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Abstract

We study the Likelihood function of data given fNL for the so-called local type of non-

Gaussianity. In this case the curvature perturbation is a non-linear function, local in real space,

of a Gaussian random field. We compute the Cramer-Rao bound for fNL and show that for

small values of fNL the 3-point function estimator saturates the bound and is equivalent to

calculating the full Likelihood of the data. However, for sufficiently large fNL, the naive 3-point

function estimator has a much larger variance than previously thought. In the limit in which the

departure from Gaussianity is detected with high confidence, error bars on fNL only decrease

as 1/ ln Npix rather than N
−1/2
pix as the size of the data set increases. We identify the physical

origin of this behavior and explain why it only affects the local type of non-Gaussianity, where

the contribution of the first multipoles is always relevant. We find a simple improvement to the

3-point function estimator that makes the square root of its variance decrease as N
−1/2
pix even for

large fNL, asymptotically approaching the Cramer-Rao bound. We show that using the modified

estimator is practically equivalent to computing the full Likelihood of fNL given the data. Thus

other statistics of the data, such as the 4-point function and Minkowski functionals, contain no

additional information on fNL. In particular, we explicitly show that the recent claims about

the relevance of the 4-point function are not correct. By direct inspection of the Likelihood, we

show that the data do not contain enough information for any statistic to be able to constrain

higher order terms in the relation between the Gaussian field and the curvature perturbation,

unless these are orders of magnitude larger than the size suggested by the current limits on fNL.
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1 Introduction

In single field slow-roll inflation the level of non-Gaussianity is sharply predicted and very

small, less than 10−6 [1, 2]. This is quite far from the present experimental sensitivity and

probably not attainable with either CMB observations or galaxy redshift surveys. As a result,

deviations from a purely Gaussian statistics of density perturbations, if observed, could provide

important constraints on models of early cosmology, forcing us to abandon the single-field slow-

roll paradigm.

Of course there are many ways in which a signal could be “non-Gaussian”. Given a data

set, such as the WMAP maps, there are two possible ways to proceed. One could calculate

all kinds of statistics of the data and compare the results with the expectation for a Gaussian

field searching for anomalies. This is a fine strategy as long as one adjusts the significance of

the result to account for the number of possible deviations that have been explored. There are

several anomalies in the WMAP data reported in the literature that have been found in this

way (see for example [3–5]). Unfortunately their significance is hard to assess and as a result

one is not sure how seriously to take them.

The second approach is to think about the possible physical mechanisms that can lead to

non-Gaussianities and search for their particular signatures. In the context of primordial effects

one should investigate what types of non-Gaussianity can plausibly be produced in various

inflationary models. This approach is further bolstered by the fact that at least at the level of

the 3-point function, primordial signals seem to fall into two definite classes. Thus there are

only two different signatures one has to look for.

The analysis of inflationary models that go beyond the single field slow-roll class has iden-

tified several examples with a relatively high level of non-Gaussianity, within reach of present

or forthcoming experiments. For nearly Gaussian fluctuations, the quantity most sensitive to

departures from perfect Gaussianity is the 3-point correlation function. In general, each model

will give a different correlation between the Newtonian potential modes∗:

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ3
(

k1 + k2 + k3

)

F (k1, k2, k3) . (1)

The function F describes the correlation as a function of the triangle shape in momentum space.

The predictions for the function F in different models divide quite sharply into two qualita-

tively different classes as a consequence of qualitatively different ways of producing correlations

among modes [8]. The first possibility is that the source of density perturbations is not the

inflaton but a second light scalar field σ. In this case non-Gaussianities are generated by the

non-linear relation between the fluctuation δσ of this field and the final perturbation Φ we

∗Even with perfectly Gaussian primordial fluctuations, the observables, e.g. the temperature anisotropy, will
not be perfectly Gaussian as a consequence of the non-linear relation between primordial perturbations and what
we will eventually observe. These effects are usually of order 10−5 (see for example [6, 7]) and thus beyond (but
not much) present sensitivity. In the following we will disregard these contributions.
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observe. This non-linearity is local as it acts when the modes are much outside the horizon;

schematically we have Φ(x) = g(x) + fNL(g2(x) − 〈g2〉) + . . ., where g is a Gaussian random

field. The quadratic piece introduces a 3-point function for Φ of the form

F (k1, k2, k3) = fNL · 2∆2
Φ ·

(

1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

)

, (2)

where ∆Φ is the power spectrum normalization, 〈Φ(k1)Φ(k2)〉 = (2π)3δ3
(

k1 + k2

)

∆Φ · k−3
1 ,

which has been taken as exactly scale invariant. Examples of this mechanism are the curvaton

scenario [9] and the variable decay width model [10], which naturally give rise to fNL greater than

10 and 5, respectively. Various subtleties in estimating the size of this type of non-Gaussianity

will be the focus of this paper.

The second class of models are single field models with a non-minimal Lagrangian, where

the correlation among modes is created by higher derivative operators [11–15]. In this case, the

correlation is strong among modes with comparable wavelength and it decays when we take one

of k’s to zero keeping the other two fixed. Although different models of this class give a different

function F , all these functions are qualitatively very similar. We will call this kind of functions

equilateral because the signal is maximal for equilateral configurations in Fourier space, whereas

for the local form (2) the most relevant configurations are the squeezed triangles with one side

much smaller than the others. We will not discuss the equilateral type of non-Gaussianity in

this paper too much. We will just point out that the effects studied in this paper do not apply

in that case so that the situation is much simpler.

The strongest constraint on fNL comes from analyzing the 3-point function of the WMAP

data set. WMAP is the best available data set because it has the largest number of pixels

measured with good signal-to-noise. From the first year data the constraint is [16]:

−27 < fNL < 121 at 95% C.L. (3)

This constraint is better than that obtained by the WMAP collaboration both using the one

year WMAP data [17] and the three year ones [18]. This is so because the WMAP team used a

non-optimal estimator which did not adequately treat the effect of anisotropic noise, as already

noted in [17,19]. In [16], we showed that the effect of the anisotropic noise can be substantially

reduced with the addition of a linear piece to the estimator. Always in [16] we also constrained

the level of the equilateral 3-point function. For both types, the departures from Gaussianity

still allowed by the data are at the same level.

Given the interest in constraining the level of non-Gaussianity, one may wonder if a statistic

other than the 3-point function might extract more information about fNL. There are various

contradictory, or at least apparently contradictory, answers to this question in the literature.

On the one hand in [20] and [16] it is argued that the 3-point function saturates the Cramer-

Rao bound up to terms of order fNLA1/2, where A is the square of the amplitude of curvature

perturbations: A1/2 ∼ 10−5. On the other hand calculations of the signal to noise in the 4-point
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function by [21] and [22] point to a different conclusion. These papers claim that, even though

in the limit of fNL → 0 the signal to noise ratio of the 4-point function is negligible, it grows

more rapidly with the number of pixels in the data set than for the 3-point function. As a result

for values of fNL rather small, say around ∼ 50 for an experiment like Planck, the signal to

noise in the 4-point function is larger than for the 3-point function and stronger constraints on

fNL could be placed by studying the 4-point function. Of course this result is puzzling. One is

immediately drawn to the question, what about the 5-point function? And why not the 11-point

function? Applying the same arguments as in [21] and [22] would show that the signal to noise

ratio becomes larger the higher the n-point function considered. Clearly there is a contradiction.

