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Automated Suppression of the Initial Transient in Monte Carlo Calculations
based on Stationarity Detection using the Brownian Bridge Theory
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The accuracy of a criticality Monte Carlo (MC) calculation requires the convergence of
the k-effective series. Once the convergence is reached, the estimation of the k-effective
eigenvalue must exclude the initial transient of the k-effective series. The present paper
deals with a post-processing algorithm to suppress the initial transient of a criticality MC
calculation, using the Brownian Bridge theory.
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1. Introduction 2. Scalar series used to detect the initial transient

The initial transient of a criticality MC calculation The initial transient observed in the k-effective
induces a bias in the k-effective estimate. A "positive" series [k(i)j,,,, is obviously a consequence of the
transient corresponds to an initial overestimation and source distribution (or eigenvector) convergence
induces a positive bias, whereas a "negative" transient process from the initial guess to the fundamental
corresponds to an initial underestimation and induces a mode. Since it is much easier to study the convergence
negative bias. in a series of scalar values than in a series of Vectors,

For instance the fourth benchmark of the NEA and because the cycle k-effective series is used for the
Source Convergence Expert Group') is designed to estimation of the k-effective eigenvalue a first
produce a transient in the k-effective series due to a approach to suppress the initial transient - using the
bad initialization of the sources distribution (Fig. 1). Brownian bridge2) theory - focused on the stationarity

Estimation of the k-effective ( o-kffAb0.00240 detection of the cycle k-effective series.')
* 1.10327 without transient suppression However the apparent convergence of k-effective
* 1. 1682 with an empirical transient suppression of series does not strictly imply the convergence of the

170 observations source distribution. Recently, a stationarity diagnostic
I kfft i based on the Shannon entropy of source distribution,

4 using the two-sample F test, was proposed .4 An
i 3 advantage of this method lies in the use of a more

2 representative scalar value of sources distribution than
L k-effective.

Nevertheless the stationarity of Shannon entropy
IA does not rigorously imply sources distribution

stationarity and moreover stationarity, of sources
distribution does not guarantee the convergence

o.7 towards the fundamental mode. Finally, it should be
0.6 noticed that the transient suppression aims only at
0 obtaining a stationary series and cannot guarantee the

0.1.) II)) 200 0 '30(�. 40 500.0 t00.0 700.0 !�00 100 100 0convergence of the sources distribution in any way.
Fig. I Cycle k-effective series from NEA Source As a consequence, it is necessary to run a sufficient

convergence benchmark 4 number of generations to ensure that the MC powering

algorithm has converged to the true eigenvalue, or to
This example shows a bias of more than 001300 in use an improved powering method which guarantees

the k-effective estimate, and the k-effective MC that the most reactive parts of the system are correctly
uncertainty of 000240 is not sufficient to take into sampled after the transient.5)
account this bias. The post-processing algorithms Keeping these points in mind, the stationarity
detailed in this paper are designed to suppress this detection can be based on the cycle k-effective series
kind of transient and the induced k-effective bias. or on the cycle Shannon entropy series. So, let us

define a series XX(011ici,;N of N observations
standing for either a k-effective series or a Shannon
entropy series resulting from a MC calculation.
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3. Series and bridge processes In order to analyze the stationarity of the x series,

'Me underlying idea of the stationarity detection is G. Vassilacopoulos" suggests to work with the '�ank 
to consider a process revealing the stationarity or non- series" of x in place of the x eries. This ranLs series is
stationarity of the series. defined as .R� W I 5i,5N where Rx(i) is the rank of x(i),

I i.e' the ascending sort order of x(i) among all x values.
Let us consider x (j) XW. it can be proved that the (R,(i)l process is stationary

if the x series is stationary.
Basically, when the series x is stationary, the series In the same way that Tr(j) let us define

[jWj)-T(N))),,,,,, has small values and is
centered around (see Fig. 6. On the contrary, in the R, R, M . Another 'bridge" process can
case of a negative (resp. positive) initial bias in the
series x, the series [j(3�(j)-x(N))j is not centered thus be based on the 'fan ks series" such that:

around and has a negative resp. positive) peak (see BR� j (R, W - R, W ) ,
Fig. 7. N FN

Let us introduce the "series bridge" of X: for t<j<N, where -,FNN+IJ is the

• BS� j � = I i ( () -. � (N)) iT3
N T FN sample standard deviation of the R. series.

for I<j<NWith T=Iim N Var CT N)) BR, 0)=0 

• BS,(O)= .
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Fig. 3 A stationary series Fig. 2 A non stationary series
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Fig. 5 Ranks of a stationary series Fig. 4 Ranks of a non stationary series

Fig. 6 Bridges of a stationary series Fig. 7 Bridges of a non stationary series
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Fig. 3 to 7 show respectively a stationary series, its - X. Bay shows that Srj. and Sr. both follow a
ranks series and its bridges and a non-stationary series, distribution having this cumulative density:

its ranks series and its bridges. Note that the bridges F,(,)= I - r I+r_ cot( - )�
ranges are very low for stationary series and reach (1+r)'� Tr I+r
high values in case of non stationary series.

