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Abstract

We present an eigenvalue theory to study the stochastic dynamics of nonstationary time-periodic

Markov processes. The analysis is carried out by solving an integral operator of the Fredholm type, i.e.

considering complex-valued functions fulfilling the Kolmogorow compatibility condition. We show that

the asympotic behavior of the stochastic process is characterized by the smaller time-scale associated to

the spectrum of the Kolmogorow operator. The presence of time-periodic elements in the evolution equa-

tion for the semigroup is considered to apply a Floquet analysis, then the first non-trivial Kolmogorow’s

eigenvalue is interpreted from a physical point of view. This nontrivial characteristic time-scale strongly

depends on the interplay between the stochastic behavior of the process and the time-periodic structure

of the Fokker-Planck equation for continuous processes, or the periodically modulated Master Equation

for discrete Markov processes. We present pedagogical examples in a finite dimentional vector space to

calculate the Kolmogorow characteristic time-scale for discrete Markov processes.
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I. GENERAL STATEMENTS

It is well known that from a given stochastic prescription1,2 (Stratonovich, Ito, etc.) any stochas-

tic differential equation (SDE) with a delta-correlated Gaussian noise drives to a well defined Markov

Process3. A continuous Markov Process is completely characterized by its Fokker-Planck Operator (FPO),

which can immediately be written from the corresponding SDE. If some parameter of the SDE is time-

dependent, the stochastic process will not be stationary. Particularly if such a dependence is time-periodic

the stochastic process is called a Periodic Nonstationary Markov Process (PNMP)1,4. Now we want to

discuss a method for solving a Fokker-Planck dynamics with time-periodic drift or diffusion matrix. Let

the Fokker-Planck equation be:

∂tP (q, t) =

[

−
∂

∂qν

Kν(q, t) +
ε

2

∂2

∂qν∂qµ

Qνµ(q, t)

]

P (q, t)

= LFP (q, ∂q , t) P (q, t). (1.1)

Here q stands for the set of variables (q1, . . . , qn) and summation over the double appearing indices ν, µ

is understood. The drift Kν(q, t) and diffusion matrix Qνµ(q, t) are supposed to be time-periodic with

time-discrete translation invariance t → t + T , i.e.

Kν(q, t + T ) = Kν(q, t) (1.2)

Qνµ(q, t + T ) = Qνµ(q, t), (1.3)

ε is the parameter which measures the noise strength. The propagator (conditional probability density)

of the Fokker-Planck dynamics P (q, t|q0, t0) is a solution of (1.1) with the initial condition

P (q, t0|q0, t0) = δ (q − q0) .

The propagator is nonnegative for any q and q0 and satisfies normalization to one. If Kν and Qνµ

are time-independent the Fokker-Planck dynamics can be mapped into an eigenvalue problem, then the

propagator can be expanded into a bi-ortonormal set of eigenfunctions of the FPO2–5. The need of the

adjoint eigenfunctions is due to the fact that in general the FPO is not Hermitian nor normal. In the

restricted case of Detailed Balance the problem can be mapped into a self-adjoint negative semi-definite

eigenvalue problem, which shows the existence of a complete set of eigenfunctions with negative (or zero)

eigenvalues, but for general FPOs not even the existence of a complete set of eigenfunctions can be

proved. We are going to show that for the PNMP the dynamics of the system can still be studied as an

eigenvalue problem, but the kind of operator to be solved is an integral one. We will show that the task is

reduced to the eigenvalue analysis of a Fredholm equation6 with a nonsymmetric kernel. In the following

sections we will give some applications of the eigenvalue theory, i.e. we deduce some connections between

eigenvalues, eigenfunctions and quantities which characterize the dynamics and mixing of the system, like

correlation functions, the Lyapunov function, the spectrum and the generalized switching time between

atractors.
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II. THE KOLMOGOROW OPERATOR

Every solution f(q, t) of the Fokker-Planck equation (1.1) satisfies the Kolmogorow compatibility con-

dition

f(q, t) =

∫

P (q, t|q′, t′) f (q′, t′) dq′, (2.1)

for all t′ ≤ t.

Definition: The Kolmogorow Operator is given by (t2 ≥ t1):

U (t2, t1) : f(q) →

∫

P (q, t2|q
′, t1) f (q′) dq′,

i.e. the evolution of every solution of the Fokker-Planck equation is obtained by the application of the

Kolmogorow operator:

f (q, t2) = U (t2, t1) f (q, t1) .

This is once again the Kolmogorow compatibility condition.

Proposition: The Kolmogorow operator satisfies the semigroup laws:

U (t1, t1) = id (2.2)

U (t3, t1) = U (t3, t2)U (t2, t1) . (2.3)

If the FPO is time-periodic (see 1.2-1.3), the Kolmogorow operator has the periodicity:

U (t2 + T, t1 + T ) = U (t2, t1) . (2.4)

Property (2.2) follows from the initial condition for the propagator, property (2.3) from the Chapman-

Kolmogorow equation, which is valid for every Markov process. From (1.1) to (1.3) it is easy to see that

the propagator has the periodicity

P (q, t + T |q0, t0 + T ) = P (q, t|q0, t0) ,

from which property (2.4) follows. Due to the fact that the propagator generally is not symmetric under

the transformation q ↔ q0, the Kolmogorow operator in general is not self-adjoint. Its adjoint is given

by:

U (t2, t1)
+

: φ(q) →

∫

φ (q′) P (q′, t2|q, t1) dq′.