It is the aim of this paper to clarify this contradiction. We will show that both calculations

have missed an interesting subtlety of the local type of non-Gaussianity in the case of scale

invariant, or nearly scale invariant, spectrum of primordial perturbations. As a result, the

calculation of the noise of various estimators (including the 3-point function) for finite fNL is

missing some relevant term. Some of the terms that are naively down by powers of fNLA1/2

are actually much larger, being enhanced by Npix. The growth in the signal to noise for high

fNL seen in the above papers is fictitious. We will show that the same subtlety creeps into

the calculation of [20] and thus the 3-point function estimator considered there also does not

saturate the Cramer-Rao bound for large fNL. We want to stress that even though what was

missed was a rather subtle point, it has potentially large consequences on the signal to noise of

the estimators previously considered. For example when one is in the regime of large signal to

noise, the error bars on fNL from the 3-point function decrease as 1/ ln Npix rather than N
−1/2
pix .

The reader at this point should not panic, we will show that the Cramer-Rao bound in this

regime still scales as N
−1/2
pix and that it is rather straightforward to extract all of this information

from the data either by calculating the full Likelihood or slightly tweaking the 3-point function

estimator.

What is the missing subtlety? To understand it, it is best to recall what is the main effect

of the local non-Gaussianity: it correlates large and small scales. In the 3-point function, a long

wavelength mode modulates the amplitude of all the short wavelengths by the same amount,

regardless of the wavelength of the short mode. Furthermore, in [8] we showed that most of

the signal in the 3-point function is coming from squeezed triangular configuration in Fourier

space. More importantly for this discussion, if one considers the signal to noise as a function

of the wavenumber of the long wavelength mode kL, one gets an equal amount of information

from every logarithmic interval in kL. This in fact is the source of the problem. The smallest

kL in the survey are by definition the ones with the largest cosmic variance as there are the

least of them in the survey. As one increases the resolution of the survey the contribution to

the signal to noise from the long wavelengths only decreases logarithmically and thus the large

cosmic variance of the long modes translates into large variances in the estimators of fNL.

In fact in [16] indications of the importance of the long wavelength modes were emphasizes
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in the context of the effect of anisotropic noise on the estimator of the 3-point function. The

noise in the map is anisotropic because WMAP spent different amounts of time observing each

pixel on the sky. As a result the level of small scale power, for large multipoles where the noise

becomes important, varies across the sky. This map of small scale power can randomly align

with the particular large scale mode giving a spurious fNL signal. Of course on average this

effect is zero as there is no intrinsic correlation between the map of observing time per pixel and

the large scale temperature. However for a particular realization, some modes will be correlated

(spurious positive fNL) and others anti-correlated (spurious negative fNL). The contribution

to the signal from the long wavelength modes will not add exactly to zero, as we have few of

them in the survey. The random left over spurious signal effectively increases the variance of

the estimator. This effect was noted in the WMAP team analysis [17,19], where the constraint

on fNL got worse as they increased the size of the data set by including more of the small scales.

In [16] the estimator was improved by including a linear piece which substantially reduces the

effect allowing us to get better constraints. This effect is the reason why the 3-year data analysis

by the WMAP team [18] did not appreciably improve the limits.

To clarify the situation we will study the full Likelihood of the data given fNL. We will

keep careful track of enhanced terms and thus do a consistent expansion in fNL. We will then

calculate the Cramer-Rao bound, extending the results of [20] to non-zero fNL. We will show

how the additional terms in the variance of the 3-point function estimator make it become sub-

optimal. This can be easily fixed using an improved estimator which asymptotically saturates

the Cramer-Rao bound. The use of this estimator is equivalent to the full Likelihood of the

data.

The fact that the improved 3-point function estimator is equivalent to the full Likelihood of

the data, implies that there is no additional information in the 4-point function. We will also

show this explicitly, illustrating how at best the 4-point function is equivalent to the 3-point

function. No other statistic such as Minkowski functionals, various wavelet based statistics and

other esoteric constructions are worth trying to constrain fNL. None can be better than the

3-point function. This is true up to corrections of order fNLA1/2 . 10−3.

The apparent large signal to noise in the 4-point function led to the suggestion [21,22] that

the 4-point function could even be sensitive to higher order terms in the relation between Φ and

δσ: Φ(x) = g(x) + fNL(g2(x) − 〈g2〉) + f2
NLαg3(x) . . . The claim was that the 4-point function

could constrain the real parameter α. Of course the third term is a minuscule correction to

the first two, even for the largest allowed values of fNL. Thus it is difficult to understand how

one could be sensitive to it. Again the missing terms in the variance of the estimator were

responsible for the apparent sensitivity to α. Using the full Likelihood we will show that for any

realistic experiment there is in fact not enough information about α in the data to constrain it,

unless α > 1/(fNLA1/2) & 103.

Finally we will also show that for a realistic experiment where ln Npix is large, the value of
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fNL for which improving the naive 3-point function estimator is important is rather large. One

should start worrying about it once there is a many σ detection of fNL. As a result our improved

estimator will probably be only of academic interest. Our paper mainly provides clarification of

various misconceptions in the literature. Given this and to reduce the length of our equations,

we will work in the flat sky approximation and neglect the CMB transfer functions. Clearly

none of these approximations are material to our results. We also point out that even though

we do all our calculations in 2 dimensions, as relevant to the CMB, our conclusions are equally

valid for 3 dimensional surveys, such as galaxy surveys or future 21 cm observations.

2 Subtleties of the fNL expansion

The aim of this section is to explicitly show the presence of terms in the variance of the 3-point

function estimator of fNL that are enhanced by factors of Npix and thus contribute significantly

even though they are naively suppressed by fNLA1/2. We start by introducing our notation and

reproducing previous calculations of the variance of the estimator. We then identify the terms

that had been previously missed and give a rule of thumb to easily determine when they are

important. We will show that in practice the enhanced terms do not correct current upper limits

and that they will only become important after a very high signal to noise detection of fNL.

Notation. We work in the flat sky approximation, neglect the transfer function, and assume

that the error is dominated by cosmic variance. In this paper we are mostly interested in the

scaling properties of the estimators for the non-Gaussianities used for example in [16,17,20–24].

These properties are not modified by these approximations†, while on the other hand their use

makes the presence of some physical effects much clearer, as we will later see. Let us briefly set

up our conventions. For the Fourier transform we have:

Φ~l =
Ω

Npix

∑

~θ

e−i~θ·~lΦ~θ , (4)

where Ω and Npix are respectively the angular size and the number of pixels of the sky survey.

It is immediate to obtain from this the continuum limit Φ~l
= Ω

Npix

∑

~θ
e−i~θ·~lΦ~θ

≃
∫

d2θ e−i~θ·~lΦ~θ
.

