INP.5

Only a few minerals in meteorites (mainly phosphates) contain small amount of uranium; the fact that ²³⁸U undergoes fission with fission-decay constant $\lambda_f \sim 8.2 \times 10^{-17} \text{ yr}^{-1}$ allows one to use this isotope as a chronometer. By measuring the U concentration in the crystals (by reactor irradiation) and the density of the spontaneous-fission tracks it is relatively easy to calculate the "fission-track age" if ²³⁸U is the main source of fission tracks.

However the fission-track dating of extraterrestrial samples compared with the terrestrial ones has some peculiar features due to presence of a number of other potential track sources except the spontaneous fission of 238 U, such as the spontaneous fission of presently extinct 244 Pu, heavy nuclei of cosmic rays and induced fission by cosmic ray primaries. Only tracks from the spontaneous fission of U and Pu are suitable for fission-track dating. The competing effects of these fissioning elements, whose half-lives differ by a factor of ~50, form a basis for a fission-track chronology for samples older than ~ 4.0 Gyr. Over small intervals in time (~ few x10⁸ yr) the track density from spontaneous fission of 238 U is nearly constant. However, the contribution from 244 Pu doubles every 82 Myr providing a very sensitive measure of the age of a studied sample.

The results of the determination of the fission-track age of the Marjalahti pallasite (stonyiron meteorite) are presented.

Thorough examination of fossil tracks in the phosphate (whitlockite) crystals coupled with U content determination in whitlockites allowed us to estimate the contributions of all possible track sources to the total track density and to calculate a value of the model fission-track age. It was found out that whitlockite crystals of the Marjalahti pallasite contain fossil tracks due to galactic cosmic rays (VH, VVH nuclei); induced fission of U and Th by cosmic rays; spontaneous fission of 238 U; spontaneous fission of extinct short-lived 244 Pu nuclei presented in significant quantities in the early solar system. The initial ratio (244 Pu/ 238 U)₀ at the time of the pallasite parent body formation (taken as 4.6×10^9 yr) was estimated as 0.015. A great track density attributed to the extinct 244 Pu testified to the high value of the fission-track age. The model fission-track ages of (4.37 ± 0.02)×10⁹ yr for the Marjalahti pallasite was calculated.

The comparison of the represented data with petrographic analyses allowed us to interpret a value of the fission-track age as the time of the last intensive shock/thermal event in the cosmic history of the pallasite.

UZ0603009

MPNP'2006

FALLOUTS VARIATIONS OF COSMOGENIC ⁷Be, PRECIPITATION AND SOLAR ACTIVITY (2004-2005, SAMARKAND)

Kungurov F.R.¹, Muminov A.T.², Muminov I.T.², Safarov A.N.¹

¹State University, Samarkand, Uzbekistan ²Research Institute of Applied Physics, Tashkent, Uzbekistan

Monthly values of A_i – activity of ⁷Be in atmospheric fallouts in 2004-2005 in Samarkand (research was done with method [1]) with corresponding data on P_i – quantity of precipitation [2], S_i – visual indices of solar activity of small symmetric semishadow class [3], average values $q_i = (S_{i-1}+S_i)/2$, S_iP_i and q_iP_i (standardized values of $A'_i = A_i/54$ Bk/m² and $P'_i = P_i/44,5$ mm are used) – figure 1, are compared in this work.

Consideration of these dependencies (figure 1 and tables 1 and 2) shows: A_i is minimal when $P_i=0$ and are maximal when P_i and q_i are maximal, but for intermediate values of A_i straight dependence from P_i and q_i is broken in many cases, - A_i variations character are better reproduced by S_iP_i and q_iS_i values.

Conducted analysis allows to conclude:

MPNP'2006

A_i variations character is most satisfactorily described by multiplication of qP,

- For satisfactory quantitative description of A_i variations necessary, besides S and P values, to consider factors, connected with different processes taken place in atmosphere.

