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ABSTRACT 

A steam explosion is a fuel coolant interaction process by which the energy of the 
corium is transferred to water in a time-scale smaller than the time-scale for system pressure 
relief and induces dynamic loading of surrounding structures. A strong enough steam 
explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a 
direct release of radioactive material to the environment. 

To help finding answers on open questions regarding steam explosion understanding 
and modelling, the steam explosion simulation code ESE-2 is being developed. In contrast to 
the developed simulation code ESE-1, where the multiphase flow equations are solved with 
pressure-based numerical methods (best suited for incompressible flow), in ESE-2 density-
based numerical methods (best suited for compressible flow) are used. Therefore ESE-2 will 
enable an accurate treatment of the whole steam explosion process, which consists of the 
premixing, triggering, propagation and expansion phase. 

In the paper the basic characteristics of the mathematical model and the numerical 
solution procedure in ESE-2 are described. The essence of the numerical treatment is that the 
convective terms in the multiphase flow equations are calculated with the AUSM+ scheme, 
which is very time efficient since no field-by-field wave decomposition is needed, using 
second order accurate discretization. 

1 INTRODUCTION 

Since the TMI-2 accident intensive research on severe accidents in nuclear power plants 
has been carried out to prevent and mitigate such accidents. One of the most important 
remaining issues in core melt progression during a severe accident are the likelihood and the 
consequences of a steam explosion, which may occur when the hot core melt comes into 
contact with the coolant water. A steam explosion is a fuel coolant interaction process by 
which the energy of the corium is transferred to water in a time-scale smaller than the time-
scale for system pressure relief and induces dynamic loading of surrounding structures. A 
strong enough steam explosion in a nuclear power plant could jeopardize the containment 
integrity and so lead to a direct release of radioactive material to the environment. 

Details of processes taking place prior and during a steam explosion have been 
experimentally studied for a number of years with adjunct efforts in modelling these 
processes to address the scaling of the experiments [1]. Despite great efforts in steam 
explosion research, confidence in prediction of reactor situations is not such that an 
unambiguous position can be taken whether the early failure of the containment due to a 
steam explosion is possible or not. There are still a number of unresolved issues - the 
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triggerability and the efficiency of reactor scale corium melt steam explosions are the most 
important ones.  

To help finding answers on open questions regarding steam explosion understanding 
and modelling, the steam explosion simulation code ESE-2 is being developed. In contrast to 
the developed simulation code ESE-1 [2,3,4], where the multiphase flow equations are solved 
with pressure-based numerical methods (best suited for incompressible flow), in ESE-2 
density-based numerical methods (best suited for compressible flow) are used. Therefore 
ESE-2 will enable an accurate treatment of the whole steam explosion process, which consists 
of the premixing, triggering, propagation and expansion phase. 

2 MATHEMATICAL MODEL 

A steam explosion is a complex coupled multi-component, multi-phase, multi-space-
scale and multi-time-scale phenomenon. This has to be taken into account in the mathematical 
description of the steam explosion and the numerical solution procedure of the applied system 
of partial differential multiphase flow equations. ESE-2 is intended to be an accurate, robust 
and flexible steam explosion simulation code, where different steam explosion models and 
steam explosion treatments will be easily incorporated. Therefore the mathematical model and 
the numerical treatment are set up as systematically as possible, starting from the general 3-D 
multiphase model form 
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where U
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 is the vector of conserved variables, F
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,G
r

, H
r

 are the corresponding flux vectors, 
and nsS

r
, sS
r

 are the non-stiff and the stiff source terms, which are written separately due to 
their different numerical treatment. 

