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ABSTRACT

The establishment of the inelastic analysis technology is essentid issue for a
development of the next generation reactors subjected to elevated temperature operations.
In this report, the peer investigation of constitutive equations in points of a ratcheting and
creep-fatigue analysis is carried out and the methods extracting the constitutive
parameters from experimental data are established. To perform simulations for each
constitutive model, the PARA-ID (PARAmeter-IDentification) computer program is
developed. By using this code, various simulations related with the parameter

identification of the constitutive models are carried out.
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1. Introduction

In most LMR (Liquid Metal Reactor) designs, the operating temperature is very high
at over 500°C and the design lifetime is designed for much more than 30 years. Therefore,
a time-dependent creep rupture, excessive creep deformation, cyclic creep ratcheting,
creep-fatigue, creep crack growth and a creep buckling become very important for a
reactor structural design. Unlike with conventional PWR, the normal operating conditions
can be basicaly dominant design loading because the hold time at an elevated
temperature condition is enough long to result in severe creep damage during total
service lifetime. For the purpose of the high temperature structural integrity evaluation in
design of nuclear power plants, the worldwide design codes and assessment procedures
such as ASME-NH(USA), RCC-MR(France), R5(UK), and DDS(Japan) are developed or
under devel opment status.

To make substantial engineering design rules, most of the evaluation rules contained
in the design codes are based on the elastic analysis method, which is using the elastic
stress and strain calculation results. However these methods may be very conservative in
some design conditions, therefore the structural integrities can not be satisfied in some
critical points of the components and equipments. To overcome the conservatism
contained in the elastic analysis method and make a satisfaction of the reactor structural
design the inelastic analysis methods are inevitably required to be introduced in the
elevated temperature reactor design process. In using the inelastic analysis method there
are couples of issues to be resolved in actual design stages such as selections of the
inelastic constitutive models, determinations of the load histories, significant engineering
costs which will be a computing time for the load history of awhole design lifetime, and
so on. Among these issues, the selection of the inelastic constitutive models involves big
issues of the identification of the material parameters associated with their equations.

In this study, the various constitutive equations for ratcheting simulation are
investigated and programmed to be used to identify the equation parameters. Many

researchers have made the efforts in developing constitutive models for ratcheting:

U Linear Kinematic Hardening



(Prager, 1956)
O Multilinear Model
(Mroz, 1967)
O Nonlimear Kinematic Hardening
(Armstrong and Frederick, 1966, Guionnet, 1992)
U Decomposed Nonlinear Kinematic Hardening
(Chaboche, 1979, 1986)
U0 Decomposed Nonlinear Kinematicv Hardening with Threshold
(Chaboche, 1991; Ohno and Wang, 1993)
U Modified Chaboche(1991) or Ohno and Wang(1993) Model
(McDowell, 1995) (Jiang and Sehitoglu, 1996)
(Voyiadjis and Basuroychowdhury, 1998)
(AbdelKarim and Ohno, 2000)
(Bari and Hassan, 2001, 2002)

To obtain the material parameters contained in the congtitutive models, the PARA-ID
(PARAmeter-IDentification) computer program is developed. With using this code, the
cyclic behaviors of the material are characterized and comparison of each mode is
carried out.

Finally, to be able to perform the simulation of the time-dependent material behavior
due to the viscous effects, the unified Chaboche viscoplastic model is reviewed and
implemented in PARA-ID code. The viscous effects invoking the stress relaxation, creep
strain increment, and the strain rate dependent hardening behavior are investigated by the
simulation with the material parameters of 316L used by Chaboche (1989).

2. Congtitutive Equations for Ratcheting M odels

According to the ASME-NH design rules, the definition of a ratcheting is a
progressive cyclic inelastic deformation. Describing it in more detail, a ratcheting is the
accumulation of the plastic strain cycle-by-cycle for a certain stress amplitude with a

non-zero mean stress. Most metals revea cyclic hardening or softening behaviors to a



certain number of cycles and subsequently stabilize or cease to change the size of the
yield surface. However, in some conditions mentioned above for the ratcheting
descriptions, an inelastic strain keeps on occurring with cycles even after the materia is
stabilized. During this behavior, the trandation of the yield surface in a stress space
(kinematic hardening) is the dominant reason for a progressive incremental inelastic
deformation.

As an isotropic hardening (i.e. yield surface size change) behavior stabilizes or ceases
after a certain number of cycles, al of the ratcheting constitutive parameter identification
are related with the kinematic hardening parameters and should be determined by using

experiments performed on stabilized materials.

2.1 Theoretical Formulation of Plasticity

To formulate the plastic behavior of a work-hardening or softening material, it is
required to use an initia yield condition, a plastic flow rule, and a hardening rule. An
initial yield condition has a function to specify the state of a stress for which a plasticity
will first occur. A plastic flow rule provides the magnitude of the plastic strain increment
tensor and it defines its direction in the strain space. The hardening rule modifies the

yield condition in the direction of the plastic flow.

2.1.1Yield Condition

The yield condition is represented by a convex surface in the stress space. Assuming f
as a yield function which depends on a complete previous stress and strain history of a
material, the yield condition occurs whenever the loading function F(cj;) becomes equal

to the constant f as follows;

F(aij) = f 1)

As shown in Fig. 1, when the loading increment dF is in the following condition (plastic
loading),



dF =6, >0 )

the state of a stress is moving out from the yield surface and a plastic behavior occurs.

When the loading increment dF is zero (neutral loading) as in

:ioz -0, ©)

ij

dF
ooy

the state of a stress is moving on the yield surface.

Finally, when the loading increment dF is in the following condition (elastic loading),

dF :a—Fo"ij <0, 4)
00

i.e., unloading condition, the state of a stress is moving in from the yield surface and
going back to the elastic behavior.

Actually, it is well-known that the constitutive equations for the mechanical behavior
of materials are generally based on the thermodynamical concepts [Chaboche, 1983]. In
this study, a typical von Mises yield criteria, which is based on the thermodynamic forces
associated with the two internal state variables such as the kinematic (back stress, «;;) and

the isotropic hardening (drag stress, R) variables, is used as follows;

f(o-ij_aij):\/;(Tij_aij)(rij_aij) -0, -R=0 (%)

where oy are the Cauchy stress tensor, a; are the total backstress tensor, z; are the
deviatoric stress tensor of the stress tensor oy , ¢ is the deviatoric backstress tensor (the
current center of the yield surface), oy is the initial yield stress, and R is the isotropic

hardening variable.