We also have:

Φ~θ
=

1

Ω

∑

~l

ei~θ·~lΦ~l
≃

∫

d2l

(2π)2
ei~θ·~lΦ~l

, (5)

and the useful relations:

∑

~l

ei~l·(~θ1−~θ2) = Npixδ~θ1,~θ2
,

∑

~θ

e−i~θ·(~l1−~l2) = Npixδ~l1,~l2
. (6)

†This is confirmed by the fact we are able to recover the same scaling properties found in [20–24] where these
approximations were not used.
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We are only interested in local non-Gaussianities as the effect we will discuss does not apply

to other types. In that case, the observed field Φ~θ
is given by a non linear function of a Gaussian

field g~θ
which is local in real space:

Φ~θ
= f(g~θ

) = g~θ
+ fNL

(

g2
~θ
− σ2

)

. (7)

We will call this field temperature although our results apply to other measures, not just the

CMB temperature. In Fourier space the local relation reads:

Φ~l
= (f(g))~l = g~l

+ fNL

(

(g ◦ g)~l − σ2Ωδ~l, 0

)

, (8)

where we have defined (g ◦ g)~l = 1
Ω

∑

~k
g~l−~k

g~k
. We will explicitly address later the case of

possible higher order corrections in fNL to these definitions. The covariance matrix is defined as

〈g~l1
g~l2

〉 = C~l1~l2
= Cl1Ω δ~l1,−~l2

, (9)

where l2 = ~l ·~l, and Cl = 2πA/l2, which then implies that

σ2 = 〈g~θi
g~θi

〉 =
2πA

Ω

∑

~l

1

l2
≃

A

2
lnNpix, (10)

where in the last passage we have used the continuum limit, and the fact that Npix ≃ Ω l2max/(4π),

with lmax the maximum of the observed ls. From here on, in order to simplify the notation,

we will remove the vector symbol from ~l and ~θ in all the mathematical expressions when the

meaning and the distinction from the modulus l = |~l| and θ = |~θ| is clear from the context.

Previous results: the missing enhanced terms. In [16, 17] the analysis for the non-

Gaussianities of the local kind was performed using a trilinear estimator with signal-to-noise

weighting. In the limit of flat sky, unit transfer function, and isotropic noise it reduces to:

E =
1

N

∑

l

1

Ω Cl
Φlχ−l , (11)

where we have defined the field χl = (Φ ◦ Φ)l − Ω σ2δl,0 , and where we consider only non

degenerate configurations with all the Φs taken with l 6= 0 . The normalization

N =
∑

l

1

Ω Cl
〈Φlχ−l〉1 ≃ 8Npixσ

2 , (12)

with the subscript 1 meaning that the expectation value is taken with fNL = 1, has been chosen

so that the estimator is unbiased, 〈E〉 = fNL (‡). The definition in eq. (7) tells us that the

temperature field in the sky Φθ is to a good approximation a Gaussian field, with a small non-

Gaussian correction of order fNLΦ ∼ fNLA1/2 . 10−3. So one is tempted to expect that higher

‡Some of the expressions, like eq. (12) above, when expressed in terms of Npix and σ, will slightly depend
on the geometry of the survey which changes the boundary of the domain of integration in Fourier space. Also
we will have similar corrections going from flat to full sky. However these effects do not change significantly our
results.
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order corrections in fNL in the various expressions are suppressed with respect to the leading

terms by powers of fNLA1/2 and thus irrelevant. For example, the variance of the estimator in

eq. (11) starts with a piece which is of zeroth order in fNL, and which gives:

〈∆E2〉fNL=0 =
1

Ω2N2

∑

ll′

1

ClCl′
〈Φlχ−lΦl′χ−l′〉fNL=0 =

1

N
=

1

8Npixσ2
, (13)

where ∆E = E−〈E〉 §. One would naively assumes that this is the dominant term in the variance,

with small corrections of order fNLA1/2, which should contribute at most at order 10−3 given

the current bound on fNL. This is what was assumed for example in [16, 17, 20], where the

estimator (11) was in fact found minimizing the variance at zeroth order in fNL among all

trilinear estimators. However, as we will soon see, for the case of local non-Gaussianities, and

only for them, there is another parameter which enters into the expansion: Npix. We will see in

fact that in certain expressions such as the variance of the estimator above for example, there

are terms that although suppressed by powers of fNLA1/2, are enhanced by powers of Npix, and

so, depending on the real value of fNL, they might need to be taken into account.

In order to verify that this is actually the case, and to understand the implications of this

fact, let us sketch the computation of the variance of the estimator E keeping higher order terms

in fNL. The variance of E will involve the computation of a 6-point function, which will split in

the sum of the product of several different combinations of connected n-point functions, i.e. the

product of three 2-point functions, of two 3-point functions, and of a 4-point function and a

2-point function. Concentrating on the last kind of contribution, we will have terms like:

〈∆E2〉 ⊃
1

N2 Ω4

∑

l1l2 l̃1 l̃2

1

Cl2Cl̃2

〈Φl1Φl̃1
〉c〈Φl2Φ−l1−l2Φl̃2

Φ−l̃1−l̃2
〉c , (14)

where 〈Φl1Φl2 · · ·Φln〉c stays for the connected n-point function. Now, apart from numerical

factors, one of the terms in the expansion of the connected 4-point function reads:

〈Φl2Φ−l1−l2Φl̃2
Φ−l̃1−l̃2

〉c ⊃ f2
NLΩ3δl1,−l̃1

Cl2Cl1Cl̃2
. (15)

Considering the effect of this term in the variance in eq. (14), where we also take the 2-point

function at zeroth order in fNL, we obtain:

〈∆E2〉 ⊃
f2
NL

N2

∑

l1l2 l̃2

C2
l1 ∝

f2
NLAN2

pix

N2
∝

f2
NL

ln2 Npix
. (16)

Thus this contribution to the relative variance does not decrease as 1/(Npix ln Npix), as one

would have naively expected, but there is an enhancement of Npix which make it decrease only

as 1/ ln2 Npix.

§Notice that the variance of the estimator scales faster than the naive 1/Npix by a factor of ln Npix. This
behaviour is typical of non-Gaussianities of the local kind, where the signal comes from the correlation of the
modes of all different scales.
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There is a very physical reason for the presence of such enhanced terms for the case of local

non-Gaussianities. As we have already said, most of the signal for this kind of non-Gaussianities

comes from squeezed configurations, where one of the ls is small and the others are large. More

precisely, for the 3-point function, the signal-to-noise from all the squeezed configurations with

the smallest l in a given decade is roughly the same for every decade, although there are much

fewer modes in a decade of low l. This means that the low l modes are always very important

for the estimator E . Now, the point is that there is an intrinsic variance associated with a

configuration with a certain small l, simply because there are very few of those small ls, just

2l + 1; and this is unaffected by the fact that Npix of the survey increases, because this just

increases the lmax of the experiment. Therefore the relative variance of the estimator due to

these terms decrease only logarithmically with Npix, because this is how the relative importance

of the configurations with small ls decreases with Npix. This physical explanation guarantees us

that these enhanced terms are not present in the case of equilateral non-Gaussianities, where

the importance of the small ls and of the squeezed configurations is marginal.

It is useful to develop a quick thumb rule to understand if a term which is a sum of product

of different Cls is enhanced or not: a term will be enhanced only if at least one Cl is raised to a

power larger than one. In fact in this case the summation over the multipoles for this term will

be dominated by the lowest ls, so that some lmin will appear in the denominator. This makes

these terms enhanced by powers of lmax/lmin (see also appendix A).

The relevance of the additional terms. Our discussion shows that the treatment of expres-

sions containing fNL is delicate in the case of local non-Gaussianities. The expansion parameter

is not just fNLA1/2, but there are terms which can parametrically go as fNLA1/2Npix, and there-

fore cannot be neglected. We need to understand the relevance of these terms both for existing

limits on fNL as well as their impact on future measurements.

