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INTRODUCTION

The problem of exposure to radon indoor is the subject of many scientific investigations, since the radiation
absorbed by human bodies might be the cause of tumours or leukaemia. In almost all Countries, sampling
campaigns of “?Rn have been started with the purpose of monitoring its distribution and evaluating
exposure risk levels. The radon is a gas that diffuses in the soil and penetrates into the buildings following
multiple pathways. Indeed, many factors influence its migration, both of geological and atmospheric nature,
and even anthropic. Therefore, it is evident that the presence of radon in the environment belongs to that
class of complex phenomena that has originated the research on fractals (see, €.g., Mandelbrot, 1975, 1983;
Falconer, 1988, 1990; Feder, 1989; Edgar, 1990). The possibility of modelling natural phenomena by
means of fractals has recently been improved introducing the concept of multifractals, studying the fractal
properties shown by the different intensity levels of a phenomenon (e.g., analysing the different fractal
features of increasing concentrations of radon). In our case, given the complexity of the radon diffusion
process, we shall adopt the stochastic formalism of Universal Multifractals, as introduced by Schertzer and
Lovejoy (see, e.g., Schertzer and Lovejoy, 1983, 1987, 1989, 1991, 1992, 1993).

THE DATA

The principal sources of radon are soil, rocks, construction materials, water and air. We shall analyse **Rn
data collected in Slovenia by the “J. Stefan” Institute in Ljubljana (Kobal et al., 1988a) in buildings such
as schools and nurseries (see Fig. 1).

The measurement techniques of *’Rn air concentration are based on the detection of «-particles produced
by the radioactive decay (Kobal et al., 1988b); measurements have been performed within buildings made
of wood or concrete a few hours before their opening and after the rooms have been closed for 1-2 days.
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Fig. 1. The sampling network of all the available data.
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The available samples are subdivided into three subsets depending on the construction material of the
building where the measurements are collected, which is one of the variables influencing the radon
emission: the label “T” identifies the whole data set, the label “M” identifies the data collected in buildings
made of wood, and the label “Z” identifies the data collected in buildings made of concrete. In Tab. I we
show the number of available data, the range of the values (in Bq/m?), their average and standard deviation;
in column “Fy” is reported the fractal dimension of the network, in column “h” the hyperbolic exponent
of the data, and in columns “«” and “C,” the universal multifractal parameters (see later).

Type # Min Max  Av. S.D. Fp h o C,

A 1269 7 5750 | 135.5 | 3629 =1.62 =1.3 0.58+0.02 | 0.95+0.01
“z” 1015 7 5750 | 147.9 | 397.8 =1.60 =1.3 0.56+0.01 | 0.98+0.01
“M 254 10 1306 | 85.9 | 150.7 =1.55 =1.1 0.38+0.01 | 1.17+0.01

Table 1. Features of the available data (see text).

THE FRACTAL APPROACH

The radon emission features a strong variability, both in space and in time. We shall investigate the
available data in an original way (Missineo, 1994) using both fractal and multifractal techniques, suitable
to analyse phenomena originated by the non-linear interaction of many factors. '

The dangerousness of radon may depend upon its in situ concentration; however, the presence of “hot spot”
may not be detected due to averaging procedures or to insufficient spatial and/or (fractal) dimensional
resolution of the sampling network (see Fig. 1). In our case (Missineo, 1994), the networks are fractal (see
Tab. I and Fig. 2), indicating the presence of gaps at all scales: indeed, since the networks are not plane-
filling (their fractal dimension is always less than two, the dimension of the plane), the sampling of the
radon emission is necessarily inhomogenous and not-uniform.
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Fig. 2: Estimate of the Fractal dimension Dy of all the available data.

THE HYPERBOLIC ANALYSIS

The presence of “hot spots” can be regarded as the appearing of anomalous fluctuations in the dynamics
of a phenomenon (the “Joseph Effect” and the “Noah Effect” described by Mandelbrot, 1975, 1983).
Indeed, in our case the analysis of Tab. I (Missineo, 1994) shows that the radon concentration spans three
orders of magnitude, and the variance is always large, indicating the presence of strong fluctuations. Such
events may be interpreted by means of the Self-Organised Criticality theory (see, e.g., Schertzer et al.,
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1995, for a concrete case study) and suggest the use of specific (asymptotic) hyperbolic probability
distributions (characteristic of fractal processes):

Pr(Vzv) <« vt (v>>1) 1)

where & is a positive parameter called hyperbolic exponent, Such distributions assign a not-negligible
probability even to very large fluctuations (i.e., asymptotically, for v>>1) which, on the contrary, would
be impossible adopting other probabilistic models (e.g., Gaussian).

In Fig. 3 we show the (asymptotic) estimate of the hyperbolic exponent 4 of all the available data; the
results are reported in Tab. I. The results show that the radon concentration follows, at least asymptotically,
a hyperbolic behaviour, which is a fingerprint of multifractality.

- 0 -Wl RNy, ";w;.x‘ Radon “indoor” (Slovenig)
A The linear behaviour on r“*m‘ Hyperbolic Distribution
> -1 alog-log scale shows the “""1_,. A
e hyperbolic distribution my  Privav) =v
o of the data considered TRy
o -2 — v,
2 The slope of the fit estimates h '1..“
| 1 | { I | L
1.0 1.5 2.0 2.35 3.0 3.5

Logv(Bg/m)

Fig. 3. Estimate of the hyperbolic exponent 4 of all the available data.