Proposition: The adjoint Kolmogorow operator satisfies:

U (t1, t1)
+

= id

U (t3, t1)
+

= U (t2, t1)
+
U (t3, t2)

+
, (2.5)
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and if the FPO is time-periodic (1.2-1.3):

U (t2 + T, t1 + T )
+

= U (t2, t1)
+

.

These properties follow immediately from the corresponding properties of the Kolmogorow operator.

If φ(q, t) is a solution of the Fokker-Planck backwards equation

∂tφ(q, t) =

[

Kν(q, t)
∂

∂qν

+
ε

2
Qνµ(q, t)

∂2

∂qν∂qµ

]

φ(q, t)

= LFP (q, ∂q , t)
+

φ(q, t), (2.6)

then its evolution backwards in time is obtained by the application of the adjoint Kolmogorow operator:

φ (q, t1) = U (t2, t1)
+

φ (q, t2) . (2.7)

We will call this equation the adjoint Kolmogorow compatibility condition.

III. EVOLUTION IN ONE PERIOD OF TIME

Now we consider the space of all complex-valued functions with finite norm satisfying the Kolmogorow

compatibility condition. In particular, we are interested in the eigenvalue problem of U(t + T, t). Since

the Kolmogorow operator in general is not self-adjoint, we are looking for a complete bi-ortonormal set

of eigenfunctions of U(t + T, t) and its adjoint U(t + T, t)+:

U(t + T, t)fi(q, t) = kifi(q, t) (3.1)

U(t + T, t)+φi(q, t + T ) = kiφi(q, t + T ) (3.2)

{φi, fj} =

∫

φi(q, t + T )fj(q, t)dq = δij (3.3)

Using the definitions and properties of the previous section, the next Lemma follows immediately.

Lemma: Let f(q, t) satisfy the Kolmogorow compatibility condition (2.1) and φ(q, t) satisfy the adjoint

Kolmogorow compatibility condition (2.7), then we have:

(a) If f(q, t0) is an eigenfunction of U(t0 + T, t0) with eigenvalue k then f(q, t) is an eigenfunction of

U(t + T, t) with the same eigenvalue k for all t.

If φ(q, t0 + T ) is an eigenfunction of U(t0 + T, t0)
+ with eigenvalue k then φ(q, t + T ) is an eigen-

function of U(t + T, t)+ with the same eigenvalue k for all t.

(b) The eigenfunctions fi(q, t) and φi(q, t) have the Floquet structure

fi(q, t) = e−λitgi(q, t)

φi(q, t) = eλitγi(q, t) (3.4)
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where the functions gi(q, t) and γi(q, t) are periodic in t

gi(q, t + T ) = gi(q, t)

γi(q, t + T ) = γi(q, t) (3.5)

and λi must be chosen in such a way that the eigenvalue ki has the form

ki = e−λiT

(c) The integral
∫

φ(q, t + T )f(q, t)dq does not depend on t, i.e. the scalar product {φ, f} in (3.3) is

well defined.

Proof: (a) Since U(t + T, t) is periodic in t it is enough to show the proof for t0 + T > t > t0:

U(t + T, t)f(q, t) = U(t + T, t)U(t, t0)f(q, t0)

= U(t + T, t0)f(q, t0)

= U(t + T, t0 + T )U(t0 + T, t0)f(q, t0)

= U(t + T, t0 + T )kf(q, t0)

= kU(t, t0)f(q, t0)

= kf(q, t)

The proof for φ(q, t) can be stated analogously.

(b) Let ki = e−λiT then gi(q, t) is periodic in t:

gi(q, t + T ) = eλi(t+T )fi(q, t + T )

= eλi(t+T )U(t + T, t)fi(q, t)

= eλi(t+T )kifi(q, t)

= eλitfi(q, t)

= gi(q, t)

The proof for φi(q, t) is again completely analogue.

(c) Let t2 > t1:
∫

φ(q, t1 + T )f(q, t1)dq =

∫

(

U(t2 + T, t1 + T )+φ(q, t2 + T )
)

f(q, t1)dq

=

∫

(

U(t2, t1)
+φ(q, t2 + T )

)

f(q, t1)dq

=

∫

φ(q, t2) (U(t2, t1)f(q, t1)) dq

=

∫

φ(q, t2)f(q, t2)dq

Up to now this Lemma was in principle only a conclusion from the time periodicity of our problem (i.e.,

Floquet theorem7). If we further take into account that our equations describe probability distributions

of Markov processes, we can make the following conclusions:
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(d) There always exists an eigenvalue k0 = 1 (λ0 = 0) with a constant adjoint eigenfunction φ0(q, t) =

γ0(q, t) = 1.

(e) Eigenfunctions for other eigenvalues have zero integral:

∫

fi(q, t)dq =

∫

gi(q, t)dq = 0 for ki 6 =1

(f) If the drift and diffusion matrix are not singular, the eigenvalue k0 = 1 is not degenerate, and its

eigenfunction is the Asymptotic Time-Periodic Distribution (ATPD) f0(q, t) = g0(q, t) = Pas(q, t).

(g) All other eigenvalues have a modulus smaller than 1:

|ki| < 1 i.e. real part λi > 0 for i = 1, 2, . . .

Proof: (d) Since the propagator is a normalized probability density we have U(t + T, t)1 =
∫

P (q′, t +

T |q, t)dq′ = 1.