Fig. 1 Concept of Yield Surface Conditions
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2.1.2 Plastic Flow Rule
The total strain increment tensor is the sum of the elastic and plastic strain increment
tensors as follows;
& =& + & (6)
From the equation, the elastic strain can be easily obtained by differentiating the elastic
potential function with respect to stress tensor ;. Similarly, the plastic flow equations

can be obtained with the plastic potential function g(a), which is a scalar function of the

stresses as follows;

e =199 )

where A is a positive scale factor of a proportionality, which is zero in the elastic domain,

and it is actually derived as

1/ o .
i:ﬁ<ao' .O-ij> (8)

where H is the plastic modulus, <> indicates the MacCauley bracket, and the symbol e

presents the inner product as aeb =a;b; . As shown in Eq. (7), the plastic flow vector
& is directed along the normal to the surface of the plastic potential. For most stable
materials, the flow rule is associative, i.e., the plastic potential function and the yield

function coincide, g = f. In this case, the plastic flow rule is represented as

&P = A ©)
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and it develops along the normal direction to the yield surface.

2.1.3 Hardening Rule

When the state of a stress is over the elastic limit and the loading continues, a
material hardening behavior can occur with one of two types or both. One is a kinematic
hardening accounting for the yield surface translation in the deviatoric stress space. The
other one is an isotropic hardening accounting for the expansion of the yield surface
without its translation.

The most important feature for ratcheting simulation is the kinematic hardening rule.
This rule will be investigated in detail in the next sections for various constitutive models.

Isotropic hardening model used in this study is represented as by Chaboche (1991)

with the expression

R =b[Q - R]p (10)

where b and Q are material parameters and p is the evolution of the accumulated plastic

strain, which can be expressed as

p=.2&Pel (11)

When the initial value R = 0, integrating the Eq. (9) gives:

R=Q(1-¢e™) (12)

According to the evolution of an isotropic hardening by Chaboche (1989) the material

parameter Q can be represented as

Q= QM +(Q0 _QM )eizyq (13)

11



where Q,,,Q,, and x are material parameters and q = Hg,f / 2” .

Considering the time recovery effects, Chaboche has proposed an isotropic hardening
model (1989) as

R =bIQ - RIp + 7,Q. ~R["sign(@, ~R) (14
where
QrQ—Qfll—(Qg—_Qj] (15)

2.2 Cyclic Plasticity Constitutive Models
2.2.1 Linear and Multilinear Kinematic Hardening Model
Prager (1956) has proposed the simplest kinematic hardening rule to simulate the

plastic behavior of materials as follows;

¢, =Céf (16)

In this model, the yield surface moves linearly with the plastic strain as shown in the
trace of the backstress (ax) of Fig. 2 and the hysteresis loop is bilinear. Therefore, this
model can not represent the nonlinear part of the hysteresis loop. Furthermore, this model
only produces a closed hysteresis loop for a prescribed uniaxial stress cycle with a mean

stress and it can not simulate the ratcheting behavior.

100
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Fig. 2 Hysteresis Loop by the Prager Model
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To improve the linear kinematic hardening model, many authors like Mroz (1967),
Besseling (1958), Ohno and Wang, etc, have proposed the multilinear models. All these
models are based on dividing the stress and strain curve into many linear segments.
Actually these models shows a very good agreement in the nonlinear part of the
hysteresis loop but they still provides a closed loop for a uniaxial stress cycle with a mean

stress and can not simulate the uniaxial ratcheting behavior.

2.2.2 Nonlinear Armstrong and Frederick Model
2.2.2.1 Constitutive Equations

Armstrong and Frederick (1966) have proposed a nonlinear kinematic hardening
model, which can describe the nonlinear parts of the hysteresis loop with a memory effect
of the strain path.

The kinematic hardening rule in this model is represented with the evolution of the

deviatoric backstress as follows;

a; = ECg"’ — ya; P (17)

ij 3 ij

In above equation, p is the evolution of the accumulated plastic strain expressed as

1/2
p=|ér| = {—g'ifg'i;’} (18)

2.2.2.2 Plastic Modulus

As shown in the equation of the plastic strain evolution from the flow rule of Eq. (9),
the simulation for a uniaxial ratcheting primarily depends on the plastic modulus
calculation scheme. In this study, ratcheting is referred to as “uniaxial ratcheting for
uniaxial loading”.

Most of the nonlinear kinemtaic hardening models are called a coupled model

because the plastic modulus calculation is coupled with the kinematic hardening rule

13



through a consistency condition. After applying the consistency condition to the yield

criterion of Eq. (5), the evolution of the yield function can be obtained as

ti+—a; +—R =0 (19)

Each derivative term can be obtained after differentiating the yield function with respect

to the deviatoric stress as follows;

a@f y - 3(Tij _aij) (20)
T
' 2\/2 (Tij _aij)(rij _aij)
o o e
oa;; oty
of
- 22
= (22)
After substituting Eq.(20) — Eq.(22) into Eq.(19), one can obtain
of . . :
E(Tij - aij) -R=0 (23)
ij
The elasticity relationship between the Cauchy stress and strain tensor is defined as
d-ij = Eijkl‘c"‘lfl = Eijkl (‘c"‘kl - ‘9kr|)) (24)

where Ejyq is the forth-order elastic modulus tensor. Substituting Eq.(17) and Eq.(24) into

EQ.(23) one can obtain the equation as

14



of . 2 . . )
Py { Ei (€a—€aq) = [Ecgijp -7 pﬂ -b(Q-R)p=0 (25)
ij
where
1/2
2 Y2 T2 of of
R T
p= ‘gij ‘ - [3‘% &ij } —/{3 60'”__80-- (26)

After substituting Eq.(9) and Eq.(26) into Eq.(25), one can obtain

of 2 of

s Ején —EA—--CA +yo A 2o da -b(Q-R)4 2. A =0 (27)
aaij aakl 3 ao-ij 3 60‘ij aO'ij 3 aGmn 60‘mn