All the statistics (denoted as S-) designed to
The terminology 'bridge" comes from the fact that characterize the minimum value of the bridges can

all the bridges processes equal when = and t = 1, only detect negative transients (for instance Sv.i. ,
thus the curves look like bridges between the points Ss.i., Sri.). In the same way, all the statistics (denoted
(0,O) and (1,O) (see Fig. 6 7 as ) designed to characterize the maximum value of

the bridges can only detect positive transients (for
It can be proved that bridges processes tend to the instance Sv- Ss-, Sr- ) A new kind of statistic

Brownian bridge, when the x series is weakly based on two symmetrical statistics and S' can be
dependent - i.e. when two xi) observations widely defined as maxtS-,S'J. This kind of statistic detects
separated from each other in the series are almost both positive and negative transients. We only tested
independent (in the sense of phi-mixing')) - and as N such statistics in our paper:
tends to infinity. Schruben statistic based on the series bridge):

4. Characterization of stationarity Ss(BS,)=max (Ss,,,(BS,), Ss_(BS,)l

The bridges processes defined previously can be This statistic is correctly estimated only if T' is well
useful to determine if a series is stationary or not. known, but festimation is very influenced by the non
Indeed it is possible to determine the distribution of stationarity of the series. One way suggested to
some characteristic values (called statistics and improve the T estimation accuracy is to estimate T'
denoted as S) of the bridges of stationary series. just on the last half of the series. The two following

Let us give some examples of such statistics used statistics avoid the estimation of this parameter.
in literature, B. being BS, or BR.:
Sv ,,(BJ=min(BJ B� (tif . Supremum ratios statistic based on the series

t.j (I - .,J bridge: Sr(BS,)=maxISr,,,(BS.),Sr_(BS,)I

Sv_(B.)�max(B.) Ss_(B�)= B. (t_)2 . Vassilacopoulos statistic based on the ranks
t- (I ) bridge6): Sv (BR.) = max I Sv .(BR.),Sv_(BR.)J

where t, (resp. t_ is the value at which the Nevertheless all the statistics distributions are
minimum (resp. maximum) of B,(1) occurs.

But other characteristic values of the bridges can established for theoretical Brownian bridges, and the
be mentioned: k-effective or Shannon entropy series are all the more

- Bx(tj.) - B,(t_) far from weakly dependent processes (see section 3 as
Sr (BJ = B,(t_) Sr-(B.)= Bx(t,,J the length of the series N is low. In fact the series

Ss.6,(BJ Ss. (B.) resulting of MC calculations have various finite
Ssr,., (B.) = Ss_(B.) Ssr_(Bx)= Ss,,,.(B.) lengths and are somewhat autocorrelated. In this paper,

2 the two main parameters considered as influencing the
B, j statistics and their distributions are the lngth N andN

mino!5,� Sad(B,)=Y the first autocorrelation coefficient p of the series (see
t(I-t) j-0 iL6 I - Fig. 8 9 The determination of theoretical statistics

N N
distributions versus N and p has to be achieved.

and Sfc(B.)=to where to is the first value strictly However an empirical estimation of each statistic
I I

greater than where B. (to - -) B� (to) < 0 distribution AN., is possible by estimating thisN N
statistic for a great number of series with the same

In fact, the characterizations of minimum and values of N and p. For the purpose of our study, a plan
maximum values of bridges are two symmetrical point of experiments has been defined to evaluate
of views. Thus, the distributions based either on distributions of the Sr(BS,), Ss(BS.), Sv(BR.) statistics
minimum or maximum are identical. for N E 25,100,500, 1 00 I and p E 0.0, 0. 1 02 

Note that when Bx is a Brownian bridge (i.e. bridge Practically, when an estimation of ,,, has to be
of a weakly dependent series): performed with N or p not included in the previous
• G. Vassilacopoulos shows that vi. and Sv. both plan of experiments, the distributions of the statistics

follow a Kolmogorov-Smimov distributiorfi) are linearly interpolated. This interpolation could be
• L. Schruben shows that Ss.i. and Ss. both follow improved using a more dense plan of experiments and

X2 7) a better model than a simple linear interpolation.a 3 distribution
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or - 6. Transientsuppress nprocedure

Let us define a series x of N observations from
which we want to remove the initial transient. Tests

Y are performed at first on the entire series. If te x
series is not considered as stationary, the series is
truncated (of a certain number of initial observations)
and the tests are performed again. This iterative

s long as the test h pothesis is
procedure is repeated a. y

ected and the number of remaining observations is
SIM rej

I 0 Q L i C II 1: 2.0 statistically sufficient." Another way to truncate the
Fig' 8 Cumulative density functions (edf) series at each iteration could be to suppress it = t.N

of Ss statistic for N 150. 500, 5000 p 0.0 observations, t being the value . or -) where the
Kul ('55111111) - - - I 1 ------ considered bridge B,(t) reaches its supremum.

Of course. the efficiency of this iterative procedure
atistic test erfo e& at each

depends on the st rM
iteration.

