

Automated Suppression of the Initial Transient in Monte Carlo Calculations based on Stationarity Detection using the Brownian Bridge Theory

Yann RICHET" - Olivier JACQUET' - Xavier BAY²

Institut de Radioprotection et de Saretg Nuclgaire, BP 17, 92262 Fontenay-Aux-Roses Cedex, France 'Ecole Nationale Sup&ieure des Mines de Saint Etienne, 158, cours Fauriel, 42023 Saint-Etienne, France

The accuracy of a criticality Monte Carlo (MC) calculation requires the convergence of the k-effective series. Once the convergence is reached, the estimation of the k-effective eigenvalue must exclude the initial transient of the k-effective series. The present paper deals with a post-processing algorithm to suppress the initial transient of a criticality MC calculation, using the Brownian Bridge theory.

KEYWORDS: Monte Carlo calculation, Initial Transient, Stationarity Detection, Brownian Bridge.

induces a bias in the k-effective estimate. A "positive" series $\{k(i)\}_{1 \le i \le N}$ is obviously a consequence of the transient corresponds to an initial overestimation and source distribution (or eigenvector) convergence induces a positive bias, whereas a "negative" transient process from the initial guess to the fundamental negative bias. in a series of scalar values than in a series of vectors,

Source Convergence Expert Group¹⁾ is designed to estimation of the k-effective eigenvalue, a first produce a transient in the k-effective series due to a approach to suppress the initial transient - using the bad initialization of the sources distribution (Fig. 1). Brownian bridge²⁾ theory – focused on the stationarity

-
-

uncertainty of 0.00240 is not sufficient to take into sampled after the transient.⁵⁾ account this bias. The post-processing algorithms Keeping these points in mind, the stationarity detailed in this paper are designed to suppress this detection can be based on the cycle k-effective series

1. Introduction 2. Scalar series used to detect the initial transient

The initial transient of a criticality MC calculation The initial transient observed in the k-effective source distribution (or eigenvector) convergence corresponds to an initial underestimation and induces a mode. Since it is much easier to study the convergence For instance the fourth benchmark of the NEA and because the cycle k-effective series is used for the Estimation of the k-effective ($\sigma_{kef} \approx 0.00240$): detection of the cycle k-effective series.³⁾

1.10327 without transient suppression **However the apparent convergence of k-effective** 1.11682 with an empirical transient suppression of series does not strictly imply the convergence of the 170 observations source distribution. Recently, a stationarity diagnostic 15 **keff(i) based** on the Shannon entropy of source distribution, **⁴**using the two-sample F test, was proposed **.4** An 13 **advantage of this method lies in the use of a more** $\frac{1}{2}$ $\frac{1}{2}$ *L* k-effective.

Nevertheless the stationarity of Shannon entropy 1.0 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ does not rigorously imply sources distribution stationarity and moreover stationarity of sources distribution does not guarantee the convergence α .7 \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow \longrightarrow towards the fundamental mode. Finally, it should be $\overline{0.6}$ noticed that the transient suppression aims only at $\overline{0.5}$ obtaining a stationary series and cannot guarantee the

As a consequence, it is necessary to run a sufficient convergence benchmark 4 number of generations to ensure that the MC powering algorithm has converged to the true eigenvalue, or to This example shows a bias of more than 0.01300 in use an improved powering method which guarantees the k-effective estimate, and the k-effective MC that the most reactive parts of the system are correctly

kind of transient and the induced k-effective bias. or on the cycle Shannon entropy series. So, let us define a series $x = (x(i))_{1 \le i \le N}$ of N observations standing for either a k-effective series or a Shannon entropy series resulting from a MC calculation.

 $^{\circ}$ Corresponding author, Tel. +33-1-58-35-88-84, Fax. +33-1-46-57-29-98, E-mail: yann.richet@irsn.fr

3. Series and bridge processes

The underlying idea of the stationarity detection is to consider a process revealing the stationarity or nonstationarity of the series.

Let us consider $\bar{x}(j) = \frac{1}{j} \sum_{i=1}^{j} x(i)$.
Basically, when the series x is stationary, the series

 $\left\{j(\bar{x}(j)-\bar{x}(N))\right\}_{1\leq j\leq N}$ has small values and is centered around 0 (see Fig. 6). On the contrary, in the case of a negative (resp. positive) initial bias in the series x, the series $\{j(\bar{x}(j)-\bar{x}(N))\}$ is not centered around 0 and has a negative (resp. positive) peak (see Fig. 7).