After some arrangement in terms of &; and A, the following equation can be obtained.

of of 2 . of 2 of 2 of
A Ej ———+=C / /
[ Moo, 00, 3 ooy aa %300 300 ] a5 (28)

From Eq.(28) the positive scale factor can be expressed as

of

PR L
H do;;

Eijkl Eu (29)

where H is defined as a plastic modulus,

H:Eijkl of of +EC of of _ of a g of of +b(Q-R) g of of (30)
60'"- oo, 3 80” 60'"- 80"- 3 80'"- 60‘U 00, 00,

Substituting Eq.(9) and (29) into Eq.(24) one can obtain the equation as

15



. . of
Gy = B [‘gkl —4 ]

0oy
(31)
1 of of .
= (Eijkl - ﬁ Eijkl a Eijkl ajgkl
Eq.(31) can be rewritten as

d-ij = Dijklékl (32)

where the elasto-plastic modulus tensor is defined as

1 of of

Dijkl = Eijkl _ﬁ Eijkl a Eijkl gkl (33)

2.2.2.3 Cyclic Behavior
The material parameters used in this example of a cyclic loading are taken from the
published SPCEN mild steel [Puso, 2000] as

Kinematic Hardening : C =23.7 GPa, y =416
Isotropic Hardening : Q =37.7 MPa, b =67.8
Yield Stress . oyo = 108 MPa
Young’s Modulus  : E =153 GPa

By using the given parameters, theoretically the saturation stress should be

=0yt ¢ +Q
4
=108 + 23,700/416 + 37.7 (34)

= 202.67 MPa

O-satu ration
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Fig. 3 shows the stress-controlled stress-strain hysteresis loop for the steadily
increasing loads at each loading cycle.

250
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Fig. 3 Stress-Controlled Hysteresis Loop by the AF Model

As shown in figure, we can see that the loop is saturated at the theoretical value of the
saturation stress as increasing the load amplitude. Fig. 4 shows the strain-controlled
stress-plastic strain hysteresis loop and we can see that the maximum stress is exactly
saturated at 202.67 MPa. When the load amplitude is so larger than the saturation stress
level, then the yield surface translates and the hysteresis loop occur at large strain region
as shown in Fig. 5.

Stress (MPa)

-5.0 -2.5 0.0 2.5 5.0
Plastic Strain (%)

Fig. 4 Strain-Controlled Hysteresis Loop by the AF Model
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Fig. 5 Cyclic Behavior in Case of Large Load Magnitude

To investigate the characteristics of the material parameters of C and vy, the sensitivity

studies are carried out. Fig. 6 shows the effects of a kinematic hardening parameter C

with a constant value of y by the stress-controlled simulations. As shown in the figure, by

increasing the value of C, the material behavior after yielding becomes stiffer and the

calculated strains become smaller. Fig. 7 shows the effects of the parameter y with a

constant value of C by the stress-controlled simulations. As shown in the figure, by

increasing the value of y, the material behavior after yielding becomes less stiff and the

strain increases. For a uniaxial loading, the trace of a backstress ay stabilizes to a value of

Cly after increasing some amount of plastic strain.

C=30GPa

C=60GPa

Stress (MPa)

Stress (MPa)

L A R
| | | |
N e e R R

Stress (MPa)

C =120 GPa

&
&
°

S

rain (%)

01 02 03 04 05

-0.4 0.3 0.2 0.1 [ 0.1
Strain (%)

Fig. 6 Effects of Parameter C on Hysteresis Loop
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Fig. 7 Effects of Parameter y on Hysteresis Loop

2.2.2.4 Parameter Ildentification

Identification of the material parameters associated with their material models is one
of the most important issues, especially in field of a high temperature reactor structural
design.

The identification procedure to obtain the material parameters C and y contained in a
backstress evolution equation is based on available experimental results. Substantially, as
this model has just two parameters, there is no way to extract the adequate control
parameter related with ratcheting behavior. Therefore, the stress-strain data obtained from
the half cycle of the uniaxial tension or compression experiments is enough to extract the
material parameters. Due to this reason, this approach is not adequate when the
simulation involves large number of cyclic loadings with a mean stress, which can invoke
ratcheting behavior.

Integrating the backstress evolution equation of Eq.(17) over a half cycle of a stress-

strain experimental data, one can obtain the following expression

a =S5+ (ay—S)e 7" (35)
where
S = ZE (36)
3y

In Eq. (35), the state of (¢, «,) results from the plastic flow.

19



In this study, the least-square error fitting method is used to extract the parameter C
and y from the finite set of experimental data points. In applying this method, Eq.(35) is
not adequate form, therefore it is necessary to transform Eq.(35) into a form of the linear
equation. To do this, we can rearrange the Eq.(35) as

In(s_aojzy(gp—gop) (37)
S—a

With assumption of the saturation stress (Fig. 8) at a point of no backstress evolution, i.e.,

a = 0, the backstress is expressed as
2C
=S =—— 38
L =8 =3 (38)
Substituting Eq.(38) into Eq.(37), Eq.(37) can be rewritten as

I{ﬁiﬁﬂ=y@“fm (39)
a, —a
Therefore, Eq.(39) has a form of the linear equation as

Y = AX (40)

where

Y = In(mj, A=y, X=(eP—&b) (41)

When applying the least-square error fitting method, the value of A in Eq.(41) can be

obtained as

20



Ao nz (xy) - (Z XXZ;, Y) (42)
Y (¢)-(Xx)

where n is a number of experimental data points.

Finally from Eq.(38) and Eq.(42), we can obtain the material parameters C and .