UNIVERSAL MULTIFRACTALS

As already mentioned, multifractals are more powerful than monofractals, since they are able to investigate
the full spectrum of fractal properties shown by a system. Multifractals are characterised by the presence
of a hierarchy of structures; they feature a strong space-time variability and show the multiscaling property,
i.e. a precise scaling (power law) relationship between the intensity of a given event and its probability of
occurrence (see, e.g., Schertzer and Lovejoy, 1987, 1993).

For a (stochastic) multifractal field at resolution A the following (multiscaling) relation holds (Schertzer
and Lovejoy, 1983, 1987):

Pr{e>AY} e 370 @)

where €, is the field intensity (in our case, the measured radon concentration), ¥ is the order of singularity
and c(y) is the codimension function describing both the “sparseness” of the field intensities and the
probability of given events. Thus, eq. (2) relates the intensity of the field €, to its probability of occurrence
through the function c(y): since c(y) is a convex increasing function, the strongest events are also the rarest.

In the limit of large A, the corresponding law for the statistical moments ( eq;L ) is obtained via a Laplace
transform and a saddle point approximation:

max {gy -c(Y))
( e’ )= A Y = \ K@ 3)

where K{(q) is the moment scaling function and q is the order of moment. Formula (3) also shows that c(y)
and K(q) form a Legendre transformation pair (Parisi and Frisch, 1985).
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The statistical description of multifractal processes may be greatly simplified considering universal
multifractals (Schertzer and Lovejoy, 1987). In this case, c(y) and K(g) have the following parametric
expressions: ‘

(c(*{) = C{ Y - +—;- ]a‘ o1

) C;oc @
— -1

) = €, e =1

( _ C, o o

| K@ = — (4" - q) arl ©

K@) = C, g log(q) a=1

where —1— + l =1, 0 < a < 2 and C,>0. The parameter « (called the Lévy index) represents the degree of

multzfra%taligz of the process (e.g., the case & = 0 corresponds to a monofractal process) and determines
its probability class; the parameter C, is the codimension of the average field and measures its sparseness
and inhomogeneity. Based on the value of ¢ (Schertzer and Lovejoy, 1992), a classificatiorn of universal
multifractals has been provided: for o > 1 we have unconditionally hard multifractals (i.e. the process
shows divergence of moments above a critical order g,, where g, is defined by K(g,,) = D(g, -1) and D
is the dimension of the embedding space); for & < 1 we have conditionally soft/hard multifractals (i.e. for
large enough but finite values of the dimension D all the moments converge).

The estimate of the multifractal parameters « and C, for all the available data can be carried out by means
of the Double Trace Moments (DTM) technique (Lavallée, 1991; Schertzer and Lovejoy, 1993; see also
Salvadori (1993) and Salvadori et al. (1994) for concrete case studies and the Sofiware Note). Here we only
discuss the results obtained (Missineo, 1994), summarised in Tab. L.

The multifractal parametrization of the data “T” and “Z” is almost identical, but differs from the one of the
data “M”: actually, the subset “M” represents only about 20% of the total data, and its extraction does not
seem to have altered the global probabilistic structure. In all cases, the radon distribution shows evident
features of multifractality: since o < 1, we may classify the radon concentration as a “conditionally
soft/hard” multifractal process. The value of C,=1.2 for the subset “M” compared to the value C,=1 for the
data “T” and “Z” indicates a greater sparsity of the average level of pollution.

It is worth noting that the value of ¢ characterises the “phenomenology” of type “M” and the different one
of type “Z”: in other words, it provides a probabilistic classification of the radon distribution in buildings
having distinct features (wood or concrete), an experimental fact that may have relevant implications for
epidemiological purposes and risk assessment.

CONCLUSIONS AND PERSPECTIVES

The present work shows that fractals and (stochastic) universal multifractals represent a proper
mathematical framework for characterising the spatial distribution of radon indoor, at small as well as at
large scales, without introducing ad hoc data smoothing and preserving the original intrinsic features of the
phenomenon. -

The fractal nature of the networks shows that the sampling is inhomogenous and indicates that some
“information” is almost surely lost in the gaps of the network; in particular, it is possible that some “hot
spot” regions are not (correctly) sampled, spoiling further operations of risk analysis and assessment.
Indeed, the (asymptotic) hyperbolic distribution of the data indicates the probable presence of strong
fluctuations (i.e. the “hot spot”). The estimate of the multifractal parameters « and C, leads to a
classification of the radon concentration as a “conditionally soft/hard” multifractal process; the value of
the Lévy index distinguishes between data of type “M” (wood) and “Z” (concrete). Such a parametrization
may open new research perspectives, since the possibility of simulating and interpolating arbitrary
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multifractal processes is the object of recent studies and we foresee useful and interesting results in the near
future.

SOFTWARE NOTE

A free software for the mudtifractal analysis of 1D and 2D data is available upon request. The program runs
both on the standard 68K Macintosh and on the new PowerPC platform. For further information, please
contact the author G. Salvadori (phone: +39 - 382 - 507438; fax: 526938; E-mail: salvadori @pavia.infn.it).
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