Let us introduce the "series bridge" of x :

•
$$
BS_x\left(\frac{j}{N}\right) = \frac{1}{\tau\sqrt{N}}j(\bar{x}(j)-\bar{x}(N))
$$

for
$$
1 \le j \le N
$$
, with $\tau = \lim_{N \to \infty} N \text{Var}(x(N))$

$$
\bullet \qquad BS_{x}(0)=0
$$

Fig. 6 Bridges of a stationary series

In order to analyze the stationarity of the x series, G. Vassilacopoulos⁶⁾ suggests to work with the 'rank s series" of x in place of the x series. This ranks series is defined as $(R_x(i))_{1 \le i \le N}$ where $R_x(i)$ is the rank of $x(i)$, i.e. the ascending sort order of $x(i)$ among all x values. It can be proved that the $\{R_x(i)\}\$ process is stationary if the x series is stationary.

In the same way that $\bar{x}(j)$ let us define $\overline{R}_x(j) = \frac{1}{j} \sum_{i=1}^{j} R_x(i)$. Another 'bridge'' process can thus be based on the 'ranks series'' such that:

 $\left(\cdot \right)$

$$
BR_x\left(\frac{J}{N}\right) = \frac{1}{\sigma\sqrt{N}}j(\overline{R}_x(j) - \overline{R}_x(N)),
$$

for $1 \le i \le N$, where $\sigma = \frac{1}{\sigma\sqrt{N(N+1)}}$.

is the $2\sqrt{3}$ sample standard deviation of the R, series.

 $BR(0)=0$.

Fig. 3 to 7 show respectively a stationary series, its \cdot X. Bay shows that $S_{r_{min}}$ and $S_{r_{max}}$ both follow a ranks series and its bridges and a non-stationary series, distribution having this cumulative density:
its ranks series and its bridges. Note that the bridges πr (1+ $r = \pi$) its ranks series and its bridges. Note that the bridges ranges are very low for stationary series and reach high values in case of non stationary series.

all the bridges processes equal 0 when $t = 0$ and $t = 1$, only detect negative transients (for instance Sv_{min} ,

Brownian bridge, when the x series is weakly independent (in the sense of phi-mixing²⁾) – and as N such statistics in our paper:

4. Characterization of stationarity *Ss(BS,)=max (Ss,,,(BS,), Ss_(BS,)l*

some characteristic values (called statistics and

in literature, B. being *BS, or BR.:*

$$
Sv_{min}(B_x) = min(B_x), \quad Ss_{min}(B_x) = \frac{B_x(t_{min})^2}{t_{min}(1 - t_{min})},
$$

\n
$$
Sv_{max}(B_x) = max(B_x), \quad Ss_{max}(B_x) = \frac{B_x(t_{max})^2}{t_{max}(1 - t_{max})}
$$

But other characteristic values of the bridges can

$$
Sr_{min}(B_x) = \frac{-B_x(t_{min})}{B_x(t_{max})}, \quad Sr_{max}(B_x) = \frac{-B_x(t_{max})}{B_x(t_{min})},
$$

\n
$$
Ssr_{min}(B_x) = \frac{Ss_{min}(B_x)}{Ss_{max}(B_x)}, \quad Ssr_{max}(B_x) = \frac{Ss_{max}(B_x)}{Ss_{min}(B_x)},
$$

\n
$$
min_{0 \le t \le 1} \left(\frac{B_x(t)^2}{t(1-t)} \right), \quad Sad(B_x) = \sum_{j=0}^N \frac{B_x \left(\frac{j}{N} \right)^2}{\frac{j}{N} \left(1 - \frac{j}{N} \right)}
$$

and $Sfc(B_x)=t_0$ where t_0 is the first value strictly distributions versus N and p has to be achieved.
However an empirical estimation of each statistic greater than $\frac{1}{N}$ where $B_x(t_0 - \frac{1}{N}) \cdot B_x(t_0) \le 0$.