G A

el

o, +R
Y — 7}
_C

Oy a a, = ;

v v >

0
c p

Fig. 8 Half Cycle of Stress-Strain Data for Material Parameter Identification

2.2.3 Chaboche 3-Decomposed Model
2.2.3.1 Constitutive Equations

To improve the deficiency of the Armstrong and Frederick model for a ratcheting
simulation, Chaboche and his co-workers proposed a ‘decomposed’ nonlinear kinematic

hardening rule as follows;

dij = Zn:(dij)k = i(%ckéijp = Yk (aij)k pj (43)

As expressed in EQ.(43), the Chaboche kinematic hardening model is basically a
superposition of several Armstrong and Frederick hardening rules.
The plastic modulus coupled with this kinematic hardening model, which can be

obtained through the same procedures of Eq. (19) to Eq. (30), can be expressed as

21



o of f < 2 of 2 of 8f
H=E .
ijkl 6(7” ij ) (au) 35 (Q 300

Initially, Chaboche proposed a model with 3-decomposed rules (n = 3), which has

three segments of a stable hysteresis loop. This model suggests that the first rule («,)
should have a very large modulus at beginning of the hardening behavior and stabilizes
very quickly. The second rule («,) should have a function of simulating the transient

nonlinear part. Finally, the third rule («;) should have a function of the linear hardening

behavior of the hysteresisloop throughout all the strain ranges.

2.2.3.2 Cyclic Behavior
To investigate the cyclic behavior of the Chaboche model with 3-decomposed rules,

the following material parameters are used [Bari, 2000]

Kinematic Hardening : C;.3 = 60000, 12856, 455 (ksi)
v1-3 = 20000, 800, 9
Isotropic Hardening : Qv = Qo = 0.0 ksi, b=0.0, u=0.0

Yield Stress . Oyo = 18.8ksi
Young'sModulus  : E=26300ks
Poisson’s Ratio :v=0.302

To provide ratchet loading conditions, the stress cycle with a mean stress is used as
shown in Fig. 9. Fig. 10 shows the simulated stress-strain hysteresis loop. As shown in
the figure, in some of the initial load cycles, the inelastic strains are relatively large but
by increasing the number of cyclesin acertain lever, the cyclic strain increments become

stable and it reaches a steady rate of aratcheting stain.
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Fig. 9 Cyclic Loading History with Mean Stress

Stress (ksi)

T T T T
0.0 0.5 1.0 15 2.0 25
Strain (%)

Fig. 10 Simulation Result of Cyclic behavior by the Chaboche 3-Decomposed Rule
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Fig. 11 shows the traces of the 3-decomposed rules a, a,, and a, (the

backstresses) and their sum resulting yield surface center a, .
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Fig. 11 Components of Total Backstress by the Chaboche 3-D Model

In this figure, we can see that each rule represents well its own function as described

in the above section. Especialy, it is observed that the constant ratcheting rate is mainly

caused by an incorporation of the linear kinematic hardening rule of a, aong with other

nonlinear ones.

In third rule of a,, when the value of y, is zero, the complete shakedown of

ratcheting occurs as shown in the results of Fig. 12.
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Fig. 12 Components of Total Backstressin Case of y3=0

This shakedown phenomena can be easily explained when we investigate any two
points in the traces of the backstress components. Actually, when we neglect the value of

74, it is expected that the ratcheting strain will be overestimated for some initial cycles

but underestimated gradually with the increasing number of cycles. To overcome this
phenomenon, a slight nonlinearity can be introduced in the third rule by assigning a

relatively small value of y, as shown in Fig. 11. However, when increasing the value of
74, the third backstress reaches its limiting value quickly and the constant ratcheting rate
begins much earlier. Furthermore, the larger the estimation of the value of y,, the higher

the total accumulated ratcheting strain results in the simulation as shown in Fig. 13. With

25



considering all these characteristics, the parameter of y, may be considered as a

ratcheting parameter whose value can be determined with uniaxial ratcheting rate data.
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Fig. 13 Components of Total Backstress in Case of y3 = 30

Fig. 14 shows the mean stress effects on the uniaxial ratcheting behavior. As shown
in the figure, the higher the value of the mean stress, the larger the ratcheting strain
occurs. When there is no mean stress, a uniaxial ratcheting would not occur at al and the
cyclic loadings result in a closed loop without translation of the yield surface. This
loading condition, which can invoke the ratcheting behavior, may be occurred in the
KALIMER-600 design as shown in Fig. 15. As shown in the figure, as a primary hot
sodium free surface moves up (hot front condition), relatively small tension stress occurs
in front of the moving hot free surface with a following large compression stress at
location of the hot free surface. When the free surface moves down (cold front condition),
the stress distributions throughout moving range are changed reverdly. Therefore, as the
free surface moves up and down periodically, the moving region will be subjected to
stress cycles with a mean stress, which can invoke ratcheting.
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Fig. 14 Mean Stress Effects on Cyclic Behavior
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Fig. 15 Therma Ratcheting Environmentsin KALIMER-600 Design

Fig. 16 shows the effect of the multiaxia loading conditions on the cyclic behavior.
As shown in the figure, when each load of biaxial loads is exerted in-phase direction, the
accumulated ratcheting strain becomes smaller than the uniaxial load (Fig. 16(b)).
However, when each load of the biaxial loads is applied out-of-phase direction, the
ratcheting strain significantly increases when compared with that of the uniaxial load (Fig.
16(c)).
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Fig. 16 Multi-axia Loading Effects on Cyclic Behavior

2.2.3.3 Parameter Identification
All parameters except for y, related with the constitutive equation can be extracted

from an experimental data of a uniaxial strain-controlled stable hysteresis loop. To use
this data, the experiment should be performed with a reasonable strain limit to obtain the
stabilized hysteresis loop.

The stabilized hysteresis loop for the loading part of the hardening curves should
satisfy the following equations as

Y a+o,=0, (45)

k

a, =%[1— 2e‘”“9p‘(‘ﬁp”], for k=1and 2 (46)
k

where ¢ is a strain limit of the stable hysteresis loop. Actually, to find the stable

hysteresis loop and its strain limit, one can perform the stain-controlled uniaxial cyclic
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experiments with increasing the strain amplitude cycle by cycle as shown in Fig. 17.
From the figure, it would be determined the strain limit as about 0.85% which resultsin

the stable hysteresis |oop.