(e) Since the Fokker-Planck dynamics conserves the integral we have
∫

fi(q, t + T )dq =
∫

fi(q, t)dq =

e−λit
∫

gi(q, t)dq but the periodicity of gi(q, t) gives
∫

fi(q, t + T )dq = e−λi(t+T )
∫

gi(q, t + T )dq =

eλi(t+T )
∫

gi(q, t)dq. Both are only possible if either eλiT (= ki) = 1 or
∫

gi(q, t)dq = 0 and therefore
∫

fi(q, t)dq = 0.

(f) Under these conditions8 the system approaches a unique ATPD Pas(q, t) for t → ∞. The eigenfunc-

tions with eigenvalue 1 are precisely the time-periodic functions satisfying (3.1). But Pas(q, t) is the only

such function (besides scalar multiples).

(g) Since every solution of the Fokker-Planck dynamics approaches the ATPD Pas(q, t) for t → ∞ all

other eigenfunctions must vanish for t → ∞, so |ki| must be smaller than 1. This proof follows from the

existence of the Lyapunov function for PNMP8, but part (g) of the Lemma can also be proved without

using the uniqueness of the ATPD. Consider (3.2), thus from the definition of the adjoint Kolmogorow

operator it follows that

ki φi(q, t + T ) =

∫

φi(q
′, t + T )P (q′, t + T |q, t) dq′. (3.6)

Now we use that the propagator is nonnegative for any q and q
′

and satisfies normalization to one, and

denote qm if q is such that |φi(q, t + T )| = max. Then from (3.6)

|ki| |φi(qm, t + T )| =

∣

∣

∣

∣

∫

φi(q
′, t + T )P (q′, t + T |qm, t) dq′

∣

∣

∣

∣

≤

∫

|φi(q
′, t + T )|P (q′, t + T |qm, t) dq′

≤

∫

|φi(qm, t + T )|P (q′, t + T |qm, t) dq′

≤ |φi(qm, t + T )| ,

so therefore |ki| ≤ 1.

6



For the rest of the article we will order the eigenvalues with decreasing modulus 1 = k0 > |k1| > |k2| > . . .,

i.e. λi with increasing real part.

Up to now nothing is said about the completeness of the eigenfunctions system. Actually this cannot be

proved in general. But Lemma (a) and (b) show that from the existence of a complete set of eigenfunctions

for some fixed time t0 follows the existence for all times t. For further conclusions we assume that such

a complete set of eigenfunctions exists, so that the functions fi(q, t) and φi(q, t) satisfy:

{φi(q, t + T ), fj(q, t)} = δij

∞
∑

i=0

φi(q
′, t + T )fi(q, t) = δ(q′ − q) (3.7)

Now we can expand every function h(q, t) which satisfies the Kolmogorow compatibility condition (2.1)

in a series of eigenfunctions:

h(q, t) =

∞
∑

i=0

Aifi(q, t) =

∞
∑

i=1

Aie
−λitgi(q, t)

where the coefficients Ai can be obtained from:

Ai = {φi, h} =

∫

φi(q, t + T )h(q, t)dq

In particular the propagator can be written as

P (q, t|q0, t0) =
∞
∑

i=0

Ai(q0, t0)e
−λi(t−t0)gi(q, t) (3.8)

where the coefficients Ai(q0, t0) are periodic in t0. This can easily be seen from the periodicity of

P (q, t|q0, t0) and gi(q, t).

IV. PERIODIC DETAILED BALANCE

Proving the existence of a complete set of eigenfunctions of the Kolmogorow operator is still an open

question. The problems arise because from one hand the differential representation of the Kolmogorow

operator involves a time ordered exponential2–5, which is difficult to handle

U(t2, t1) = ~T exp

(∫ t2

t1

LFP (q, ∂q , τ)dτ

)

,

on the other hand in its integral representation the kernel (i.e. the propagator) is in general not symmetric.

For time-independent Markov processes a symmetrization of the FPO is possible under the condition of

detailed balance with even variables under time inversion:

P (x, t|y, 0)Pst(y) = P (y, t|x, 0)Pst(x)

(Pst(x) is the stationary solution of such a Markov process). This fact drives to a self-adjoint Fokker-

Planck and Kolmogorow operator, which guarantees the completeness of the set of eigenfunctions2,3,5.

Furthermore under this conditions the symmetrized FPO is negative semi-definite, so that its eigenvalues
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are negative real numbers, i.e. the eigenvalues of the Kolmogorow operator are real numbers between

0 and 1. In our case we have no continuous time translation symmetry but a discrete symmetry under

the translation t → t + T . A symmetrization of the Kolmogorow operator is possible under a similar

condition as the detailed balance which is compatible with our discrete time translation symmetry and

which we will call periodic detailed balance.

Definition:The periodic detailed balance (PDB) is held if

P (x, t + T |y, t)Pas(y, t) = P (y, t + T |x, t)Pas(x, t) for all x, y, t

Proposition: If the periodic detailed balance is fulfilled, the Kolmogorow operator U(t + T, t) is self-

adjoint under the scalar product

{η, ξ} =

∫

η(x)ξ(x)/Pas(x, t)dx

Proof:

{η,U(t + T, t)ξ} =

∫ ∫

η(x)P (x, t + T |y, t)ξ(y)/Pas(x, t)dxdy

=

∫ ∫

P (y, t + T |x, t)η(x)ξ(y)/Pas(y, t)dxdy

= {U(t + T, t)η, ξ}

Corollary: If PDB is fulfilled there exists a complete set of eigenfunctions of the Kolmogorow operator

U(t + T, t).

V. STRONG MIXING

Strong mixing was originally introduced as one of several conditions that a stochastic process must

satisfy in order that the central limit theorem is applicable. This question does not arise here, since our

process is in general non-Gaussian. We are more involved in the strong mixing condition as a form of

asymptotic independence.