After a careful calculation, we find the following expression for the variance of E :

〈∆E2〉 =
1

4ANpix ln Npix

(

1 +
8f2

NLANpix

π ln Npix
+ · · ·

)

, (17)

where · · · represents terms suppressed by powers of f2
NLA without any further Npix enhancement.

This result shows an important feature of this estimator. Imagine that we have a series of

experiments with increasing Npix, and that at some point we detect a non-null fNL. Then, at

first the variance will decrease as 1/ (Npix lnNpix), but, after a critical Npix which depends on

the actual value of fNL, and which is basically, apart for logarithms, when the signal-to-noise is

of order 1, the variance will begin to decrease very slowly as 1/ ln2 Npix, because of the enhanced

variance of the term proportional to f2
NL.

In the analysis performed in [16,17] the variance for a non-zero fNL was assumed to be the

same as for fNL = 0, expecting that the fNL corrections would have been small. In the light of

the results of this section, we see that this procedure is not always justified. However, for those
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analysis, we can verify that the error introduced is very small, as already numerically checked

with non-Gaussian Montecarlos in [17, 25]. We can quantify the error is this way: the relative

correction to the variance for an fNL at n σ0 from the origin, where σ0 is the variance computed

at fNL = 0, is of order 2n2/(π ln2 Npix). For the WMAP experiment ln2 Npix ∼ 35, therefore

this correction is large for n larger than ∼ 6, 7. Therefore, if we wish to give a 2− σ confidence

interval around a certain central value, we see that the enhanced terms will become important

for a central value around 4, 5 − σ0 far from the origin, i.e. in the case of a clear detection of

a non zero fNL. In the analysis of [16, 17], the central value of fNL is of the order of only one

σ0 far from the origin. Because of this, the approximation done in [16, 17] of considering for a

non-zero fNL the variance at fNL = 0 is numerically justified, with a small error at the percent

level, well beneath the error coming from other sources, for example from the uncertainty in the

cosmological parameters, which gives an error on the variance of order ten percent [16].

Summarizing, we conclude that the enhanced terms will not be important until there is a

clear detection of a non-zero fNL. If that happens, they will have to be taken into account. At

that point, the variance of the estimator E will begin to decrease as 1/ ln2 Npix. Given the very

slow convergence of E in this regime, one is lead to wonder whether a better estimator exists.

3 Likelihood Calculation

For non-Gaussianities of the local type, it is easy to calculate the full Likelihood for fNL given

the data and determine to what extent the data are able to constrain fNL. This is true even in

the high signal to noise limit where the previous estimator has an increased variance.

With the full Likelihood it is possible to determine what is the minimum variance that an

estimator of fNL can have, the so called Cramer-Rao bound. The bound on the variance is

〈∂2L/∂f2
NL〉

−1, where L is minus the logarithm of the Likelihood. In [20] it was proved that

the estimator E of the former section, whose variance scales as 1/(Npix ln Npix), satisfies this

bound at order zero in fNLA1/2. However, we have just learned that this expansion in powers

of fNLA1/2 breaks down when fNL is detected because of the presence of enhanced terms. It is

therefore worth asking what happens to the Cramer-Rao bound in the same regime, and check

if there are enhanced term also in this case.

By the end of this section, we will see that the Likelihood allows for an expansion in powers

of f2
NLA, without Npix enhancements, and therefore that the Cramer-Rao bound in the presence

of a non-null fNL is affected only marginally by terms suppressed by powers of f2
NLA. This will

tell us that the estimator E of the previous section is just a bad estimator in the large signal to

noise regime, and that in principle there can be estimators whose variance in this regime scales

as 1/(Npix ln Npix).

Full Likelihood and Cramer-Rao bound: leading terms. The Likelihood function can

be simply obtained inverting eq. (7), and expressing the probability for the Gaussian variables

10



g as a function of the temperature field Φ:

gθ = f−1(Φθ) = Φθ − f̃NL

(

Φ2
θ − σ2

)

+ 2f̃2
NLΦθ

(

Φ2
θ − σ2)

)

+ · · · . (18)

The Likelihood will be a function of the parameter f̃NL, while we keep fNL to denote the true

value of the non-Gaussianity parameter. The dots represents higher order terms in f̃NL coming

from the inversion of the function f(g~θ
), which for the moment we neglect. We will come back

to them shortly. In Fourier space, expression (18) translates into:

gl =
(

f−1(Φ)
)

l
= Φl − f̃NL

(

(Φ ◦ Φ)l − σ2Ωδl, 0

)

+ 2f̃2
NL

(

(Φ ◦ Φ ◦ Φ)l − σ2Φl

)

+ · · · . (19)

Starting from minus the logarithm of the probability

Lg =
1

2

∑

l1l2

C−1
l1l2

gl1gl2 , (20)

we change variable from gl to Φl taking into account the change in the measure:

L =
1

2

∑

l1l2

C−1
l1l2

(

f−1(Φ)
)

l1

(

f−1(Φ)
)

l2
− Tr ln (J) , (21)

where Tr stays for trace in Fourier space, and J is the Jacobian

J =
∂
(

f−1(Φ)
)

l1

∂Φl2

. (22)

We can now expand to second order in f̃NL to obtain:

L =
1

2

∑

l

(

1

ΩCl

(

ΦlΦ−l − 2f̃NLχlΦ−l + f̃2
NL (χlχ−l + 4Φlη−l)

)

)

(23)

+2f̃NL
Npix

Ω
Φl=0 − 4f̃2

NL

Npix

Ω
χl=0 − 2f̃2

NLNpixσ
2,

where we have introduced the field ηl = (χ ◦ Φ)l
¶. Although the Likelihood contains all the

information on the parameter fNL one can derive from an experiment, its computation as a

function of f̃NL can be very challenging in practice. All analysis to date have used an estimator

of fNL rather than to calculate the full Likelihood (e.g. [16,17]).

The statistical properties of L depend on the underlying true value fNL. To make this explicit

we can write

Φl = gl + fNL

(

(g ◦ g)l − Ω σ2δl,0

)

. (24)

Plugging back in the expression for the Likelihood, we obtain:

L =
1

2

∑

l

1

Ω Cl

(

glg−l + 2(fNL − f̃NL) (χ̃lg−l − 2fNL(glη̃−l − 〈glη̃−l〉)) (25)

+
(

fNL − f̃NL

)2
(χ̃lχ̃−l + 2glη̃−l + 2(glη̃−l − 〈glη̃−l〉))

)

+2f̃NL
Npix

Ω
gl=0 +

(

2fNLf̃NL − 4f̃2
NL

) Npix

Ω
χ̃l=0 − 2f2

NLNpixσ
2,

¶Notice that in this section, to keep the formulas as simple as possible, we have assumed that the average of
Φ in the patch of the sky survey is observed. As it will become clear later, even if this was not the case, it would
not change relevantly the results.
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where we have analogously defined χ̃l = (g ◦ g)l − Ω σ2δl,0, and η̃l = (χ̃ ◦ g)l.