Stable HysteresisLoop : & =0.85%
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Fig. 17 Strain-Controlled Uniaxial Cyclic Behavior

with Increasing Input Amplitude

From an experimental data of the stable hysteresis loop of Fig. 18, arole of the backstress
& is to describe an initia stiff behavior after the yielding. Therefore, the parameter C;
should be a large value to describe the plastic modulus at the yielding region and
corresponding parameter y; aso should be large enough to stabilize the hardening of the
backstress a; immediately. These parameters can be determined with the engineering
sense by the user. The role of the backstress &; is to describe the linear part at a high
strain region as shown in Fig. 18. Therefore, the parameter C; should describe the plastic
modulus a a high strain range, and can be determined from the slope of the linear
segment of a hysteresis loop. With the determined parameters C;, y1, and Cs, the
parameters C, and y, can be determined by tria simulations to produce a good
representation of the experimental stable hysteresis loop which satisfy the following
relationship
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&+&+o-yo =0y _&{85 - (_85)} (47)
Y1 72 2

at or close to the strain limite?. In these trial simulations, it can be done without the

parameter y; because this parameter has a significant effect on the ratcheting rate but not

on the stable hysteresis |oop.
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Fig. 18 Stable Hysteresis Loop to Obtain the Material Parameters

Fig. 19 shows the results of trial simulations with variations of y, with C;=60000 ksi,
¥1=20000, Cz= 455 ksi, y3=0.

To obtain the parameter vs, it is necessary to perform a uniaxial ratcheting experiment.
Using this data (¢ vs N), y3 can be determined by trial simulations to produce a good

stable ratcheting rate.
Fig. 20 shows the result of a verification simulation with finally determined
parameters. As shown in the figure, the Chaboche 3-decomposed model provides a good
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agreement with that of the experiment but it still underestimates the plastic modulus at

the yielding region.
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Fig. 19 Trial Simulations to Obtain the Best y3 Value
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Fig. 20 Verification Simulation with Final Material Parameters
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2.2.4 Chaboche Model with A Threshold
2.2.4.1 Constitutive Equations

To overcome the deficiencies of the Chaboche 3-decomposd model, Chaboche
proposed a 4-decomposed nonlinear hardening rule with a concept of a ‘threshold’ as
follows (Chaboche, 1991);

ey RS 2. ., A
o _kZ:l:(aij)k _Z(3Ck5ij 7k(aij)k<1 f_(ak)>pJ (48)

k=1

In the above equation, the constants A;, A;, and A are zero and only A4 has a constant
value. The f(a,) means the yield function represented as f(a,)=[(3/2)(a, a,)]"*.
This rule gives a linearly growing kinematic hardening behavior to a certain threshold
stress level and it becomes a nonlinear behavior outside the threshold level. Therefore, it
is possible to enhance the plastic modulus within a certain range after the yielding.

The extracted plastic modulus coupled with this kinematic hardening model can be

expressed as

of o 23 of of A of |2 of of
H:Eijklii"‘*Z(Ck)i =2 7 ey) (1= - Y
do; 0oy 31 ooy 0oy o f(a,)/|0o; \ 300y oy (49)
fZ of of
+b(Q-R) |=
Q=R) 300, 00,

2.2.4.2 Cyclic Behavior
As an example of an application, the parameters used in this model are as follows
(Bari, 2000];

Kinematic Hardening : C;.4 = 60000, 3228, 455, 15000 (ksi)
11-4 = 20000, 400, 11, 5000

As=5.0 ksi
Isotropic Hardening : Qm = Q, = 0.0 ksi, b=0.0, u=0.0
Yield Stress . Oyo = 18.8 ksi
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Young'sModulus  : E=26300 ksi
Poisson’s Ratio :v=0.302

Fig. 21 shows the calculated total backstress components for a stress amplitude 32 ksi
with a mean stress 6.52 ksi. As shown in the figure, the roles of the backstresses ay, &,
and az are the same as those of the Chaboche 3-decomposed model and a backstress a,
represents a stiff plastic modulus to a certain threshold stress level and it stabilizes its
hardening behavior outside the threshold level.
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Fig. 21 Components of Total Backstress by the Chaboche 4-Decomposed Model

Fig. 22 shows the stress-controlled cyclic behavior of a stress-strain relationship. In
this result, it is evident that this model can improve the hardening region with a
combination of a linear and a nonlinear hardening model. When the linearly increasing
hardening stress reaches the threshold level A4, the hardening becomes nonlinear again
and the reduction of ratcheting is attenuated to avoid potential shakedown. Therefore, the
material parameter A4 can be considered as a ratcheting parameter which should be
determined from uniaxial ratcheting experimental data. Fig. 23 shows the comparison of

the strain-controlled hysteresis |loops between the Chaboche 3-decomposed model and the
Chaboche 4-decomposed model.
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Fig. 23 Comparison of Strain-Controlled Hysteresis Loops

2.2.4.3 Parameter Identifications
Fig. 24 shows the strain-controlled total backstress components. As shown in the

figure, the material parameters Cy, y1, Cs, and y3 can be determined by using the same

method as described in the Chaboche 3-decomposed model. The parameters of C,, v, Cy,
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and y4 are identified by trials to give a good result with the experimental stable hysteresis

loops which satisfy the following relationship at or close to the strain limit ¢

&+&+&+A4+Gyo =O'X—&{€f - (-£?)) (50)
Vi V2 74 2

To start atrial simulation, the first trial value of A4 can be taken close to the value of the
mean stress in the uniaxial ratcheting experiment used for a parameter identification
(Chaboche, 1991). After determining the parameters C,, v»2, C4, and y4, which produce a
good agreement with the strain-controlled experimental stable hysteresis loop, with the
first trial value of Ay, further simulations are to be performed with variation of A4 values
to improve the simulation result matching the ratcheting experimental data. In this
simulation finding a final value of A4, the strain-controlled stable hysteresis loop should
not be deteriorated due to the selected value of Aas.

Stress (ksi)

Plastic Strain (%)

Fig. 24 Stable Hysteresis Loop by the Chaboche 4-Decomposed Model
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2.2.5 Ohno and Wang Model
2.2.5.1 Constitutive Equations

Ohno and Wang proposed the multi-decomposed nonlinear kinematic hardening rules
based on dividing the hardening curve into many linear segments like the multilinear
hardening model. They introduce a slight nonlinearity for each decomposed rule at the

transition from a linear kinematic hardening to the stabilized critical state as follows;

&, 2 o @)\ @)Y
a. = a.) = ZC P = .. &P ol k 51
ij kZ:;( u)k ;{3 k“ij 7k( |J)k< ij f(ak)>(cllﬂ/l ( )
In the above equation, the slight nonlinearity is expressed with the multiplier with a
power of m; and it has a role of preventing the stress-controlled hysteresis loop from
being closed loop and causing a ratcheting behavior.