-
- a X_3^2 distribution⁷ a better model than a simple linear interpolation.

$$
F_R(r) = 1 - \frac{n!}{(1+r)^2} \left(\frac{1+r}{\pi} - \cot\left(\frac{n}{1+r}\right) \right)
$$

All the statistics (denoted as S) designed to The terminology 'bridge" comes from the fact that characterize the minimum value of the bridges can thus the curves look like bridges between the points $S_{s_{min}}$, $S_{r_{min}}$). In the same way, all the statistics (denoted $(0,0)$ and $(1,0)$ (see Fig. 6, 7). as $S⁺$ designed to characterize the maximum value of the bridges can only detect positive transients (for It can be proved that bridges processes tend to the instance Sv_{max} , S_{Smax} , S_{max}). A new kind of statistic symmetrical statistics S and S^+ can be dependent - i.e. when two $x(i)$ observations widely defined as $max(S, S[*])$. This kind of statistic detects separated from each other in the series are almost both positive and negative transients. We only tested

tends to infinity.
 Schruben statistic based on the series bridge⁷⁾:
 $S_s(BS_x) = max\{S_{s_{min}}(BS_x), S_{s_{max}}(BS_x)\}\$

The bridges processes defined previously can be This statistic is correctly estimated only if τ^2 is well
ful to determine if a series is stationary or not known, but τ^2 estimation is very influenced by the non useful to determine if a series is stationary or not. Known, but τ estimation is very influenced by the non
Indeed it is possible to determine the distribution of stationarity of the series. One way suggested to Indeed it is possible to determine the distribution of stationarity of the series. One way suggested to some characteristic values (called statistics and improve the τ^2 estimation accuracy is to estimate τ^2 denoted as *S*) of the bridges of stationary series. just on the last half of the series. The two following Let us give some examples of such statistics used statistics avoid the estimation of this parameter.

- Supremum ratios statistic based on the series b ridge: $Sr(BS_x)=max{Sr_{min}(BS_x)}$, $Sr_{max}(BS_x)$
- Vassilacopoulos statistic based on the ranks *bridge6)*: $Sv(BR_x) = max\{Sv_{min}(BR_x),Sv_{max}(BR_x)\}$

where t_{min} (resp. t_{max}) is the value at which the Nevertheless all the statistics distributions are minimum (resp. maximum) of $B_x(t)$ occurs.
But other characteristic values of the bridges can established for theoreti be mentioned:

k-effective or Shannon entropy series are all the more far from weakly dependent processes (see section 3) as the length of the series N is low. In fact the series resulting of MC calculations have various finite lengths and are somewhat autocorrelated. In this paper, the two main parameters considered as influencing the statistics and their distributions are the length N and *the first autocorrelation coefficient p of the series (see Fig. 8, 9). The determination of theoretical statistics* distributions versus N and ρ has to be achieved.

distribution $\Delta_{N,\rho}$ is possible by estimating this statistic for a great number of series with the same In fact, the characterizations of minimum and values of N and ρ . For the purpose of our study, a plan maximum values of bridges are two symmetrical point of experiments has been defined to evaluate of views. Thus, the distributions based either on distributions of the *Sr(BS,), Ss(BS.), Sv(BR.)* statistics minimum or maximum are identical. $f(x) = \begin{cases} \n\text{for } N \in \{25, 100, 500, 1000\} \text{ and } \rho \in [0.0, 0.1, 0.2] \n\end{cases}$ Note that when *B_x* is a Brownian bridge (i.e. bridge Practically, when an estimation of $\Delta_{N,\rho}$ has to be of a weakly dependent series): $\frac{1}{2}$ a Blowman orage (i.e. orage performed with *N* or ρ not included in the previous G. Vassilacopoulos shows that Sv_{min} and Sv_{max} both plan of experiments, the distributions of the statistics follow a Kolmogorov-Smimov distribution⁶⁾ are linearly interpolated. This interpolation could be L. Schruben shows that *Ss_{min}* and *Ss_{max}* both follow improved using a more dense plan of experiments and

a bridge *(BS_x* or *BR_x*) points out the non stationarity of $x(i) = x_x(i) + T(i)$, where: this series. Thus, a simple statistical test can be based \cdot x_s is a stationary Gaussian autoregressive process:

- - series of length N and first autocorrelation series equals $\tau = \sigma_{\epsilon}/(1-\rho)$. coefficient p, \overline{P} **T** is a transient function defined as:

 α being the level of significance of the test (for instance 10%),

the stationarity hypothesis is accepted if:

$$
cdf_{\Delta} (S(B)) < 1-\alpha
$$

and stationarity hypothesis acceptance region Fig. 11 Series model

Let us define a series x *of* N observations from which we want to remove the initial transient. Tests are performed at first on the entire series. If the x series is not considered as stationary, the series is truncated (of a certain number of initial observations) and the tests are performed again. This iterative procedure is repeated as long as the test hypothesis is rejected and the number of remaining observations is $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ statistically sufficient.⁸) Another way to truncate the **Fig. 8 Cumulative density** functions (cdf) series at each iteration could be to suppress $n = t.N$ of $S_{s_{min}}$ statistic for N = {50, 500, 5000}, $\rho = 0.0$ observations, t being the value $(t_{min}$ or t_{max}) where the considered bridge $B_x(t)$ reaches its supremum.

Of course, the efficiency of this iterative procedure depends on the statistic test performed at each

stationarity tests (not only based on Brownian bridge theory) are implemented in the OPOSSUM⁹ postprocessing tool of the MC code MORET 4¹⁰.

for $p = \{0.0, 0.2, 0.4\}$, $N = 1000$ methodology and the comparison of underlying stationarily tests are performed on a plan of experiments of artificial and although realistic series.

The series are modeled (see Fig. 11) as the sum of

Considering a series x, an extreme statistic value of a stationary series and of a transient:

on each statistic previously defined: $x_{i}(i+1) = \rho x_{i}(i) + \epsilon (i+1)$, where $(\epsilon(i))_{1 \le i \le N}$ are
x S being the statistic value obtained on the x series independent Gaussian random variables of mean 0 of length N and first autocorrelation coefficient p,
 $\Delta_{N,\rho}$ being the theoretical distribution of S for

the series bridge definition in section 3) of the x the series bridge definition in section 3) of the x_s 도시용 가격

ypothesis is accepted if:
\n
$$
T(i) = \begin{vmatrix} A, & \text{for } 1 \le i \le a \\ A \cdot (b-i)/(b-a), & \text{for } a \le i \le b \\ 0, & \text{for } b \le i \le N \end{vmatrix}
$$

The series are chosen to reveal different transients. where $cdf_{\Delta_{\lambda,r}}$ is the cumulative density function of Δ . The series are chosen to reveal different ranges while the distribution (see Fig. 10). stationarity tests have the same level of significance

The parameters defining the series are (see Fig. 11): $N \in \{100, 500, 1000\}$,

- $\frac{a}{N} \in \{0.0, 0.25, 0.5, 0.75\},\$
- $\frac{b}{N} \in [0.25, 0.5, 0.75]$ (with $b \ge a$),
- $\tau \in \{0.01, 0.02, 0.03\}$,
- $\rho \in [0.0, 0.1, 0.2]$,
- $\overline{T} \in \{-0.00500, -0.01000, -0.02000\}$,

where $\overline{T} = \frac{1}{N} \sum_{i=1}^{N} T(i) = A \cdot \frac{a+b-1}{2N}$ is the mean of the transient (equal to the induced bias).

The efficiency indicators used to compare the tests are $\frac{T_{n,N}}{\overline{T}}$ and $\frac{n}{b}$ where *n* is the number of observations finally truncated and
 $\overline{T}_{n,N} = \frac{1}{N-n+1} \sum_{i=n}^{N} T(i)$ is the remaining bias. observations Basically, $\frac{\overline{T_{n,N}}}{\overline{T}}$ is the remaining bias over the initial bias and $\frac{n}{b}$ is the truncation length over the transient

length.

For each series parameters set, the truncation is performed on 1000 series to obtain a statistical distribution of the two efficiency indicators. Finally, these distributions obtained with each stationarity test are compared.

Note that Schruben test is performed with an exact value of τ whereas it should be estimated. In the same way, all the tests are performed with an exact value of o whereas it should be estimated.

Firstly, regarding efficiency indicators means distributions (see Fig. 12, 13), it appears that Schruben, supremum ratios and Vassilacopoulos tests give good results. However, it seems that Schruben test generally tends to lightly more overestimate the transient length than the two other tests, maybe due to a bad estimation of empirical statistic distributions which alters the levels of significance.

Fig. 13 $\frac{n}{b}$ (truncation length over transient length)

distributions for Schruben, supremum ratios and Vassilacopoulos based truncations

Secondly an increasing series length seems to improve the efficiency of the tests.

