10^{-k}
P_k		$C_i^{\ k}$, $Pig(C_1^k+C_2^k+ig)$
$\overline{P_k}$		$\overline{C}_{i}{}^{\scriptscriptstyle k}$, $P\Big(\overline{C}_{1}{}^{\scriptscriptstyle k}+\overline{C}_{2}{}^{\scriptscriptstyle k}+\Big)$
\hat{P}_k		$\hat{C}_{i}^{_{k}}$, $P\!\left(\hat{C}_{1}^{k}+\hat{C}_{2}^{k}+ ight)$
ΔP_k		(top event probabilities) , $P_k - P_{k-1}$
P_T		
P_T^S		
P_T^M		, minimal cut set upper bound (MCUB)
P_T^U	P_T	P_k , \overline{P}_k , \hat{P}_k
TP_k		$\overline{P_k}$ $\hat{P_k}$
$LBTP_k$		$\overline{P_k}$
ATP_k		$\overline{P_k}$ ΔP_k
TU_k		
$LBTU_k$	$LBTP_k$	
ATU_k	ATP_k	
4		

1

Coherent [3]

n

inclusion exclusion

 P_T

expansion (IEE)[3]

,

.

$$P_{T} = P(C_{1} + ... + C_{n})$$

$$= \sum_{i=1}^{n} P(C_{i}) - \sum_{1 \le i \le j \le n} P(C_{i}C_{j}) + \sum_{1 \le i \le j \le k \le n} P(C_{i}C_{j}C_{k}) - ... + (-1)^{n-1} P(C_{1}C_{2}...C_{n}) \cdot {}^{(1)}$$

$$\sum_{i=1}^{n} P(C_{i}) - \sum_{1 \le k \le j \le n} P(C_{i}C_{j}) \le P_{T} \le \sum_{i=1}^{n} P(C_{i}) \cdot ... (2)$$

$$Z^{\dagger} \qquad (1) \qquad Z^{\dagger}$$
(rare event approximation) minimal cut set upper bound (1)
$$P_{T} \le P_{T}^{S} = \sum_{i=1}^{n} P(C_{i}) \cdot ... (3)$$

$$P_{T} \le P_{T}^{S} = \sum_{i=1}^{n} P(C_{i}) \cdot ... (3)$$

$$P_{T} \le P_{T}^{M} = 1 - \prod_{i=1}^{n} (1 - P(C_{i})) \cdot ... (4)$$
PSA (4) minimal cut set upper bound $P_{T}^{M} \qquad [8].$

 $P_T \leq P_T^M \leq P_T^S$. (5)

.

2

 P_T^M

2 3 bottom-

가

$$P_T \leq P_T^U = P_k + \overline{P_k} + \hat{P_k} \tag{6}$$

$$P_{k} = P\left(C_{1}^{k} + C_{2}^{k} + \dots\right)$$
(7)

$$\overline{P}_{k} = P\left(\overline{C}_{1}^{k} + \overline{C}_{2}^{k} + \dots\right)$$
(8)

$$\hat{P}_{k} = P\left(\hat{C}_{1}^{k} + \hat{C}_{2}^{k} + \dots\right).$$
(9)

 $7 \downarrow 1 \times 10^{-k}$ 24.(truncated probability, TP)