Year	2004						2005					
Months	A'i	P'	S	SP'	q	qP'	A'i	P'	S	SP'	q	qP'
1	1.92	1.91	0.67	1.28	1.33	2.54	2.25	0.94	0.92	0.86	0.67	0.63
2	1.08	0.37	1.07	0.40	0.87	0.32	0.79	0.56	0.59	0.33	0.79	0.44
3	2.13	2.44	0.78	1.90	0.92	2.24	1.83	1.45	0.13	0.19	0.36	0.52
4	1.71	1.13	0.91	1.03	0.85	0.96	1.54	0.42	0.95	0.40	0.54	0.23
5	2.46	0.97	1.19	1.15	1.05	1.02	3.83	0.72	0.19	0.14	0.57	0.41
6	0.46		0.72		0.96		0.71	0.19	0.00		0.10	0.02
7	1.79	0.30	0.54	0.16	0.63	0.19			0.79		0.40	
8	0.58		0.78		0.66		1.83	0.35	0.35	0.12	0.57	0.20
9	0.46		0.55		0.66				0.31		0.33	
10	1.54	0.48	1.00	0.48	0.77	0.37	0.71	0.11	0.10	0.01	0.20	0.02
11	5.42	2.66	2.00	5.32	1.50	4.00	1.38	0.74	0.17	0.13	0.14	0.10
12	2.50	1.82	0.43	0.78	1.22	2.22	2.00	0.41	0.36	0.15	0.26	0.11

Table 1. Values of A'_{i} , P'_{i} , S_{i} , $S_{i}P'_{i}$, and $q_{i}P_{i}$ in 2004 and 2005

Fig. 1. Comparison of values of A' $_i/2$ (shadowed) with P' $_i$, S $_iq_i$, S $_iP'_i$, $q_iP'_i$ (light) in 2004 (1,2,..., 12) and 2005 (1', 2', ..., 12')

Section I. Physics of Particles and Nuclei

75

Year	2004					2005				
Month	P'_i/A'	S/A'	q/A'	SP'/A'	qP'/A'	P'_i/A'	S/A'	q/A'	SP'/A'	qP'/A'
1	1.00	0.35	0.69	0.67	1.32	0.42	0.41	0.30	0.38	0.28
2	0.34	1.00	0.81	0.37	0.30	0.71	0.75	1.00	0.42	0.56
3	1.15	0.37	0.43	0.89	1.05	0.79	0.07	0.20	0.10	0.28
4	0.66	0.53	0.50	0.60	0.56	0.27	0.62	0.35	0.26	0.15
5	0.39	0.48	0.43	0.47	0.41	0.19	0.05	0.15	0.04	0.11
6		1.56	2.09			0.27		0.14		0.02
7	0.17	0.30	0.33	0.09	0.11					
8		1.34	1.14			0.19	0.19	0.31	0.07	0.11
9		1.20	1.43							
10	0.31	0.65	0.50	0.31	0.24	0.15	0.14	0.30	0.01	0.03
11	0.49	0.37	0.28	0.98	0.73	0.54	0.12	0.10	0.10	0.07
12	0.73	0.17	0.48	0.31	0.89	0.21	0.18	0.13	0.07	0.06
Avg	0.44	0.69	0.76	0.39	0.47	0.31	0.21	0.25	0.12	0.14

Table 2 P'/A'	S/A' a/A'	SP' and aP'	ratios in 2004	and 2005
Table 2. F/A	, S/A, Y/A	, or any yr	1atios III 2004	anu 2005

References:

- 1. Kungurov F.R., Muminov A.T., Muminov I.T., Muhamedov A.K., Safarov A.N. Scintillation γ -spectrometrical method of atmospheric fallouts of ⁷Be activity determination. The third Eurasian conference. Nuclear science and its application. Book of abstract, Tashkent, 2004, p. 183-184.
- 2. Data of hydrometeorological department of Samarkand.
- 3. http://www.alexeyryback.ru/index.htm.

UZ0603010

STRUCTURE OF ANGULAR DISTRUBUTION OF ELECTRON BREMSSTRAHLUNG BEAM FORMED BY SLIT COLLIMATOR

Aliev M.K.¹, Alimov G.R.¹, Kumakhov M.A.², Muminov A.T.¹, Norboev K.N.³, Osmanov B.S.³, Salikhbaev U.S.⁴, Safarov A.N.³, Skvortsov V.V.¹, Suleymanov R.D.³, Yuldashev B.S.⁴

¹Research Institute of Applied Physics, Tashkent, Uzbekistan ²Institute of Roentgen Optics, Moscow, Russia ³State University, Samarkand, Uzbekistan ⁴Institute of Nuclear Physics, Tashkent, Uzbekistan

The total external reflection (TER) effect for X-rays was experimentally discovered by Compton in 1922 [1]. This phenomenon is observed at the incidence of X-rays on the boundary between two media at the angles which are smaller than the critical. The latter is given by the following formula:

$$\theta_{\kappa \rho} = eh(ZN_A\rho / Am_e \varepsilon_0)^{1/2} / 2\pi E_x$$
⁽¹⁾

76