We can use the expression of the Likelihood we have just derived to find the Cramer-Rao

bound on the variance of an unbiased estimator for fNL:

〈
∂2L

∂f̃2
NL

〉−1 =

(

∑

l

1

Ω Cl
〈χ̃lχ̃−l + 2glη̃−l〉

)−1

=
1

8Npixσ2
, (26)

where we have used that:

∑

l

1

Ω Cl
〈glη̃−l〉 =

∑

l

1

ΩCl
〈gl

1

Ω

∑

l′

g−l−l′

(

∑

l′′

gl′−l′′gl′′ − Ωσ2δl′,0

)

〉 (27)

=
∑

l l′l′′

2

Ω2Cl
ΩClδl,−l′+l′′ΩCl′′δ−l−l′,−l′′ = 2

Npix

Ω

∑

l

Cl = 2Npixσ
2,

and analogously:
∑

l

1

Ω Cl
〈χ̃lχ̃−l〉 = 4Npixσ

2. (28)

We see from eq. (13) that the estimator of the last section saturates the Cramer-Rao bound for

sufficiently small fNL.

The expansion of the Likelihood to second order is consistent. At this point, one

may wonder if the higher order terms in fNL might relevantly alter this result with terms that,

though suppressed by powers of fNL, are enhanced by factors of Npix, as in the former section

for the variance of the estimator E . It is quite straightforward to check that this is not the case.

For example, at quartic level in fNL there are terms like:

L ⊃ f4
NL

∑

l

1

Ω Cl
(g ◦ g ◦ g)l (g ◦ g ◦ g)−l (29)

= f4
NL

1

Ω5

∑

l l1l2 l̃1 l̃2

gl−l1−l2gl1gl2

1

Cl
g−l−l̃1−l̃2

gl̃1
gl̃2

,

whose expectation value contributes to the Cramer-Rao bound in eq. (26) with terms like:

f2
NL

∑

l l1l2

1

Ω2

Cl1Cl2Cl−l1−l2

Cl
= f2

NL

∑

l1l2l3

1

Ω2

Cl1Cl2Cl3

Cl1+l2+l3

∝ f2
NLσ4Npix . (30)

We recognize this term as not being enhanced also thanks to our thumb rule according to which

a term is not enhanced if there are no Cls raised to a power larger than one. We conclude that

for these terms there is no Npix enhancement, and therefore are suppressed by genuine powers

of f2
NLA with respect to the leading terms in the Cramer-Rao bound in eq. (26). Higher order

terms will appear in even powers of fNL, and will give similar contributions of the form:

f2n−2
NL

∑

l1l2...ln+1

1

Ωn

Cl1Cl2 . . . Cln+1

Cl1+l2+···+ln+1

∝ f2n−2
NL σ2nNpix , (31)

12



so that we see there is no Npix enhancement for all these terms. At quartic level in fNL there

are also terms appearing from the expansion of the Jacobian in the Likelihood, as for example:

f4
NL

Npix

Ω4

∑

l1l2l3

gl1gl2gl3g−l1−l2−l3 , (32)

whose expectation value gives subleading not-enhanced terms to the Cramer-Rao bound of the

form:

f2
NL

Npix

Ω2

∑

l1l2

Cl1Cl2 = f2
NL

Npix

Ω2

(

∑

l

Cl

)2

∝ f2
NLσ4Npix, (33)

and the same conclusion applies unaltered to the higher order terms coming from the expansion

of the Jacobian:

f2n−2
NL

Npix

Ωn

∑

l1l3...l2n−1

Cl1Cl3 . . . Cl2n−1
= f2n−2

NL

Npix

Ωn

(

∑

l

Cl

)n

∝ f2n−2
NL σ2nNpix. (34)

We conclude that these higher order terms, being not enhanced by Npix, do not alter significantly

the Cramer-Rao bound in eq. (26).

In order to verify the consistency of the expansion at quadratic order in fNL for the Likelihood

as well, we need to check that the higher order terms are irrelevant not only on average, but also

on each realization. In appendix A, we show that their variance scales at most as N2
pix, which

makes their contribution to the Likelihood suppressed by powers of fNLA1/2 with respect to the

contribution of the quadratic terms. We conclude that the expansion of the Likelihood up to

quadratic order is consistent.

Higher order terms in the relation between Φ and g are negligible. Since in this

section we have been very careful in keeping track of higher order terms in fNL, it is useful to

comment on the possibility that additional contributions come from the presence of higher order

terms in the relation between Φ and the underlying Gaussian field of eq. (7):

Φθ = gθ + fNL(g2
θ − σ2) + αf2

NLgθ(g
2
θ − σ2) + · · · (35)

with α an unknown real parameter. Physically we expect these corrections to be there with α

of order one. We need the Likelihood at second order in fNL, so that one might worry that our

results now depend on α. This would be very strange as physically these third order terms in

the expansion above are a very small correction to the, already small, second order terms. The

data should not be sensitive at all to α. One can check that this is indeed what happens. We

leave the details of the algebra to appendix B. We will find that, although α enters into the

Likelihood at order f2
NL, terms containing α cancel on each realization up to terms suppressed

by 1/Npix. Therefore there is no sensitivity to α and it can safely be set to zero.

In summary, we have written the Likelihood for fNL up to second order in fNL, proving that

this expansion is consistent, with the higher order terms only giving negligible contributions

13



suppressed by powers of fNLA1/2. This has also allowed us to verify that higher order terms in

fNL in the Likelihood do not give rise to enhanced contributions to the Cramer-Rao bound. Thus

we conclude that the result in eq. (26) is only corrected by terms of order fNLA1/2, without Npix

enhancement. After what observed in the previous section, this was not a priori guaranteed.

4 No need to worry: simple estimators can saturate the Cramer-

Rao bound

Now that we have determined the Cramer-Rao bound, in this section we look for a new estimator

which continues to have a variance close to the bound even in the high signal-to-noise regime.

We do this to further understand the origin of the enhanced terms and point out how a simple

change in the estimator based on our intuitive understanding can make the estimator saturate

the bound.

We will start from the original estimator E in sec. 2, and we will explicitly show the way in

which the enhanced terms cause the slow convergence of the estimator in the large signal-to-

noise regime. After this it will become easy to guess a new estimator that, apart from small

corrections, saturates the Cramer-Rao bound when the enhanced terms are large.

Explicit origin of the increased variance. Let us therefore start from the estimator E in

eq. (11) and express it in terms of Gaussian variables as:

E =
1

N Ω

∑

l

1

Cl
(glχ̃−l + fNL (χ̃lχ̃−l + 2glη̃−l)) ≡ E0 + fNLE1 + · · · (36)

where + · · · represent higher order terms in fNL, and where we have defined:

E0 =
1

N Ω

∑

l

1

Cl
glχ̃−l , (37)

E1 =
1

N Ω

∑

l

1

Cl
(χ̃lχ̃−l + 2glη̃−l) . (38)

Notice that 〈E0E1〉 = 0, 〈E0〉 = 0, and 〈E1〉 = 1. Therefore the variance of the estimator can be

written as:

〈∆E2〉 = 〈E2
0 〉 + f2

NL〈∆E2
1 〉 . (39)

As we discussed, the variance at zeroth order in fNL is

〈∆E2〉fNL=0 = 〈E2
0 〉 =

1

8Npixσ2
(40)

which saturates the Cramer-Rao bound in (26). However, as we noted in sec. 2, the variance of

E1 behaves like:

〈∆E2
1 〉 ∼

2

π ln2 Npix

, (41)
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decreasing only logarithmically. Therefore it is going to dominate the variance of the estimator

for Npix/ ln Npix & 1/(f2
NLA). Apart for the logarithm, this is when the signal-to-noise becomes

of order 1.