$$TP_{k} = \overline{P}_{k} + \hat{P}_{k} . \tag{10}$$

$$TP \qquad . \qquad \overline{C}_{i}^{k} \qquad \overline{P}_{k}$$

$$\hat{C}_{i}^{k} \qquad \hat{P}_{k} \qquad . \qquad \text{TP}$$

$$. \quad , \quad \lim_{k \to \infty} TP_{k} = 0 \qquad .$$

$$P_{k} + ATP_{k} \qquad P_{k+1} \qquad .$$

$$concave \qquad convex \qquad 7^{1}$$

$$P_{k+1} \leq P_{k} + \Delta P_{k} \ (concave \qquad) \qquad (13)$$

$$P_{k+1} \geq P_{k} + \Delta P_{k} \ (convex \qquad). \qquad (14)$$

$$P_{k} + \Delta P_{k} \qquad P_{k+1} \qquad . P_{k} + ATP_{k} \qquad P_{k+1}$$

$$P_{k} + ATP_{k} \qquad concave \qquad P_{k+1} \qquad .$$

concave

$$LBTP_{k} \leq TP_{k} \leq ATP_{k} \text{ (concave)}$$

$$P_{k} + LBTP_{k} \quad P_{k} + ATP_{k} \quad P_{T}^{U}$$

$$(15)$$

가

$$\lim_{k \to \infty} (P_k + LBTP_k) = P_T^U \text{ and } \lim_{k \to \infty} (P_k + ATP_k) = P_T^U$$
(16)

LBTP ATP

(

$$\lim_{k \to \infty} LBTP_k = 0 \quad \text{and} \quad \lim_{k \to \infty} ATP_k = 0.$$
 (17)

(11) (12) LBTP ATP
$$1 \times 10^{-k}$$

. 2.2 1

Uncertainty), LBTU (Lower Bound of Truncation Uncertainty), ATU (Approximate Truncation Uncertainty) 가

$$TU_{k} = \frac{TP_{k}}{P_{T}^{U}} = \frac{TP_{k}}{P_{k} + TP_{k}}$$
(18)

$$LBTU_{k} = \frac{LBTP_{k}}{P_{k} + LBTP_{k}}$$
(19)

$$ATU_{k} = \frac{ATP_{k}}{P_{k} + ATP_{k}} .$$
⁽²⁰⁾

$$(19) (20) \qquad P_T^U 2^{\dagger} \qquad , \qquad P_k + LBTP_k$$
$$LBTU_k \qquad ATU_k$$

2, , FTREX[15] 3/4 [18] . 3/4 [19] 1 49 3,477 2,501 7t .

1. 3/4 NPP

	Initiator group	Number of initiators
	Large LOCA	6 (4 for cold legs and 2 for hot legs)
	Medium LOCA	6 (4 for cold legs and 2 for hot legs)
LOCA (a)	Small LOCA	1
	Reactor vessel rupture	1
	Steam generator tube rupture	2 (for steam generators 1 and 2)
	Interfacing system LOCA	1
	Large secondary side breaks	2 (for steam generators 1 and 2)
	Loss of main feedwater transient	1
	Loss of condenser vacuum transient	1
	Loss of offsite power	
Transients	Station blackout (b)	NA (d)
	General transient	23
	Loss of component cooling water train	1
	Loss of 4.16KV AC bus	1
	Loss of 125V DC bus	2 (for 125V DC bus A and B)
	ATWS (c)	NA

(a) loss of cooland accident

(b) loss of offsite power * loss of AC power

(c) initiators transferred to anticipated transient without scram (ATWS) * failure of reactor trip

(d) NA: Not applicable

5

2, 4,

2	6	2		2
,			P_T^U	

2. 3/4 NPP Benchmark

k	Truncation limit 1.0E-k	MCSs (a)	MCSs (b)	P_{k}/P_{16} (c) %	$(P_{k} + LBTP_{k})/(P_{16} %)$	$(P_k + ATP_k)/P_{16} \%$	TP_k (d) in Eq. (10)	LBTP $_k$ in Eq. (11)	ATP_{k} in Eq. (12)	<i>TU</i> _{<i>k</i>} % in Eq. (18)	<i>LBTU</i> ^{<i>k</i>} % in Eq. (19)	<i>ATU</i> _{<i>k</i>} % in Eq. (20)	Run time (seconds)
8	1.0E-08	257	80,965	76.76	83.08	103.26	5.100E-06	1.389E-06	5.818E-06	23.20	7.61	25.67	0.42
9	1.0E-09	1,205	270,306	89.33	93.20	105.78	2.340E-06	8.497E-07	3.611E-06	10.70	4.15	15.55	0.56
10	1.0E-10	5,842	1,840,383	95.45	97.72	103.84	9.990E-07	4.980E-07	1.841E-06	4.55	2.32	8.08	0.88
11	1.0E-11	27,227	7,872,462	98.44	99.36	102.35	3.420E-07	2.014E-07	8.583E-07	1.56	0.92	3.82	1.69
12	1.0E-12	99,922	25,603,438	99.49	99.83	100.88	1.110E-07	7.289E-08	3.037E-07	0.51	0.33	1.37	3.59
13	1.0E-13	342,488	86,589,221	99.85	99.96	100.31	3.400E-08	2.487E-08	1.020E-07	0.16	0.11	0.46	8.03
14	1.0E-14	1,103,758	320,228,727	99.96	99.99	100.10	9.000E-09	8.041E-09	3.241E-08	0.04	0.04	0.15	19.00
15	1.0E-15	3,436,562	964,350,847	99.99	100.00	100.04	2.000E-09	2.455E-09	9.936E-09	0.01	0.01	0.05	43.81
16	1.0E-16	10,203,408	NA (e)	100.00	100.00	100.01	0.000E+00	7.188E-10	2.889E-09	0.00	0.00	0.01	149.41