Each phase p  (the term “phase” is used in its widest meaning: it denotes the different 
components and the different phases of the same component) in the multiphase flow during a 
steam explosion is described using the averaged continuity 
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and internal energy 
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equations, which are due to their extensiveness presented here only in their 2-D form. In these 
averaged multiphase equations (2) to (5) beside basic terms, which appear also in not 
averaged single phase equations (but without the volume fraction α ), a number of additional 
terms appear during the averaging procedure, which have to be adequately modelled. For the 
sake of clarity all these terms were lumped together in the interphase mass, momentum and 
energy transfer variables Γ , M  and E . 
 Transforming the 2-D transport equations (2) to (5) in the general multiphase model 
form (1) one obtains the following expressions for U

r
, F
r

, G
r

, nsS
r

 and sS
r

 for each phase 
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The relaxation source terms, which tend to establish mechanical and thermal equilibrium 
between the phases, are all located in the stiff source term part sS

r
 since their characteristic 

times are much shorter than the characteristic times of other phenomena in multiphase flow - 
they are even shorter than the characteristic times of acoustic waves.     

The choice of the number of dimensions and the number of phases in the mathematical 
model depends on the complexity of the steam explosion phenomena treated and the 
complexity of the steam explosion model used. A simple mathematical model of a steam 
explosion could be a 1-D 3-phase (liquid water, steam, fuel melt) description, whereas for a 
serious reactor application at least a 3-D 6-phase (liquid water, steam, continuous fuel melt, 
fuel melt drops, fine fuel fragments, non condensable gas) model is needed.  

3 NUMERICAL TREATMENT 

3.1 Solution Operator Splitting 

The system of partial differential multiphase flow equations (2) to (5) transformed in 
form (1) is solved with the numerical finite volume method on a collocated grid. Due to its 
simplicity and straightforward implementation for different number of space dimensions the 
solution operator splitting method [5] is used in the numerical scheme of the ESE-2 code. In 
this approach multidimensional problems are solved with the use of fully discrete 1-D 
numerical methods, which are applied alternatively on 1-D problems in different space 
directions of the multidimensional geometry. In 2-D the solution operator splitting method 
has the form   
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where 1+nU

r
, nU
r

 are the solutions at the new 1+n  and old n  time steps, tN ∆  is the numerical 

solution operator for the time step of length t∆ , and t
xN ∆ , t

yN ∆  are the splitted numerical 
solution operators in the directions x  and y . Due to the stiffness of some source terms and 
consequently the need of a smaller integration time step than for the convective terms to 
assure convergence, the solution operator splitting technique is used also for the source terms. 
The time integration of the system of transport equations (1) in 2-D is so performed on the 
following way 
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where the subscripts lj,  denote the mesh points, the superscripts ( )...+n  the intermediate 
values of the solution and the variables, and ( )kt∆  is the length of the integration time step 
for the stiff source terms sS

r
. 

 
3.2 AUSM+ Scheme 

The fluxes at the mesh cell interfaces F
r

and G
r

 in equation (8) are determined by the 
AUSM+ (Advection Upwind Splitting Method) scheme [6], which was extended for the 
treatment of compressible multiphase models. The AUSM+ flux splitting scheme has the 
efficiency of flux-vector splitting methods and the accuracy of flux-difference splitting 
methods without the cost of field-by-field wave decomposition, and it is easy to generalize it 
to arbitrary equations of state. The essence of the AUSM+ scheme is that the convection and 
the acoustic waves, which are two physically distinct processes, are treated separately and in 
an adequate way. To be able to do that the fluxes in (6) have to be written as the sum of 
convective and pressure terms, what is here presented only for the flux in x  direction 
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The corresponding numerical flux at the mesh cell interface is  
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The most important part of AUSM+ is the calculation of the velocity and pressure scalars for 
each phase, which are denoted in (10) with the superscript AUSM , what is done using the 
following polynomial functions 
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The pressure scalar, which presents the pressure part of the splitted flux (10), is calculated as 
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where LM  and RM  are the Mach numbers at the left and the right side of the mesh cell 
interface based on the numerical speed of sound c  
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The velocity scalar in the convective part of the splitted flux (10) is calculated as 
 