The enhanced variance of E1 could have been anticipated. This term contains, at leading or-

der in fNL, all the signal of non-Gaussianity. We know that for the local kind of non-Gaussianity

the signal comes from squeezed configurations with two of the three ls very large, and one of

the ls very small. The contribution to E1 of squeezed configurations with the smallest of the

ls within a certain decade is roughly independent of the decade, although there are very few

low l multipoles. The value of E1 on a given realization depends quite strongly on the particular

value of the few lowest multipoles; this explains why it converges to its average 〈E1〉 = 1 very

slowly ‖. Progressively the contribution of the first decades of modes becomes negligible, so

that the dependence on the particular value of the lowest multipoles goes away. However this

happens only logarithmically in Npix as this is the way in which the contribution from the lowest

multipoles decays.

Improved Estimator. Now that we understand better the problem of the estimator E , it is

easy to find an improved estimator for the large signal-to-noise regime. We can think about the

large variance of E as coming from a “wrong normalization”. Although the estimator is clearly

unbiased its value strongly depends on the amplitude of the low l modes, so that if on a particular

realization we have a small amplitude in the first multipoles, the value of the estimator will be

small and viceversa. This effect cancels on average (that is why the estimator is unbiased) but

it is the source of the large variance. Anyway this effect can clearly be corrected as we surely

know the amplitude of the low l modes in each particular realization: we just have to divide by

a “realization dependent” normalization. We define a new estimator Ẽ

Ẽ =
NΩ

∑

l
1
Cl

(χlχ−l + 2Φlη−l)
E =

∑

l
1
Cl

Φlχ−l
∑

l
1
Cl

(χlχ−l + 2Φlη−l)
= (42)

= fNL +

∑

l
1
Cl

g̃lχ−l
∑

l
1
Cl

(χ̃lχ̃−l + 2glη̃−l)
+ · · · = fNL +

E0

E1
+ · · ·

where in the second line we have expressed everything in terms of Gaussian variables. Neglected

terms are suppressed with respect to the ones we kept by genuine powers of fNLA1/2. Neglecting

these terms, the new estimator Ẽ is unbiased: 〈Ẽ〉 = fNL, as E0/E1 is an odd function of the

Gaussian variables g and it has thus zero average.

We can now verify that the new estimator converges to the Cramer-Rao bound. We can

write E1 = 1 + δE1, where δE1 is of the order of 〈δE2
1 〉

1/2 ∼ 21/2/(π1/2 ln Npix). For large Npix we

‖As shown in appendix A, terms in E of higher order in fNL, even including a possible contribution from terms
proportional to α, contribute to the variance of the estimator with terms which are not enhanced by powers of
Npix more than what E1 already is. Therefore they are suppressed with respect to the contribution of E1 by a
genuine power of fNLA1/2.
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can thus expand the denominator

Ẽ ≃ fNL + E0 − E0δE1 . (43)

The variance introduced by the third piece scales like 1/(Npix ln3 Npix), more rapidly than the

Cramer-Rao bound ∝ 1/(Npix ln Npix). After a while we are therefore left with the variance

of E0 that, as we know, satisfies the Cramer-Rao bound. It is worth noticing that already at

the level of the WMAP experiment ln2 Npix ≃ 35, so the deviation of this estimator from the

Cramer-Rao bound is already rather small. The important point is that this good behavior of

Ẽ is not spoiled when we enter in the large signal-to-noise regime.

The improved normalization only depends on the large scales. Our understanding of

the enhanced variance of the estimator E relies on the fact that always a significant fraction of

the signal is coming from low l modes with a great intrinsic variance. If this is true, it better be

that the solution to this problem depends strongly on the low ls. Here we therefore verify that

E1 can be written to good approximation in terms of just the first few modes. In appendix B

we have shown that

S2 =
∑

l

1

Ω Cl
glη̃−l (44)

is fully correlated with the quantity

S1 =
Npix

Ω2

∑

l

glg−l , (45)

up to corrections O(1/Npix), so that on each realization ∆S2 = 3∆S1 with very good accuracy.

In the same fashion one can prove that also the quantity

S3 =
∑

l

1

Ω Cl
χ̃lχ̃−l (46)

is fully correlated to S1 (up to corrections O(1/Npix)) and that ∆S3 = 4∆S1. This implies that

also E1 is fully correlated with S1 and therefore, on each realization, we can write:

E1 = 〈E1〉 +
10∆S1

N
. (47)

Now, the important point is that in order to compute the quantity ∆S1 on a given realization one

needs, to good approximation, only the first few modes. This can be seen from the computation

of the variance of S1 in Appendix B:

〈∆S2
1〉 = 2

N2
pix

Ω2

∑

l

C2
l ≃

2πA2N2
pix

Ω

(

1

l2min

−
1

l2max

)

(48)

which shows that the contribution to the variance of the high ls is completely irrelevant. We

therefore conclude that the value of E1 on each realization can be determined just by looking at

the first few modes, in agreement with our intuition.
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This last remark has also relevant consequences from the computational point of view. In

fact it seems at first sight very hard to use the new estimator in the analysis of CMB data, as it

contains 4-point functions and one has to deal with the complications of the spherical geometry

and of the transfer function. On the other hand the dependence on only the first few modes

makes the modification computationally quite light.

Relation to the full Likelihood calculation. The Likelihood (23) contains all the informa-

tion on the parameter fNL. To reconstruct it from the data we just need the coefficients of the

terms linear and quadratic in f̃NL. These two combinations of the data are sufficient statistics

for fNL. Notice that given our discussion above it is not so complicated to analyze the full

Likelihood function: we just need the same kind of terms entering in the estimator Ẽ above.

A natural question is whether one can get better constraints on fNL using the full Likelihood

function instead of an estimator.

First of all it is straightforward to check that the maximum Likelihood estimator, which

can be easily derived from eq. (23), has the same good properties of our improved estimator

discussed above. It is unbiased up to corrections O(1/N
1/2
pix ) and it asymptotically saturates the

Cramer-Rao bound up to corrections decaying as 1/ ln2 Npix.

The Cramer-Rao bound, being the average value of the second derivative of the log-Likelihood,

gives the average value of error bars that one gets. The difference in using the full Likelihood

is that the curvature of it changes realization by realization, as it is given by the f̃2
NL term in

eq. (23). Usually this distinction between the curvature of the Likelihood in a particular real-

ization and its average value is irrelevant, as the difference scales like 1/Npix. This is not true

in our case. The variance of the curvature of the Likelihood function only scales as 1/ ln2 Npix.

This is again intuitive: given the strong dependence on the lowest multipoles, a realization with

an excess of power in the low ls compared with the average will be more constraining than one

with suppressed power on large scales. In the first case in fact it is easier to see the non-Gaussian

correlation between the low ls and the short scale power. This difference is anyway not that

large: for real experiments that have a chance of detecting fNL, 1/ ln Npix is rather small.

We reach an important conclusion. The use of our improved estimator, or equivalently the

maximum Likelihood one, is equivalent to the full Likelihood of the data up to small corrections

suppressed by 1/ ln Npix. This closes the door to any additional attempt to improve the limits

on fNL.