(a) MCSs that have probabilities larger than the truncation limit (See Section 2.2)

(b) MCSs that are truncated when expanding the modules at Step 4 (See Section 2.2)

(c) P_k in Eq.(7) and $P_T^U \approx P_{16}$

$$(d)TP_k \approx P_T^U - P_k \approx P_{16} - P_k$$

(e) NA: Not applicable since the number is beyond the size of the 32 bit integer variable

5 6 , 6 가 RAW가 가 . RAW FV SSC .

 LBTU ATU7
 .

 , 2
 LBTU ATU7

 1×10^{-13} .

 LBTP, ATP, LBTU,
 ATU

가

가

4

,

- Vesely WE, Goldberg FF, Roberts NH, and Haasl DF, Fault Tree Handbook, NUREG-0492, U.S. Nuclear Regulatory Commission, Washington, DC, 1981.
- [2] Vesely W, Dugan J, Fragola J, Minarick J, Railsback J, Fault Tree Handbook with Aerospace Applications, National Aeronautics and Space Administration, 2002.
- [3] Barlow RE and Proschan F, Statistical Theory of Reliability and Life Testing, Holt, Rinehart and Winston, Inc., 1975.
- [4] Cheok MC, Parry GW, and Sherry RR, "Use of importance measures in risk-informed regulatory applications," Reliability Engineering and System Safety, Vol. 60, pp.213-226, 1998.
- [5] Fleming KN, "Issues and Recommendations for Advancement of PRA Technology in Risk-Informed Decision Making," U.S. Nuclear Regulatory Commission, NUREG/CR-6813, 2003.
- [6] Ĉepin M, "Analysis of Truncation Limit in Probabilistic Safety Assessment," Reliability Engineering and System Safety, 2004 (to appear in 2004).
- [7] Nuclear Energy Institute Risk-based Applications Task Force, "Probabilistic Risk Assessment Peer Review Process Guidance," 2000.
- [8] ASME, "Standard for Probabilistic Risk Assessment for Nuclear Power Plant Applications," ASME RS-S-2002, 2002.
- [9] Modarres M and Dezfuli H. "A truncation methodology for evaluating large fault trees," IEEE Transactions on Reliability, Vol. 33(4), pp.325-328, 1984.
- [10] Brown KS, "Evaluating fault trees with repeated events, IEEE Transactions on Reliability, Vol. 39(2), pp.226-235, 1990.
- [11] Contini S, "A new hybrid method for fault tree analysis," Reliability Engineering and System Safety, Vol. 49, pp.13-21, 1995.
- [12] Coudert O and Madre JC, "Implicit and Incremental Computation of Primes and Essential Primes of Boolean Functions," Proceedings of the 29th ACM/IEEE Design Automation Conference, DAC'92, June 1992.
- [13] Rauzy A, "New Algorithms for Fault Trees Analysis," Reliability Engineering and System Safety, 40, pp. 203-211, 1993.