Definition: Let q(t) be a realization of a stochastic process. The correlation function is defined by

<< q(t)q(t′) >>=< q(t)q(t′) > − < q(t) >< q(t′) >

where the simple bracket represents the ensemble average.

Particularly the correlation function is calculated for the long time limit, i.e. by using for the 1-time

probability distribution the ATPD Pas(q, t). Then the asymptotic 2-time second moment is given by:

< q(t)q(t′) >as=

∫ ∫

qq′P (q′, t′|q, t)Pas(q, t)dqdq′
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where we have t′ ≥ t without a loss of generality. We can consider the correlation function as a function

of the variables t and τ = t′− t. By using the representation of the propagator in the set of eigenfunctions

of the Kolmogorow operator we get:

<< q(t + τ)q(t) >>as=

∞
∑

i=1

e−λiτBi(t, τ) (5.1)

where the functions

Bi(t, τ) =

∫ ∫

qq′Ai(q, t)gi(q
′, t + τ)g0(q, t)dqdq′, i = 1, 2, 3 · · ·

are periodic functions in t and τ . Therefore the asymptotic correlation function is an oscillatory decreasing

function of τ for every fixed time t, which goes to zero for τ → ∞. This proves the following

Corollary: Every periodic nonstationary Markov process characterized by non-singular drift and diffusion

matrix is strong mixing.

A. Correlation function for large τ

If we arrange the eigenvalues of the Kolmogorow operator in the order 1 = k0 > |k1| > |k2| > . . . and

retain only the slowest decreasing summand in the expansion (5.1) of the asymptotic correlation function,

we get:

<< q(t + τ)q(t) >>as≈ e−λ1τB1(t, τ)

Then after each period of time in τ the asymptotic correlation function falls by a factor k1 = e−λ1T , i.e.

the first eigenvalue of the Kolmogorow operator smaller than 1 characterizes the slope of the decay of

<< q(t + τ)q(t) >>as as a function of τ .

B. The Lyapunov function

Another interesting object, which also gives dynamical information of a stochastic process, is the

Lyapunov function. Traditionally this function was introduced in order to analyze the decay of the initial

preparation of the system.

Definition: Let the system be prepared in one point q0 at some certain time t0. The Lyapunov function

is defined by:

H(t) =

∫

P (q, t|q0, t0) ln
P (q, t|q0, t0)

Pas(q, t)
dq

Note that for every q0, H(t) is a non-negative decreasing function and that the approach of the system

from the preparation point q0 towards the ATPD is characterized be the decreasing of H(t)8. If we again

use the expansion of the propagator in eigenfunctions of the Kolmogorow operator and take only the

slowest decreasing part we get the following
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Corollary: In the long-time regime the Lyapunov function H(t) is an oscillatory decreasing function,

which falls by a factor k2
1 in each period of time.

Note that in the asymptotic regime the decay of the correlation function (as a function of τ) is slower

than the decay of the Lyapunov function.

It is possible to interpret the time-scale λ−1
1 that appears in the eigenvalue k1 as a generalization of

the Kramers escape time for periodic nonstationary Markov processes. An important question for sta-

tionary processes, conveniently answered in terms of the FPO framework, is: what is the time required

for the passage of a prepared initial state to the final stationary state. Historically this problem was

first studied by Kramers11, and many mathematicians12 and physicists13 have developed different per-

turbation approaches to tackle this fundamental problem for bistable situations with clearly separated

times scales. In the present section we were concerned with a similar question but for a nonstationary

periodically modulated Markov process. But because the system may reach periodically a situation where

the stabilities and instabilities may not be well pronounced, the analysis is even more complex than in

the Kramers problem due to the disparate time-scales that the system may have9. Therefore the hope to

find an analytical expression characterizing the passage times is even more unlikely, so in the next section

we introduce discrete Markov processes in order to find some analytical answers to the characterization

of λ−1
1 .

VI. APPLICATIONS TO FINITE DIMENSIONAL VECTOR SPACES

A continuous nonlinear stochastic Markovian process can rarely be solved analytically, and solving

the integral equation related to the Kolmogorow eigenvalue problem is even more complex. If we can

arrange the eigenvalues of the Kolmogorow operator U(t + T, t) in the form 1 = k0 > |k1| > |k2| > · · ·,

we have shown that the asymptotic behavior of the periodic nonstationary process is controlled by k1.

The important point to remark here is that by finding the first nontrivial eigenvalue of Kolmogorow’s

operator, we get the time-scale λ−1
1 which controls the asymptotic stochastic relaxation of the system,

see section V. In fact, in previous works9 we have studied numerically a noise induced order-disorder

transition by employing the mentioned integral operator U(t+T, t). Here we will extend our presentation

concerning the Floquet analysis of nonstationary periodically modulated processes to the case when the

Markov process is discrete. In this situation the evolution equation of the process is controlled by a

Master Equation (ME) rather than by a Fokker-Planck one, so in order to solve U(t + T, t) we only have

to deal with a matrix eigenvalue problem.

The ME of an arbitrary discrete Markov process is characterized by a Master Hamiltonian matrix H of

finite dimension N × N (we exclude here the analysis of a system whose range is denumerably infinite).

This matrix H is real and in general non-symmetric, and it must fulfill the fundamental conditions:
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Hjl ≥ 0, j 6= l

Hjj = −
∑

l(6=j)

Hlj .