( ) ( ) ( ) ,

,2/1,2/1,2/1

n

lj
AUSM
p

n
ljp

n

lj
AUSM
xp Mcv

+++
=  (14) 

 
where the numerical Mach number at the interface, denoted with the superscript AUSM , is 
calculated as 
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The convective part of the splitted flux (10) is calculated as 
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where the vectors of conserved variables at both sides of the mesh cell interface LU

r
 and RU

r
 

are calculated with second order accurate flux-limiter extrapolation, here shown only for LU
r
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To be able to treat also low Mach number flow, what is especially important for the 

modelling of the steam explosion premixing phase, the pressure and the velocity field have to 
be coupled at low speeds, since at low Mach numbers the AUSM+ scheme behaves more like 
a central difference discretization, which raises the possibility of odd-even mesh points 
decoupling. Therefore a pressure diffusion term has to be added in the convective part of the 
splitted flux (10) to ensure sufficient dissipation when the Mach number tends to zero [7]. 
 
3.3 Conservative and Primitive Variables 

To assure conservation of mass, momentum and energy, the multiphase flow equations 
(2)-(5) are solved in their conservative form with conservative variables U

r
. From a physical 

point of view conservative variables are not convenient to work with, since initial and 
boundary conditions and above all the multiphase flow models are mostly specified in terms 
of primitive variables V

r
. Furthermore, from a numerical point of view, and especially in the 

AUSM+ scheme, primitive variables play a major role in the splitting and discretization of the 
fluxes. Therefore the values of primitive variables have to be known. For a 2-D 3-phase 
model as a simple example the conservative and primitive variables are 
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Some of the primitive variables V

r
 and the specific internal energy pu  can be determined 

from the conservative variables U
r

 directly 
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The remaining primitive variables remV

r
 are calculated numerically from the known variables 

remU
r

 with the Newton-Raphson method for nonlinear systems of equations  [8] 
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where the calculated corrections remV
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the values of the known variables. The Newton-Raphson Jacobian matrix in (20) has the form 
 

( )

( ) ( )

.

0000

0000

0000

000

000

0011

3

33

2

22

1

11

3

3
3

3
33

2

2
2

2
22

1

1
32

1
3211

T
u

p
u

T
u

p
u

T
u

p
u

Tp

Tp

Tp

VJ remNR

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

−−
∂
∂

−−−−

=

ραραρ

ραραρ

ρααρααρρ

r  (21) 

4 CONCLUSIONS 

The compressible density-based steam explosion simulation code ESE-2 for modelling 
the whole steam explosion process is being developed. It is intended to be an accurate, robust 
and flexible steam explosion simulation code, where different steam explosion models and 
steam explosion treatments will be easily incorporated. Therefore in the development of ESE-
2 special attention is given to the systematic and consistent mathematical formulation, the use 
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of advanced accurate and time efficient numerical methods, and a clear structured coding. A 
quality foundation is the prerequisite for the development of a quality code with 
comprehensive steam explosion modelling capabilities, what is needed if we want to better 
understand steam explosions and simulate them more reliably. 

In the paper the basic characteristics of the mathematical model and the numerical 
solution procedure in ESE-2 are described. The essence of the numerical treatment is that the 
convective terms in the multiphase flow equations are calculated with the AUSM+ scheme, 
which is very time efficient since no field-by-field wave decomposition is needed. The 
convective fluxes are calculated with second order accuracy to suppress the problematic 
numerical diffusion of the commonly used first order accurate discretization. Since therefore 
the simulation results will not be influenced so much by the extensive unphysical numerical 
diffusion, it will be easier to reliably estimate the appropriateness of applied steam explosion 
models by the comparison of simulation results to experimental measurements. 

The coding of the mathematical framework and the numerical solution procedure is 
only the first step in the ESE-2 development. In the next step we will start gradually adding 
different state of the art steam explosion models in the code. After each development stage of 
ESE-2 we will systematically verify and validate it, starting with simple benchmark 
calculations and proceeding with simulations of more and more complex steam explosion 
experiments. Only then ESE-2 will be ready for the important and challenging task: the 
investigation of unresolved steam explosion issues. 
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