- [14] Jung WS, Han SH, Ha JJ, "A Fast BDD Algorithm for Large Coherent Fault Trees Analysis," Reliability Engineering and System Safety, Vol. 83, pp. 369–374, 2004.
- [15] Jung WS, Han SH, Ha JJ, "Development of an Efficient BDD Algorithm to Solve Large Fault Trees," Proceedings of the 7th International Conference on Probabilistic Safety Assessment and Management, June, Berlin, Germany, 2004.
- [16] Niemelä I, "On Simplification of Large Fault Trees," Reliability Engineering and System Safety, 44, pp. 135-138, 1994.
- [17] Reay KA and Andrews JD, "A Fault Tree Analysis Strategy Using Binary Decision Diagrams," Reliability Engineering and System Safety, 78, pp. 45-56, 2002.
- [18] Korea Electric Power Corporation. Ulchin Units 3&4 Final Probabilistic Safety Assessment Report, 1997.
- [19] Kim SH, Jang SC, Kim KY, Han SH, "Development of Full Power Risk Monitoring System for UCN 3, 4 Nuclear Power Plant", Proceedings ESREL'03, Maastricht, Netherlands, 2003.

						INIS	
KAERI/TR-2	2820/2004						
/			가	가		I	
		(가)	2.0-0			
		(가)	1			
			1				2004. 11
	p.28		(0),	()			27Cm
			/				
	(0),	(),_	(/	
		\land	Y		/		
	(true pation			/			
	(truncation (prob	error) abilistic safety a	assessment,	PSA)			
(trunc	ation limit)			1			(cut sets)
				(truncated pro	bability)		
		FTREX (Faul	lt Tree Reli	ability Evaluat	tion eXpert)		가 ,
		Benc	hmark				
		Benchmark			, LBTP(lower bound	d of truncated
probability)	ATP(approx	imate truncation probation probation	robability) ability)				
	(top event proof	ionity)		-		
							가
				가			
		3	,				

BIBLIOGRAPHIC INFORMATION SHEET										
Barfamina One Denart No							INIS Subject			
Performing Org. Report No.			Sponsoring Org. I	Report No.	Standard Ro	eport No.	Code			
KAERI/TR-282	0/200)4								
Ti41 - (91-4i41 -			Truncation Uncer	tainty of the	Fault Tree A	nalysis in th	e Probabi	listic Safety		
The Subtrie			Assessment of Nuclear Power Plants							
Main Author and	d Dep	partment	Jung, Woo Sik (Integrated Safety Assessment Division)							
Researcher and	Depa	rtment	Yang, Joon-Eon (Integrated Safety Assessment Division)							
Publication Plac	e	Daejeon	Publisher	KA	KAERI Public		on Date	2004. 11		
Pages		p.28	Fig. & Ta	b. Yes	Yes(O), No()			27Cm		
Note		1			F					
Classified	Classified Open (O), Restricted (), _Class					e	Technical Report			
Sponsoring Org.			/	-	Contract No).				
Abstract			11							

The fault tree quantification uncertainty from the truncation error has been of great concern for the reliability evaluation of large fault trees in the probabilistic safety analysis (PSA) of nuclear plants. The truncation limit is used to truncate cut sets of the gates when quantifying the fault trees. This report presents measures to estimate the probability of the truncated cut sets, that is, the amount of truncation error. The functions to calculate the measures are programmed into the new fault tree quantifier FTREX (Fault Tree Reliability Evaluation eXpert) and a Benchmark test was performed to demonstrate the efficiency of the measures.

The measures presented in this study are calculated by a single quantification of the fault tree with the assigned truncation limit. As demonstrated in the Benchmark test, lower bound of truncated probability (LBTP) and approximate truncation probability (ATP) are efficient estimators of the truncated probability. The truncation limit could be determined or validated by suppressing the measures to be less than the assigned upper limit. The truncation limit should be lowered until the truncation error is less than the assigned upper limit. Thus, the measures could be used as an acceptability of the fault tree quantification results. Furthermore, the developed measures are easily implemented into the existing fault tree solvers by adding a few subroutines to the source code.

Subject Keywords

Truncation Error, Truncated Probability, Fault Tree Analysis