Therefore for a nonstationary Markov process, any result will have to be based on the two properties: (1)

Hjl(t) ≥ 0, j 6= l, (2) for each l we have
∑

j Hjl(t) = 0. This means that in general the instantaneous

matrix H(t) cannot be diagonalized. Consider now the situation when the process is nonstationary but

periodically modulated. In this case we have the additional temporal symmetry: Hjl(t) = Hjl(t+T ), thus

we can apply our Floquet analysis of section III. In this case the Kolmogorow integral problem reduces

to an eigenvector analysis. This fact can be seen by noting that the Kolmogorow operator is

U(t2, t1) = ~T exp

(∫ t2

t1

H(τ) dτ

)

≡ P(t2 | t1), (6.1)

where P(t2 | t1) is the matrix Green’s function of the ME Ṗ = H(t)·P. Note the similitude with the

propagator introduced in section II when we deal with a continuous Markov process. From this comment

it is trivial to see that the Kolmogorow eigenvalue problem, see (3.1-3.3), reduces to a simple eigenvector

problem of dimension N . We remark that in order to fully characterize the temporal behavior of an

arbitrary discrete N−level PNMP, the Kolmogorow operator technique turns out to be a suitable and

fundamental approach to tackle that sort of nonstationary problems.

A. Master Equation toy model

A toy discrete stochastic process which, in the present context, can analytically be solved is the so

called dichotomic process2–4,10 originally introduced by Kubo and Anderson. As we pointed out before,

in opposition to continuous Markov processes, the dichotomic process has two discrete levels and the

evolution equation that governs its propagator is the ME. Then the Kolmogorow operator approach can

immediately be applied.

Here we will work out a nonstationary dichotomic process for the case when the ME has a discrete

symmetry under the time translation t → t + T . In the present case the Kolmogorow operator is a 2× 2

matrix (6.1), and the eigenvalues problem (3.1-3.3) reads

(

P11 P12

P21 P22

)

·

(

fi(1, t)
fi(2, t)

)

= ki

(

fi(1, t)
fi(2, t)

)

(6.2)

(

φi(1, t + T ) φi(2, t + T )
)

·

(

P11 P12

P21 P22

)

= ki

(

φi(1, t + T ) φi(2, t + T )
)

(6.3)

{

~φi, ~fj

}

≡
(

φi(1, t + T ) φi(2, t + T )
)

·

(

fj(1, t)
fj(2, t)

)

= δij , ∀i, j = 0, 1. (6.4)

As we commented in the Lemma, the elements of the propagator are evaluated in one-period of time

Pαβ ≡ Pαβ (t + T | t) , ∀α, β = 1, 2,

and they are periodic functions of t fulfilling the normalization conditions

11



P11 + P21 = 1, P12 + P22 = 1.

As expected, the one-time ATP probability (vector) of the discrete system P (α, t), ∀α, β = 1, 2, is related

with the propagator (matrix) in the long-time limit.

The eigenvalue problem (6.2-6.4) can immediately be solved, so we get for the eigenvalue k0 = 1 the

right and left eigenvectors

~f0 ≡ f0(1, t)

(

1
1−P11

1−P22

)

, ~φ0 ≡ C

(

1
1

)

,

the function f0(1, t) and the constant C can be determined from normalization of the ATP probability

and the scalar-product condition
{

~φ0, ~f0

}

= 1.

From the eigenvalue k1 we get

~f1 ≡ f1(1, t)

(

1
P11−1
P22−k1

)

, ~φ1 ≡ φ1(1, t + T )

(

1
P11−k1

P11−1

)

,

and from ortogonality,
{

~φ0, ~f1

}

=
{

~φ1, ~f0

}

= 0, we obtain

P11 + P22 = 1 + k1, (6.5)

which is nothing more than the trace of the Kolmogorow operator, see (6.1). From the scalar-product
{

~φ1, ~f1

}

= 1 we get the condition

f1(1, t)φ1(1, t + T ) =

(

1 +
P11 − k1

P22 − k1

)−1

.

Using the Floquet structure (see Lemma, part [b]) we know that f1(1, t) = e−λ1t Θ(t) and φ1(1, t + T ) =

e+λ1(t+T ) Ξ(t), where Θ(t) and Ξ(t) are periodic functions of time. It is simple to see that they fulfill

Θ(t) Ξ(t) = k1

(

P22 − k1

1 − k1

)

= k1

(

P11 − 1

k1 − 1

)

. (6.6)

So we arrive to the set of vectors

~f0 =
1

1 − k1

(

1 − P22

1 − P11

)

; ~φ0 =

(

1
1

)

(6.7)

~f1 ≡ e−λ1t

(

Θ(t)
−Θ(t)

)

; ~φ1 = e+λ1(t+T )

(

Ξ(t)
P11−k1

P11−1 Ξ(t)

)

.

The calculation of the functions Θ(t) and Ξ(t) can be done by imposing the condition that the following

equality holds for any pair of times {t, t0} provided t ≥ t0.

P (t | t0) =
∑

j

~fj(t) · ~φj(t0 + T )ᵀ (6.8)

=
1

1 − k1

(

1 − P22 (t + T | t) 1 − P22 (t + T | t)
1 − P11 (t + T | t) 1 − P11 (t + T | t)

)

+

eλ1(t0−t+T ) Θ(t) Ξ(t0)

P11 (t0 + T | t0) − 1

(

P11 (t0 + T | t0) − 1 P11 (t0 + T | t0) − k1

−P11 (t0 + T | t0) + 1 −P11 (t0 + T | t0) + k1

)

.