Coupled with the above kinematic hardening rule through a consistency condition, the

plastic modulus can be expressed as follows;

ij j ij ij ij

/2 of of
+b(Q-R).|=
Q=R 300, 00,

2.2.5.2 Cyclic Behavior

Ohno and Wang model requires a large number of the decomposed rules to make a

_g OO 2oy o o o (e)\(f@) )| o
"= do ale-’_3;(Ck)aO_i' 0oy ;{7k(a”)k<aa f(ak)>(ck/7kj :|aa" (52)

good representation of the stabilized hysteresis curve. In this study, the example of
simulation is carried out using 12-decomposed rules with following material parameters
(Bari, 2000).

Ci.12 = 31940, 36214, 2520, 376, 11021, 4551, 3475, 2196, 857, 247, 98, 200 (ksi)
v1-12 = 45203, 13944, 7728, 4955, 3692, 2135, 1230, 585, 295, 119, 50, 20

m; =0.45
Isotropic Hardening : Qwm = Qo = 0.0 ksi, b=0.0, n=0.0
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Yield Stress . Oyo = 18.8 ks
Young'sModulus  : E =26300 ks
Poisson’s Ratio :v=0.302

Fig. 25 and Fig. 26 show the simulation results of the stress-controlled and the strain-
controlled cyclic behavior respectively. These ssimulation results will be compared and

discussed with those of the other models on next section.
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Fig. 25 Stress-Controlled Cyclic Behavior by the Ohno and Wang Model
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Fig. 26 Strain-Controlled Hysteresis Loop by the Ohno and Wang Model
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Fig. 27 shows the strain-controlled cyclic behavior including the isotropic hardening
parameters of Qu = Qo = 37.7 ksi, b=100.8, 1 =0.5. Fig. 28 shows the effect of the
parameter m; on the rate of ratcheting. As show in the figure, it is evident that the smaller
the value of m, the higher the rate of ratcheting. This means that by decreasing the value
of m, the effect of nonlinearity induced by it becomes larger.
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Fig. 27 Strain-Controlled Cyclic Behavior with Isotropic Hardening
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Fig. 28 Effect of Parameter m on the Rate of Ratcheting
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2.2.5.3 Parameter |dentifications

The required experimental data for the parameter identifications are a uniaxial

stabilized hysteresis loop and a uniaxial ratcheting data. To identify the parameters from

the stable hysteresis loop, the loading curve part should be divided into severa segments

as shown in Fg. 29 and the parameters of Cy and yx for each segment can be obtained by

the following equations;

K
_ Zx 9%

Cy = eP _gP eP _gP

k k-1 ki1 — €k
2

Yk =

p p
& t &

for k #1,

(53)

(54)

(55)

and the values of the power my are assumed to be same for al segments and should be

identified by auniaxial ratcheting experimental data.

Ty

(&3, O‘f)

.00 ©

Fig. 29 Decomposed Hardening Concepts for the Ohno and Wang Model
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In the Ohno and Wang model, the last hardening rule (o) has a similar effect of the
ratcheting parameters as described in the Chaboche model. If the used strain-controlled
stable hysteresis loop has a small strain range, the last backstress early reaches its plateau

at ¢ and the parameter v, calculated by Eq.(54) becomes relatively large. This may

result in over-prediction of ratcheting in some cases. Therefore, a hysteresis curve with
reasonably large strain range should be used to resolve this problem. If a small strain

range data is only available, the asymptotical extension technique of the strain range up

to ¢! can beintroduced as shown in Fig. 30.

Y

(gsp-o'f)

v

Fig. 30 Modified Conceptsto Identify Material Parameters

2.3 Comparison Study
2.3.1 Stress-Controlled Behavior

The stress-controlled hysteresis loops calculated by the above constitutive models
such as the Armstrong and Frederick model, the Chaboche 3-decomposed model, the
Chaboche 4-decomposed model, and the Ohno and Wang model are compared with the
experimental data published in areference paper (Bari, 2000). As shown in Fig. 31(a), the
hysteresis loop by a ssmple Armstron and Frederick model is very different from that of
an experiment. On the other hand, the Chaboche 3-decomposed model shown in Fig.

31(b) predicts the cyclic behavior very well when compared to the experimental result
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but it still shows a lower stiffness during the initial nonlinear part. The Chaboche 4-
decomposed model overcomes the low stiffness problem occurring in the 3-decomposed
Chaboche model as shown in Fig. 31(c). The hysteresis loop obtained by the Ohno and
Wang model (Fig. 31(d)) shows a very good agreement with that of the experiment. This
means that 12 segments used in this study are sufficient to simulate the hysteresis
behavior accurately.
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Fig. 31 Comparison of Stress-Controlled Cyclic Behavior

2.3.2 Strain-Controlled Behavior

Fig. 32 shows a comparison of the strain-controlled hysteresis |oops obtained by each
model. As shown in the figure, the Armstrong and Frederick model can not predict the
nonlinear part accurately. The Chaboche models can describe the nonlinear behavior well
but it still shows some discrepancies when compared to an experimental result in the
nonlinear part. However, the hysteresis loop by the Ohno and Wang model shows a very

good agreement with that of the experiment in the overall loop locus.

42



= = = : Experiment
—— : Armstrong and Frederick Model

—— : Chaboche 3-Decomposed Mode
——— : Chaboche 4-Decomposed M odel

: Ohno and Wang M ode

N e S . . ———

50
25 -

.’U:)‘

=

8 07

L

7
-25
-50

-1.0

-0.5 0.0 0.5 1.0
Plastic Strain (%)

Fig. 32 Comparison of Strain-Controlled Hysteresis Loops for Each Model
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2.3.3 Ratcheting Behavior

To compare the ratcheting strains obtained by each constitutive model, the maximum
peak strain in each cycle is plotted as a function of the number of cycles. Fig. 33 shows
the comparison of the ratcheting increments for each model. As shown in the figure, the
Armstrong and Frederick model shows a significant over-predicting of a ratcheting. The
Chaboche 3-decmposed rule shows a dlightly different ratcheting accumulation during the
initial cycles when compared to that of the Chaboche 4-decomposed rule but almost the
same total accumulated strain after a couple of cycles. The overal simulation by these
models dtill deviates from the experiments with an over-prediction. Among the
constitutive models investigated in this study, it is revealed that the Ohno and Wang
model provides the best uniaxial ratcheting prediction. Although this model predicts
better in uniaxial ratcheting compared to the Chaboche model, it is known that this model

still has over-prediction problems in the biaxial ratcheting simulations and in high stress
levels.