5 Comments on estimating fNL using the 4-point function

It has been proposed in [21] and more recently in [22] that an estimator for fNL based on the

4-point function has a variance which decreases as 1/N2
pix, so that it might be better than a

3-point function estimator for large enough fNL. Of course our analysis in the previous sections

shows that the Cramer-Rao bound scales as 1/(Npix ln Npix), so that no estimator can do better
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than this. Moreover we proved that a slight modification of the 3-point function estimator

makes the new estimator Ẽ approach asymptotically the Cramer-Rao bound. Rather than stop

here and rely on the above “theorems” we want to show explicitly in this section what goes

wrong in the naive calculation of the variance of the 4-point function estimator. We will see

that the 1/N2
pix scaling of the variance does not hold once the signal-to-noise is larger than one

and the “enhanced” terms are taken into account. We will also show explicitly that there is no

additional information about fNL in the 4-point function that is not already captured by the

3-point function.

The variance of the proposed 4-pt estimator has enhanced terms. Let us begin proving

that the variance of the estimator introduced in [21,22] does not scale as 1/N2
pix. The proposed

estimator, analogously to the estimator E in the 3-point function case, is the linear combination

of 4-point correlators which maximizes the signal-to-noise in the limit fNL → 0:

E4 =
1

N4

∑

l1l2l3

〈Φl1Φl2Φl3Φl4〉c,1
Cl1Cl2Cl3Cl4

Φl1Φl2Φl3Φl4 , (49)

where N4 is a normalization constant which makes the estimator unbiased 〈E4〉 = f2
NL. The

sum is restricted to momentum conserving, l4 = −l1 − l2 − l3, non-degenerate quadrilaterals.

The subscript 1 in 〈Φl1 . . . Φl4〉c,1 means that the connected 4-point function is evaluated with

fNL = 1. The variance of this estimator is:

〈∆E2
4 〉 = (50)

∑

l1l2l3

∑

l̃1 l̃2 l̃3

〈Φl1
Φl2

Φl3
Φl4

〉c,1

Cl1
Cl2

Cl3
Cl4

〈Φl̃1
Φl̃2

Φl̃3
Φl̃4

〉c,1

Cl̃1
Cl̃2

Cl̃3
Cl̃4

〈Φl1Φl2Φl3Φl4Φl̃1
Φl̃2

Φl̃3
Φl̃4

〉

(

∑

l1l2l3

〈Φl1
Φl2

Φl3
Φl4

〉2c,1

Cl1
Cl2

Cl3
Cl4

)2 − f4
NL .

Here we are interested in the scaling with Npix of the different terms, therefore we do not

keep track of the various combinatorial and numerical factors, and also of possible logarithmic

corrections. Using the fact that the connected 4-point function behaves, at leading order in fNL,

like:

〈Φl1Φl2Φl3Φl4〉c ∼ f2
NL · Cl1Cl1+l2Cl4 + symm , (51)

we find that the denominator of the first term contains terms that behave like:

∑

l1l2l3

〈Φl1Φl2Φl3Φl4〉
2
c,1

Cl1Cl2Cl3Cl4

∼
∑

l1l2l3

C2
l1
C2

l1+l2
C2

l4

Cl1Cl2Cl3Cl4

≃
∑

l1l2l3

Cl1C
2
l1+l2

Cl4

Cl2Cl3

. (52)

We already met these kind of summations and we know they are dominated by l1 + l2 ∼ lmin

and enhanced by a factor of Npix with respect to the naive scaling.

∑

l1l2l3

〈Φl1Φl2Φl3Φl4〉
2
c,1

Cl1Cl2Cl3Cl4

∼ N2
pix

∑

l

C2
l ∝ N2

pixA
2. (53)
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For the numerator we have to compute the 8-point function, which in general will be the sum

of the product of four 2-point function, of two connected 3-point functions and one 2-point

function, of two connected 4-point functions, and so on. At zeroth order in fNL, we have only

2-point functions and we obtain something which scales as the square root of the denominator.

Therefore, if ones stops at this level, one finds that the variance decreases as 1/N2
pix. This is the

result obtained in [21] and [22].

However, as we learned in sec. 2, there are other terms in the numerator which, though

suppressed by powers of f2
NLA, are enhanced by powers of Npix. It turns out that the product

of two 4-point functions, of the 5-point with the 3-point one, and of the 6-point with the 2-

point one, all give rise to enhanced terms with the same scaling. For example a term with two

connected 4-point functions is

∑

l1l2l3

∑

l̃1 l̃2 l̃3

〈Φl1Φl2Φl3Φl4〉c,1
Cl1Cl2Cl3Cl4

〈Φl̃1
Φl̃2

Φl̃3
Φl̃4

〉c,1

Cl̃1
Cl̃2

Cl̃3
Cl̃4

〈Φl1Φl2Φl̃3
Φl̃4

〉c〈Φl̃1
Φl̃2

Φl3Φl4〉c

≃ f4
NL

∑

l1l2l3

∑

l̃1 l̃2 l̃3

Cl1Cl4C
2
l1+l2

Cl2Cl3

Cl̃1
Cl̃4

C2
l̃1+l̃2

Cl̃2
Cl̃3

+ · · · (54)

where + · · · represents terms of higher order in fNL. The sums will be dominated by the region

with l1 + l2 ∼ lmin and l̃1 + l̃2 ∼ lmin, so that we obtain

f4
NLN4

pix

(

∑

l

C2
l

)2
∝ f4

NLA4N4
pix (55)

as we wanted to show. Putting together the behavior of the different terms we get the scaling

of the variance of the proposed estimator up to logarithmic corrections

〈∆E2
4 〉 ∼

1 + f4
NLA2N2

pix

A2N2
pix

, (56)

where we see the importance of enhanced terms at numerator. For comparison, it is useful to

write the same schematic relation for the analogous 3-point function estimator E we discussed

in sec. 2:

〈∆E2〉 ∼
1 + f2

NLANpix

ANpix
. (57)

We notice that the enhanced terms become parametrically important for both the estimators

when f2
NLANpix ∼ 1 which is, apart for logarithms, the regime when the signal-to-noise is of

order one.

Is there additional information in the 4-point function? In the limit in which the

enhanced terms are negligible, we see that the variance of E4 is of the order of the square of

the variance of E , which means that E4 will give parametrically the same limits on fNL in this

regime. However, in the previous sections, we have shown that in the same limit the 3-point

function estimator E saturates the Cramer-Rao bound; therefore in this regime there is nothing
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which could be added by the use of the 4-point function. This agrees with the numerical result

of [22], where it is shown that in this regime the limit on fNL obtained from the 4-point function

estimator is always slightly worse than the one obtained using the 3-point function. Given the

Cramer-Rao bound, we can even say something more: in this regime no improvement can be

achieved from combining the two estimators.

On the other hand when the enhanced terms become important we see that the variance of

both estimators does not decrease anymore (apart for logarithmic terms). In particular there

no 1/N2
pix scaling for the 4-point function. As it was shown in sec. 4, in this regime one must

consider “fractional” estimators, which are not just polynomial in the data.

Explicit relation between the 3-point and 4-point estimators. It is worth pointing out

an explicit relationship between the 4-point and 3-point function estimators, to show that there

is really nothing new in the 4-point estimator E4, which is not already taken into account using

E .