Note that (6.6) follows from (6.8) considering that P (t0 | t0) = I, i.e., the identity matrix. Defining

Γ(t, t0) ≡ Tr [P (t | t0)] − 1 we can write the equations
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Γ(t, t0)e
−λ1(t0−t) =

Θ(t)

Θ(t0)
(6.9)

P11 (t + T | t) − 1

k1 − 1

k1

Θ(t)
= Ξ(t),

from where both functions Θ(t) and Ξ(t) can be calculated; see (6.14) and (6.16) for two particular cases.

In the present 2 × 2 model there are only two important time-scales, T and λ−1
1 , interestingly the

only function that remains to be calculated is the trace of the propagator, which in fact depends on the

temporal structure of H(t). On the other hand, the decay of the slowest decreasing (antisymmetric)

eigenvector ~f1 is dominated by the time-scale λ−1
1 .

Note that in the continuous case the eigenfunction f1(q, t) has to be antisymmetric with only one

zero, because such a function can only decay when there is a current across the origin9. This situation

is analogous to the Kramers metastable problem for stationary Markov processes, mathematically the

FPO is parabolic and its propagator can be written as an eigenfunction expansion, with the eigenvalues

appearing in exponential decay factors associated with each eigenfunction. Thus it turns out that the

lowest non-trivial eigenvalue of the FPO is just the inverse of the mean first passage time, in the large

barrier limit3. But this simple interpretation for the Kramers problem, in general does not appear in

periodic nonstationary Markov processes.

The two-point correlation function, (5.1), in the present case reads

<< q(t + τ)q(t) >>as= e−λ1τB1(t, τ), (6.10)

where

B1(t, τ) =
1

k1

∑

αβ

qα qβ g1(qα, t + τ) γ1(qβ , t) g0(qβ , t).

Here qα is the arbitrary value that the dichotomic process can take, the functions gi(qα, t) and γi(qβ , t)

can be read, using Lemma part [b], from of the biortogonal set (6.7), then we get

B1(t, τ) =
Θ(t + τ) Ξ(t)

k1

(

1 − P22

1 − k1

)

(q1 − q2)
2 (6.11)

In order to have an explicit expression for the nontrivial eigenvalue k1 we need to specify the time-

structure of the one-period of time propagator P (t + T | t) . In general this matrix is obtained from the

solution of the ME

dP

dt
= H · P, (6.12)

where H is given in terms of the transition probability rate Wαβ

H =

(

−W21 W12

W21 −W12

)

. (6.13)

As a particular asymmetric model we assume here that the transition probability rate W12 is periodic

in time with the structure W12 = A + B cosωt, with A − B ≥ 0; and that the reverse transition rate is

constant W21 = C ≥ 0. Solving the system (6.12) it is possible to write
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P (t | t0) ≡

(

P11 (t | t0) P12 (t | t0)
P21 (t | t0) P22 (t | t0)

)

,

with

P11 (t | t0) = Γ(t, t0) +

∫ t

t0

(A + B cosωt′) Γ(t, t′) dt′

P22 (t | t0) = Γ(t, t0) +

∫ t

t0

C Γ(t, t′) dt′

P21 (t | t0) = 1 − P11 (t | t0)

P12 (t | t0) = 1 − P22 (t | t0) ,

where Γ(t, t′) is

Γ(t, t′) = exp

[

−(A + C)(t − t′) +
B

ω
(sin ωt − sin ωt′)

]

. (6.14)

This expression completely solves the Kolmogorow problem we have posed before. As a matter of fact, it

can be seen that the following expression holds

1 + Γ(t, t′) = P11 (t | t′) + P22 (t | t′) .

Therefore, by taking in the former expression t′ = t − T , and comparing with Eq. (6.5), the eigenvalue

k1 can be written in the form:

k1 = P11 (t + T | t) + P22 (t + T | t) − 1 = exp [−(A + C)T ] . (6.15)

Note that for the present model, due to the symmetry of the periodic modulation in W12, the Kolmogorow

time-scale is independent of B and it is just characterized by the value: λ−1
1 = (A + C)

−1
. Nevertheless,

as we have already mentioned, in general the time-scale λ−1
1 strongly depends on the temporal structure

of the matrix H(t). For example, if the time-dependent W12 transition rate were of the Arrhenius type,

the eigenvalue k1 would not be independent of the amplitude of the periodic modulation.

1. Periodically modulated Arrhenius model

Consider an asymmetric Arrhenius’ type model, so we now assume that the transition probability rate

W12 is periodic in time with the temporal structure W12 = A exp(b cosωt), and as before W21 = C is

constant in time. Solving the system (6.12) for this model it is possible to write

Γ(t, t′) = exp

[

−C(t − t′) −A

∫ t

t′
exp (b cosωs) ds

]

. (6.16)

Therefore, Kolmogorow’s time-scale λ−1
1 = −T/ log | k1 | reads

λ−1
1 = [C + A I0 (b)]

−1
, (6.17)

where I0 (b) is the Hyperbolic Bessel function16; in the case b = 0 there is no periodic modulation and

we reobtain the static or Kramers-like time scale. In analogy with the splitting problem3, note that in

the static case the rate λ1 is just given in terms of the Kramers scape rates C and A.

14



The nonadiabatic formula (6.17) is therefore an useful starting point to study the relaxation of our

stochastic model in the presence of an external periodic modulation. It is interesting to introduce here a

perturbation in the amplitude of modulation b, in order to compare Kolmogorow’s time-scale λ−1
1 versus

the static time-scale τs = [C + A]−1. Using the expansion of the Bessel function, from (6.17) we get

λ−1
1 = τs

(

1 −A τs

(

b2

4
+ · · ·

))

, (6.18)

it is worthwhile pointing here that (6.17) is independent of T, showing therefore that (6.18) is not a

perturbative expression in the period of the modulation. Thus the comparison of λ−1
1 against T will give

information concerning the lost of correlation during the time-scale of the external periodic modulation.