—o— Armstrong and Frederick Model
—~— Chaboche 3-Decomposed Model
—<— Chaboche 4-Decomposed Model
—o0— Ohno and Wang Model

= = = Experiments (Bari, 2000)

Ratcheting Strain (%)
N

0 T T T T T
0 5 10 15 20 25 30

Number of Cycles

Fig. 33 Comparison of Ratcheting Simulations



3. Cyclic Viscoplasticity Constitutive Model
3.1 Unified Chaboche Model

In general, most materials have the time-dependent characteristics due to the viscous
effects. We call this kind of a material behavior as viscoplasticity. For example of the
stainless steels, it is well-known that the viscous effects, which invoke stress relaxation as
well as strain rate dependency, can occur even in room temperature. Actually, the time-
independent plasticity is a particular limiting case of viscoplasticity.

In unified theory which can simulate both of a cyclic loading and viscous behaviors,
the total inelastic strain is described with the unified plastic and viscous strain term as

follows;

e"=gP+g' =¢" (56)

The unified Chaboche viscoplasticity model has a form combined with the nonlinear

kinematic and isotropic hardening rules as follows;

g = <|G_“|_R_Gy°> sgn(o—a) (57)
K
. (2 - vp - Vp
a = Z(Eck‘g — 7O |E ] (58)
R=b(Q - R)&" (59)

where x = [ K, n, Cq, C5, C3, C ., Cy, v1 Y2, ¥3, V..., Yk D, Q, Oyo] are material parameters
and < > is the Macauley bracket. Total number of the material parameters identified for
this model is actually dependent on the material types. The typically required
experimental data to identify the material parameters contained in the unified viscoplastic
constitutive equations are the Monotonic Tensile/Compression Tests, Cyclic Load Tests

each with ¢(0) = 0, and Stress Relaxation Tests [Furukawa, 2001].
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The procedures performing the viscoplastic simulation can be briefly described in this

study. First, with uniquely specified initial conditions such as

£(0) = &, (60a)
g"(0) =g (60b)
a(0) =, (60c)
R(0) = R, (60d)

The initial stress is calculated by the equation of
o(0) = Es, — &) (61)
The subsequent states of the viscoplastic strain, backstress and drag stress can be

obtained by the following equations after their rate of change are computed by Egs. (57),
(58), and (59).

P (k) =™ (k-1) +At-£"(k-1) (62)
a(k) = a(k-1) +At-a(k —1) (63)
R(k) = R(k —1) +At-R(k —1) (64)

For a strain-controlled simulation, the next state of stress o(k) can be derived by the

equation of

o(k) = E[e(k) - £" (k)] (65)

From the repetition of these processes, we can perform the entire computer simulation of

the viscoplastic behavior of the material.

3.2 Examples of Application
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The materia in this study is 316L used in Chaboche 1989. The material parameters
for the constitutive equations through Eq.(57) to (59) are as follows (Chaboche, 1989);

C; = 162400 MPa
C> =6750 MPa

» = 2800

=25
Q=60MPa
b=8

E =185 GPa
oy = 82 MPa

K =151 MPa
n=24

All initial conditions are assumed to be zero in this study. Among the viscous effects
such as stress relaxation, creep strain increment, and strain rate dependency, first, the
stress relaxation behavior is investigated with the strain-controlled simulations. Fig. 34
shows the strain-controlled hysteresis loop and Fig. 35 shows the stress-time history in
case of the strain rate, 1.25x10° %/sec when there is no hold time. As shown in figures,
we can see that the yield surface steadily increase during the initial cycles due to the
isotropic hardening but there are no specific viscous behaviors something like the stress
relaxation. Fig. 36 and Fig. 37 show the simulation results with same conditions but when
thereis ahold time during each cycle. In figures, we can see the evident viscous behavior
of the stress relaxation at each cycle.

To see the behavior of the creep strain increment, the stress-controlled simulations are
carried out. Fig. 38 shows the result of a stress-controlled hysteresis loop in case of no
hold time. As shown in figure, the creep strain increment slightly occurs in ends of
loading and unloading cycles. However, in case of with hold time, the significant creep

strain increment occurs as shown in Fig. 39.
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Finally, Fig. 40 shows the strain rate effects on monotonic tensile stress. As shown in
figure, we can see that the strain rate significantly affects the material behavior and when

the strain rate increases, more hardening behavior occurs in material.
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Fig. 34 Strain-Controlled Hysteresis Loop w/o Hold Time
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4. PARA-ID Code

4.1 Salient Features of PARA-ID

The PARA-ID code is a genera purpose computer simulation program for the
nonlinear cyclic material behavior with and without viscous effects, which can simulate
various constitutive models such as

- Prager Model

- Armstrong and Frederick Model

- Chaboche 3-decomposed rule Model

- Chaboche 4-decomposed rule Model

- Ohno and Wang Model

- Unified Chaboche Viscoplastic Model

The used language is Compaqg Visua Fortran and the command based input data file
system is applied.