0.1
05 The methodology of truncation and various

statio, ty tests (not only basedon Brownian bridge
theo are imolerriented in the OPOSSUM) post-
processing tool of the MC code MORET 4).

I 7. Validation
Mln

0 1 2 6 0 7 R LO 11 12 

Fig. 9�Cumulatdve density functions of Ssj, statistic Jhe validation of this trans'len i Su ssion
fo p (0.0 02 04), N 1000 methodology and the comparison of underlYing

stationarily tests are performed , on a,,� plari of
experiments of artificial and although realisti s 'e

Stationarit pri m
'Me series are modeled (see Fig. II) s the sum of

Considering a series x, an extreme statisfic,�alue of a stationary , series and of a transient-
a bridge (BS, or BR,) points out te non stationarity of x W - x, W 4 T U) . where:
this sries. Thus, a simple statistical test can be based x, is a stationary Gaussian autoregressive process:
on each statistic previously defined: x,(i+ 0= X W+0+ 1) , where 00),

S being the statistic value obtained on the x series I P 1,,iN are
of length N and first autocor Irelation coefficient p, independent Gaussian random variables of mean 

and variance or' The parameter T (introduced in
ANp being the theoretical distribution of S for the series bridge definition in section 3 of the x,
series of length N land first autocorrelation series equals T = O, / ( I - P) 

coefficient p, T is a transient function defined as:
cc being the level of significance of the test (for

A, for L<i <a
instance I %), TWJ

the stationarity hypothesis is accepted if: A-(b-i)1(b-a), fora_<i<b
cdfj, ,(S(B,))< I -o( 10, . forb<i<N1

The series are chosen to reveal different transients.
where cdf A is the cumulative density function of A.1., different lengths and different ranges while the
distribution (see Fig. IO). stationarity tests have the same level of significance

Test level 10%,) (10%).
I 

(al 11W ily slalionatitv

M)lWis warhY v -I h 0,
acc led rejeA led

T 7

Fig. 10 Cumulative density function of test statistic N
_00 4m) L") "Ap, 0 k 1(j"

and stationarity hypothesis acceptance region Fig. 11 Series model
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ne parameters defining the series are ee Fig. I ): 0 1 frequency
• N E ( 100. 500. 1 000 11 0.16

a 0. i6• _E(0.0 025, 0.5 0751
N 0.14

nl�-

bE[O.25,0.5,035] (with ba), O'l - 111111 1111 IIIH
N I lill till IIIIi

T G f 0.0 1 002 0031 m ine 11111 I

PE 0.0, 0. 1, 0.2) O..4
02

TE(-0.00500,-0.01000,-0.02000) n/b0 
N b- 1 02 O? 01 0.1� 0.7 0.8 0.9 IC 1.1

where T _ T ) = A ' is the mean of the Fig. 13 nf) (truncation length over transient length)
Nj�j 2 N b

transient (equal to the induced bias). distributions for Schruben, supremum ratios and

Vassilacopoillos based truncations
The efficiency indicators used to compare the tests

are T,, andn where n is the number of Secondly an increasing series length seems to
T b improve the efficiency of the tests.

observations finally truncated and Thirdly, the suprernum ratios test becomes
I N inefficient when the transient length increases and

T,, - T(i) is the remaining bias- when the transient amplitude (A) is comparable to the
N-,z+ ;_� series dispersion (T) . On the contrary, the

Basically, is the remaining bias over the initial Vassilacopoulos test is the most robust in this extreme
case. For instance, the following series parameters:

bbias and is the truncation length over the transient 0.5, w=0.75, T=0.02. p=0.2,N-1000, . N

length. T=-0.00500 give a transient difficult to identify
For each series parameters set.. the truncation is with the naked eye (see Fig. 16) which although bises

performed on 1000 eries t obtain a statistical ,
distribution of the two efficiency indicators. Finally, the series mean estimation of -0.00500. The number of

observationssuppressed and the remaining bias rate
these distributions obtained with each stationarity test follow these distributions (Fig. 14, 15):
are corn ared..p

Note that Schruben test is performed with an exact uenCY
b

value Of T whereas it should be estimated. In the same -a
way, all the tests are performed with an exact value of

p whereas it should be estimated.
Firstly, regarding efficiency indicators means 2! n

distributions (see Fig. 12, 13), it appears that n
Schruben, suprernum ratios and Vassilacopoulos tests

give good results. However, it seems that Schruben

test generally tends to lightly more overestimate the -'JI'll
transient length than the two other tests, maybe due to
a bad estimation of empirical statistic distributions Fig. 14 Statistical distributions of the truncation

which alters the levels of significance. n using Schruben, suprernum ratios. and
Vassilacopoulos based tests

frequency
D3

- '] I I I 1 1 1 frequency1127
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Fig.12 TN (remainingbiasoverinitialbias) Fig.15Statisticaldistrib,utiions,�"of",ther'e"main'ingbias
T

distributions for Schruben, supremum ratios and T., using Schruben, supremum ratios and

Vassilacopoulos based truncations Vassilacopoulos based tests
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