We see from the propagator expansion (3.8), using (6.7) and (6.8) for a finite dimensional vector

space, that by increasing the amplitude of modulation b the antisymmetric Floquet eigenvector ~g1(t) =

(Θ(t),−Θ(t)) dies out faster to reach to the ATP probability (positive vector ~g0(t)). In a similar context,

Kolmogorow’s eigenvalue k1 gets smaller for increasing b, thus predicting a faster strong mixing of the

two-point correlation function (6.10).

We have proved in section V that in general the relaxation of the correlation and of the Lyapunov

function are, in the asymptotic limit, controlled by the Kolmogorow time-scale ∼ λ−1
1 . Therefore in

order to study the asymptotic relaxation of any PNMP, the important task is to determine the first

non-trivial eigenvalue k1. More complex objects can similarly be studied in terms of the biortogonal set

of eigenvectors of U(t + T, t); for example, this is the case of the stochastic resonance phenomenon.

2. Stochastic resonance in a 2 × 2 model

The stochastic resonance is a name coined in order to characterize the situation when the addition

of noise into a periodically modulated nonlinear system leads to an amplification of the signal-to-noise

spectrum, i.e., this is a cooperative result showing the interplay between deterministic and random

dynamics in a time modulated system14. The signature of this phenomena can easily be seen from the

dynamics of a ME, as it is in the present 2 × 2 model. Consider the exact expression for the correlation

function (6.10). The power spectral density S(ω, t) is the Fourier transform of the correlation function

with respect to the variable τ . Here the time t corresponds to the time at which one begins to take data,

and since the phase of the signal with respect to this time is usually not known (in decoherent systems),

one can assumes that t itself is a random variable distributed uniformly over one period of the signal.

Then the spectral density of interest is the average over the random phase variable:

S(ω) =
1

T

∫ T

0

[

1

2π

∫ +∞

−∞

e−iωτ << q(t + τ)q(t) >>as dτ

]

dt

=
1

T

∫ T

0

[

1

2π

∫ +∞

−∞

e−iωτe−λ1τB1(t, τ) dτ

]

dt.

As we mention before, from (6.11) it is simple to see that B1(t, τ) is a periodic function of τ , in fact

given in terms of Θ(t + τ). This τ−dependence implies the destruction of the Lorentzian shape for the
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spectra, a fact that ultimately leads to the stochastic resonance phenomenon shown in the signal-to-noise

spectrum.

For a general time modulated Markov problem, in order to study the amplification of the signal-to-noise

spectrum the important task—in the asymptotic analysis—is to consider just the associated key function

B1(t, τ) in the corresponding expansion (5.1).

B. Diagonalizable models

If the N−level Master Hamiltonian can be diagonalized at any instant t, we could calculate the spectrum

of U(t + T, t) by the following device. Consider the auxiliary time-parametric eigenvalue problem

H(t
′

) | n(t
′

)〉 = En(t
′

) | n(t
′

)〉,

where En(t), n = 0, 1, 2 · · · are auxiliary quasienergies. Assuming the existence a complete bracket set

| n(t
′

)〉, i.e.,
∑

n | n(t)〉〈n(t) |= I (the identity matrix) it is possible to show that

Tr [P (t | t′)] =
∑

n

exp

∫ t

t′
En(s) ds. (6.19)

From this expression we can calculate recursively any Kolmogorow ’s eigenvalue. Using the notation

Γ(t + T, t) = Tr [P (t + T | t)] − 1, in principle any eigenvalue kn = e−λnT can be calculated by noting

that

lim
T→∞

d
dT

Γ(t + T, t)

Γ(t + T, t)
→ −λ1,

and for λ2 we have

lim
T→∞

d
dT

[Γ(t + T, t) − k1]

Γ(t + T, t) − k1
→ −λ2,

and so forth. We see that the important task is to determine the trace of matrix Green’s function

P (t + T | t) .

We note that in general a time-parametric Master Hamiltonian matrix H(t) cannot be diagonalized;

on the other hand only if the condition of PDB is fulfilled the diagonalization of U(t + T, t) could be

assured, see section IV.

In order to get more insight into the structure of the Kolmogorow spectrum let us now consider a

particular nonsymmetric 3× 3 model. Assume that the Master Hamiltonian has the particular structure

H =





−(β + γ) α α
β −(α + γ) β
γ γ −(α + β)



 , (6.20)

where α, β, γ are positive possible time-periodic functions. The physical interpretation of this H(t) can

easily be done by using a level diagrammatic representation, see figure 1. Solving the system (6.12) for

this model it is possible to write a closed equation for the trace of the propagator, then we get

Γ(t, t′) = Tr [P (t | t′)] − 1 (6.21)

= 2 exp

[

−

∫ t

t′
(α(s) + β(s) + γ(s)) ds

]

.
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We see that even when there is a degenerated quasienergy for (6.20), i.e., E0(t) = 0, E1,2(t) = −α−β−γ,

due to the fact that this H(t) can be diagonalized at any instant t, expression (6.21) is in accordance with

(6.19). From (6.21) it is possible to see that Kolmogorow’s time-scale λ−1
1 is given, for this particular

case, in terms of one period of time area of the transition rates.