4.2 General Procedures

Fig. 41 shows the genera procedure of the PARA-ID code in case of the stress-
controlled simulation. With PARA-ID code, we can smulate the nonlinear cyclic
material behavior with both the stress-controlled and the strain-controlled options.
4.3 Input Commands and Formats

All commands supplied in PARA-ID are using the * commands. Under these command

lines the input values are required to be written sequentially.

e *T|TLE : user-defined evaluation title
1. (TITLE)

The title description can be written up to 80 characters.

e *S OAD : input loading magnitude ( 3 x 3 matrix)
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1. Lxx Lxy Lxz

2. Lyx Lyy Lyz
3. Lzx Lzy Lzz

*SMEAN : input mean load ( 3 X 3 matrix)
1. Lxx Lxy Lxz

2. Lyx Lyy Lyz
3. Lzx Lzy Lzz

*Young : Young's modulus
1.E

*POISS : Poisson’'sratio
1.v

*YIELD : initial yield stress

1. oy

*AFKIN : A-F model material parameters
1.C,y

*CB3KIN : Chaboche 3-decomnposed model material parameters
1.C1, Cy, Cs

2.v1, 72, V3

*CB4KIN : Chaboche 4-decomnposed model materia parameters
1.C,CC3Cy

2.v1, 72, V3, Y4
3. A4 (Threshold stress level)
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*OWKIN : Ohno and Wang model materia parameters
1. Cx (k=1,m)
2. vk (k=1,m)

3. m-value

*1 SO : isotropic hardening parameters
1. b! QM1 Q01 u

*VISCOPL : unified Chaboche viscoplastic parameters
1.K,n
2. N (total number of solution step during hold time)
3. T, T2 (timeinterval for loading time, time interval for hold time)

*NLREV : number of reverse loading cycles
1.N

*NL DIV : number of solution step during loading time
1.N

*| TER : the maximum number of internal iterations
1.N

*CONVER : hot and cold temperatures for the stress extremes

1. convergence factor , maximum number of iteration

*OUTCTRL : control datafor the stored output data points on output files
1.N

*SSREL : stress-strain relationship
1.N



e *ETYPE : element type (nodal degree of freedom)
1. (OPTION)

(OPTION =1: 6 degree)
(OPTION #1: 4 degree)

e *LDINCEF : linear increasing factor of the reverse load
1. factor

e *SCALE : scalefactor for output stress unit
1. factor

e *END : indicator of the end of input data (mandatory)

Thetypical format of input datafile for the ratcheting simulation is as follows;

AF STRAIN ! Armstrong and Frederick model with strain-controlled
*TITLE

TEST I Ssmulation title name

*SLOAD

1.5D-20. 0. I'input strain magnitude, ex=1.5%
0. 0.0.

0. 0.0.

*SMEAN

0. 0. O

0. 0. O

0. 0. O

*YOUNG

26300.D3

*POISS
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0.302D0

*YIELD

18.8D3

*AFKIN

8000.D3 300.D0 I C=8000ksi,y=300
*1SO

0.D0 37.7D6 37.7D6 0.DO

*NLREV

4 I total reverseloading = 4 (2 cycles)
*NLDIV

10000

*ITER

1000

*CONVER

1.D-3 1000

*OUTCTRL

20

*SSREL

3

*ETYPE

1. I 6-dof system

*LDINCF

1.0D0 I no loading increment in reverse load cycles
*SCALE

1.D3 I output stress has ksi-unit
*END
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e
[ Read Input DataFile and defineds =c/n |

>
»

( Total Applied Stress at End of Load Increment
| o,=do+o

v

>
»

| Calculation of Stress Rate and Tria Stress
| do =0, - o, doj; = Ejdey

Cadculate Elasto-Plastic

Modulus Tensor
(Dijkl - P

Yes No

Elastic Stiffness Tensor
(Ej— P

Cadculation of Strain Increment L
dgkI = I:’mn_l dGmn I

v

‘ Calculation of Updated Stress(c) , Elastic Strain(z,), Plastic Strain(e,,), Backstress(o:) ’

No

Convergence Check ?

[ Store Calculation Results ]

NO AYS

End of Load Step ?

Reverse Load
Ga: - Ga

End of Cycles?

Fig. 41 Genera Procedures of PARA-ID Code (Stress-Control | ed)
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5. Conclusions

In development of the liquid metal reactors, which are operating in elevated
temperature conditions, the structural integrity evaluations can be performed through the
elastic analysis methods in compliance with the ASME-NH design rules. However, in
some critical structural points, which can not satisfy the elastic analysis rules by the
ASME-NH due to the conservatism contained in a design code, the inelastic analysis
method is inevitably required to evaluate a total creep-ratcheting strain and the creep-
fatigue damage limits. To apply this method to a real design, couples of uncertainties
related with the nonlinear constitutive equations have to be resolved clearly. Among
these works, the identification of the material parameters contained in the constitutive
equations is very important to assure the accurate prediction of a nonlinear material
behavior. In this study, the PARA-ID computer code, which has implemented various
nonlinear constitutive models such as the Armstrong and Frederick model, the Chaboche
3-decomposed model, the Chaboche 4-decomposed model, the Ohno and Wang model,
and the Unified Chaboche viscoplasticity model, is developed to be able to simulate
multi-axial cyclic plasticity and viscoplasticity. Using this code, the cyclic ratcheting
behavior and their material parameter identification methods are investigated with several
examples of material. The developed PARA-ID code will be expected to be effectively
used in the development of the nonlinear constitutive parameter identifications, especially

for the high temperature liquid metal reactor development.
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Nomenclature
aj  total backstress tensor

a; incremental total backstress tensor

ax  kcomponent of total backstress
Ay threshold stress level

Diju  elasto-plastic modulus tensor
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Eijui

dF

Young’s modulus

forth-order elastic modulus tensor
loading function

loading increment

yield function

evolution of yield function

plastic potential function
generalized plastic modulus
total number of decomposed kinematic hardening rules

multiplier

magnitude of plastic strain tensor (=|£°|)
drag stress

initial drag stress

time interval

deviatoric backstress tensor

incremental deviatoric backstress tensor
initial deviatoric backstress tensor

stable backstress at ¢ =0

initial strain tensor

strain tensor
strain tensor

elastic strain increment tensor
initial inelastic strain tensor
plastic strain increment tensor

inelastic strain tensor

plastic axial strain amplitude of a strain-controlled hysteresis loop

viscous strain tensor

viscoplastic strain tensor
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£™ incremental viscoplastic strain tensor
o stress tensor
oij  Cauchy stress tensor

o,  stress increment tensor
amplitude of axial stress cycle
mean of axial stress cycle

oy initial yield stress
A positive scale factor

7. deviatoric stress tensor

1% Poisson’s ratio
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