Thirdly, the supremum ratios test becomes inefficient when the transient length increases and when the transient amplitude (A) is comparable to the series dispersion (τ) . On the contrary, the Vassilacopoulos test is the most robust in this extreme case. For instance, the following series parameters:

$$
N=1000 \; , \; \frac{a}{N}=0.5 \; , \; \frac{b}{N}=0.75 \; , \; \tau=0.02 \; , \; \rho=0.2 \; ,
$$

 \overline{T} = -0.00500 give a transient difficult to identify with the naked eye (see Fig. 16) which although biases the series mean estimation of -0.00500. The number of observations suppressed and the remaining bias rate follow these distributions (Fig. 14, 15):

Test used	n	$^{\prime}$ n.N
Schruben	$nl = 511$	-0.00186
Supremum ratios	$n2 = 302$	-0.00370
Vassilacopoulos	$n3=631$	-0.00061

truncation whereas an empirical truncation would have Length Control in the Presence of an Initial

This study on bridges based statistical tests shows CRISTAL VI", ICNC 2003. good results in terms of transient bias gains, and even 10) O. Jacquet, J. Miss, G. Courtois, 'MO RET: version

This preliminary study on automated transient suppression allowed to validate the iterative truncation methodology and some stationarity tests. However, it is necessary to perform an exhaustive study of all statistics detailed in section 4 (on the series but also on the ranks series). For instance, a Schruben statistic performed on the rank series may combine the efficiency of Schruben and Vassilacopoulos tests that we noticed thanks to the plan of experiments. It will also be necessary to build a more efficient model for statistics distributions than the simple linear interpolation used.

Finally this plan of experiments and a set of practical cases could be used to compare and validate all these improvements.

References

- 1) R. Blomquist et al., 'OECD/NEA Source Convergence Benchmark Program: Overview and
- 2) P. Billingsley, "Convergence of probability measures", John Wiley & Sons, 1968.
- 3) 0. Jacquet et al., 'Ei genvalue uncertainty evaluation in MC calculations, using time series 0.94 **in the intervention of the set of the Methodologies**", in A. Kling et al. (Eds), Advanced 0.92 ml n2 n1 n3 Monte Carlo for Radiation Physics, Particle ⁰ *0.0 1* **0** 20 **>00 400 500.0 N00.0** *700 0* **100 0 ll)0 V 1000** 0Transport Simulation and Applications, Springer-**Fig. 16** Series from the plan of experiments with Verlag, Berlin Heidelberg, 2001.
- $N=1000$, $\frac{a}{N}=0.5$, $\frac{b}{N}=0.75$, $\tau=0.02$, $\rho=0.2$, ⁴) T. Ueki, F.B. Brown, 'Stationarity Diagnostic Using Shannon Entropy in Monte Carlo Criticality Using Shannon Entropy in Monte Carlo Criticality $\overline{T} = -0.00500$, leading to a -0.00500 bias on the Calculation I: F test". ANS Winter Meeting, k-effective estimation Washington, Nov 2002.
- 5) J. Miss, 0. Jacquet, A. Nouri, 'Development and The following Table I gives the number of Comparison of Monte Carlo Techniques observations suppressed and the remaining bias for Implemented in the MORET 4 Code for the each test used with the automated truncation on the Calculation of Loosely Coupled Systems", in A.

Elian et al. (Eds.) Advanced Monte Carlo, for Kling et al. (Eds), Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation Table 1 Truncation and remaining bias and Applications, Springer-Verlag, Berlin Heidelberg, 2001.
6) G. Vassilacopoulo
	- 6) G. Vassilacopoulos, 'Tcs ting for Initialization Bias in Simulation Output". Simulation Councils (1989)
	- 7) L. Schruben, "Detecting Initialization Bias in Simulation Output". Operations Research, vol. 30, May-June 1982.
- This result confirms the efficiency of an automated 8) P. Heidelberger and P. Welch, 'Simulation Run probably give a bad result in terms of bias gains. Transient". Operations Research, vol. 31, Nov-Dec 1983.
- **8. Conclusion and prospects** 9) L. Heulers et al., "The Graphical User Interface for
- when transients are not visible to the naked eye. 4.B, a multigroup Monte Carlo criticality code",
This preliminary study on automated transient ICNC 2003.