C. About the Suzuki-Trotter approach

If H(t) cannot be diagonalized at any instant t, nothing more can be told concerning the possibility

of finding analytically the non-trivial eigenvalue k1 of the Kolmogorow operator. Therefore in order to

end the analysis of the spectrum of U(t + T, t), we give here a numerical approach that can easily be

implemented in a finite dimensional vector space.

Consider the formal expression (6.1) to represent the Kolmogorow operator. Following the theory of

time-ordered exponential, any ordered exponential operator can be expressed by an ordinary exponential

operator in terms of the super-operator T as15

~T exp

(

∫ t+T

t

H(τ) dτ

)

= exp [T (H(t) + T)] ,

where the super-operator T is defined by its action over any operator (differentiable or not) A(t) and

B(t):

A(t)eT TB(t) = A(t + T )B(t).

Thus, using Trotter’s formulae it is possible to prove that

U(t + T, t) = lim
n→∞

e
T

n
H(t+T ) · · · e

T

n
H(t+ 2T

n
) e

T

n
H(t+ T

n
). (6.22)

From this expression for U(t + T, t) the characteristic polynomial can be calculated as a perturbation in

the small parameter T/n.

In order to study how fast is the convergence of this approach, let us tackle an interesting 3× 3 model.

This situation physically may correspond to the case when a periodically modulated external pumping is

acting on some discrete level 3 to produce a current to the level 1, while the rest of transition rates Wij

are time independent. We can, for example, consider

H(t) =





−1 1 α(t)
0.5 −2 0
0.5 1 −α(t)



 . (6.23)

Clearly this is an out of equilibrium model with a diode between states 2 and 3. Now we assume an

Arrhenius-like form for the time-periodic transition rate α(t) = Aeb cos ωt. It is simple to see that if at

time t′, α(t′) = 3 or 1, the matrix H(t′) cannot be diagonalized. Thus in order to calculate the eigenvalue

k1 we apply the Suzuki-Trotter approach to estimate the characteristic polynomial of U(t + T, t)

P(k) = det |P (t + T | t) − k1| .
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By studying the eigenvalues k1,2 we found that the convergence of (6.22) is well defined, and good

results are obtained just for n ∼ 10. In addition the trivial root k0 = 1 is always present for any n as was

expected by normalization of the propagator. In figure 2 we show the calculation of the time-scale λ−1
1

for A = 1 and b = 1, 2 as a function of n (in the present case k1,2 are two conjugated eigenvalues, and

the saturation value of λ−1
1 = T/ ln | k1 |−1 are 0.4628 and 0.3718 for b = 1, 2 respectively). We have

checked that (6.22) provides a straightforward method to calculate the first nontrivial time-scale λ−1
1 of

periodically modulated discrete Markov processes. As expected, comparing the present 3 × 3 case with

the similar 2−level system of section VI.A.1, by increasing the amplitude of the periodic modulation b,

the time-scale λ−1
1 decreases predicting a faster relaxation of the associated antisymmetric eigenvector

~g1(t).

D. Final discussions

In the present paper we have introduced the Kolmogorow eigenvalue approach to study the stochastic

dynamics of continuous or discrete Periodic Nonstationary Markov Process, by exploring its Floquet

structure. This theory is encoded in the Lemma of section III, reducing the analysis to an eigenvalue

problem of a Fredholm equation with a nonsymmetrical kernel. In general we have proved that the

asymptotic relaxation of periodically modulated Markov process is governed by the time-scale λ−1
1 which

is characterized by the real part of the first nontrivial eigenvalue k1 of the Kolmogorow operator.

In section VI.A we have discussed pedagogical examples showing the interplay of the combined effect of

fluctuations and external time-periodic modulations. Taking for example an Arrhenius-like model for the

time-modulation of the transition rates, we have shown that if the amplitude of periodic modulation is

small, there is a range of values of the physical parameters where the time-scale λ−1
1 is of the order of the

Kramers time. But in general the mechanism leading to diffusion is nontrivial and the calculation of λ−1
1

is of great value to understand the relaxation and mixing of periodically modulated Markov processes.

We have shown that Kolmogorow’s spectrum analysis is also of interest in the study of the stochastic

resonance17, and in nonequilibrium (order-disorder) phase transitions by considering the relaxation of

the asymptotic two-time correlation function9.

For a finite dimensional vector space, if the Kolmogorow operator cannot be diagonalized we could

only expect a Jordan form for U(t + T, t). Nevertheless finding the first non-trivial eigenvalue k1 gives

a very important piece of information concerning the asymptotic relaxation of any discrete Periodic

Nonstationary Markov Process. As a matter of fact we have also presented the Suzuki-Trotter approach

to calculate the characteristic polynomial in order to get the spectrum of the Kolmogorow operator. To

end the section concerning finite dimensional vector spaces, we worked out an example showing that a

Suzuki-Trotter numerical approach is a very suitable algorithm to tackle the calculation of Kolmogorow

time-scale for discrete Periodic Nonstationary Markov processes.
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FIG. 1. (a) Schematic drawing representing the transitions rates in a 3−level stochastic process characterized by the

Master Hamiltonian (6.20). Note that in principle the transition rates can be time-periodically modulated. (b) Schematic

drawing representing the transitions rates characterized by the Master Hamiltonian (6.23).
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FIG. 2. Plot of the Kolmogorow time-scale λ−1

1
= T/ ln |k1|

−1 using (6.22) for A = 1, T = 1 and b = 1, 2, as a function

of the iteration number n. Suzuki-Trotter’s discretrization time integral is T/n.
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