Let us remind once again that, for local non-Gaussianities, the signal-to-noise of the 3-point

function is concentrated on squeezed configurations, where one of the three ls is small, and the

other two are large and almost opposite. The 3-point function estimator E is basically doing a

weighted sum of the signal contained in all the configurations, where the weight is the signal-

to-noise ratio. Therefore, the estimator E can be well approximated by a sum over just the

squeezed configurations:

E ∝
∑

L

ΦL

∑

l

Φ−L−lΦl

Cl
≡
∑

L

ΦLK−L (58)

where L is a large scale multipole and l is a small scale one, and KL is defined as:

KL =
∑

l

Φ−L−lΦl

Cl
. (59)

In the presence of a non-zero fNL, KL will contain, when expressed in terms of Gaussian variables

a contribution

KL ∼ 2fNL gL . (60)

The estimator E correlates this contribution with the long-wave mode Φ−L.

Analogously in the case of the estimator E4, as we have seen, the signal comes from squeezed

configurations, where the four vectors ls are approximately opposite in pairs. Therefore, the

estimator E4 can be written to a good approximation as a sum over just these configurations:

E4 ∝
∑

L

CLKLK−L . (61)

Again in the presence of a non-zero fNL we are correlating the non-Gaussian contribution inside

each of the K’s, giving an average signal ∝ f2
NL.
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From this it should be clear that the two estimators are clearly not independent and that

the 4-point one is less efficient because the non-Gaussian contribution must come out of both

the K’s, while it is more efficient to directly correlate KL with the mode Φ−L as in eq. (58).

6 Summary

It is perhaps unfortunate that our paper is filled with so many equations, the message however

is simple. The analysis of the local type of non-Gaussianity for scale invariant perturbations is

somewhat more subtle than one might have guessed: a naive fNLA1/2 expansion is not always

appropriate. The physical origin of the effect is clear: long wavelength modes modulate the

amplitude of the short wavelengths and the amplitude of this modulation produced by long

wavelengths of every decade in scale is the same. Cosmic variance severely affects this long

wavelengths and because their relative information contribution only decreases logarithmically

with the number of pixels, one ends up with large variances for the naive fNL estimators.

The basic point is that when one calculates the normalization of the fNL estimator one uses

the average level of large scale fluctuations as opposed to the power in the individual realization

one happens to have. As a result, in the limit of large signal to noise, this relatively large

uncertainty in the normalization of the estimator severely enhances its variance. Fortunately

one knows the amplitude of the modes in a given realization by direct measurement so it is

almost trivial to fix the problem by choosing a normalization that depends on the particular

realization.

Writing down the full Likelihood one can explicitly calculate how well one should in principle

be able to constrain fNL and explicitly check how the effect mentioned above comes in. One

can show that a simple modification of the naive estimator recovers all the information that

the data contain and that in fact using that estimator is basically equivalent to calculating the

full Likelihood, up to corrections O(1/ ln Npix). As a result, one is also convinced that other

statistics such as the 4-point function, Minkowski functionals, wavelets, etc can at best extract

as much information on fNL as the 3-point function. In any event they would not contribute

additional information on fNL, so once the 3-point function is measured there is nothing else to

be done.
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Appendices

A Proof that the enhancement is at most of order Npix

In this appendix we want to prove that the variance of the sums that appear in the Likelihood

and in the estimators scales at most as N2
pix, i.e. that the possible enhancement with respect

to the naive scaling is at most of order Npix. In order to do this, following the discussion in

sec. 2, where we explained the thumb rule for discovering enhanced terms, it is enough to show

that in the expression in Fourier space of the variance there is at most one Cl raised at most

to the power of two. This corresponds to an enhancement of one factor of Npix, while further

enhancements would require either one Cl raised to a power larger than two, or more than one

Cl squared.

A good rearrangement of the various terms is obtained if we start in real space, where the

terms we are interested in can be written in the general form:

∑

θ1θ2

C−1
θ1θ2

gM
θ1

gN
θ2

, (62)

where M and N are two positive integers, and Cθiθj
is the covariance matrix in real space. This

is related to the one in Fourier space by the following relation:

Cθiθj
=

1

Ω

∑

l

Cl eil·(θi−θj). (63)

Analogously, C−1 can be expressed in real space as:

C−1
θiθj

=
Ω

N2
pix

∑

l

1

Cl
eil·(θi−θj). (64)

Let us compute the variance of the general term in eq. (62). This will be the sum of terms

of the form:

∑

θ1θ2θ3θ4

C−1
θ1θ2

C−1
θ3θ4

(Cθ1θ2
)α(Cθ1θ3

)β(Cθ1θ4
)γ(Cθ2θ3

)δ(Cθ2θ4
)Σ(Cθ3θ4

)ρ , (65)

with the positive integers α, β, γ, δ,Σ, ρ constrained to satisfy α+β+γ+δ+Σ+ρ = (N +M)/2.

We can now express each of the Cs and C−1s in Fourier space with the relations (63) and

(64). After this, the summation over the angles θ1, θ2, θ3 and θ4 becomes trivial, each of these

giving a Kronecker delta. In particular, the summations over θ1 and θ2 give the constraints:

l1 + lα1 + · · · + lαα + lβ1 + · · · + lββ + lγ1 + · · · + lγγ = 0 , (66)

−l1 − lα1 − · · · − lαα + lδ1 + · · · + lδδ + lΣ1 + · · · + lΣΣ = 0 (67)

where l1 is the l associated to the Fourier transform of C−1
θ1θ2

, lαi , with i = 1, . . . , α, are the ls

associated to the Fourier transform of (Cθ1θ2
)α, and analogously for the other Cs. These two

constraints can be usefully rewritten as:

l1 = −lα1 − · · · − lαα − lβ1 − · · · − lββ − lγ1 − · · · − lγγ , (68)
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lβ1 + · · · + lββ + lγ1 + · · · + lγγ + lδ1 + · · · + lδδ + lΣ1 + · · · + lΣΣ = 0 . (69)

From the summation over θ3 and θ4, we obtain two analogous constraints that can be written

as:

l2 = lβ1 + · · · + lββ + lδ1 + · · · + lδδ − lρ1 − · · · − lρρ , (70)

lβ1 + · · · + lββ + lγ1 + · · · + lγγ + lδ1 + · · · + lδδ + lΣ1 + · · · + lΣΣ = 0 , (71)

where l2 is the l associated to the Fourier transform of C−1
θ3θ4

. We see that the second of these

constraints is equivalent to the one in eq. (69). The presence of a redundant constraint is a

manifestation of the fact that the term we started with in eq. (62) was rotationally invariant.

After the summation over the angles, we are left with summations only over the ls:

∑

l1l2

∑

lα
1

...lαα

· · ·
∑

lρ
1
···lρρ

(

Clα1
· · ·Clαα

)

· · ·
(

Clρ
1
· · ·Clρρ

)

Cl1Cl2

, (72)

subject to the three independent constraints we have found. Notice that the Npix factors in (64)

exactly cancel with the four ones from the sums over θi. Now, the first and third constraints

can be used to eliminate the summations over l1 and l2, leaving us with:

∑

lα1 ...lαα

· · ·
∑

lρ1 ···l
ρ
ρ

(

Clα1
· · ·Clαα

)

· · ·
(

Clρ1
· · ·Clρρ

)

Cl1Cl2

, (73)

with l1 and l2 given by eq. (68) and (70). The only remaining constraint is eq. (69). After

applying it, the variance is in the form such that we can quickly apply our thumb rule, and

understand its level of enhancement. Naively given that the number of Cls is (N + M)/2 − 2

and the number of summations is (N + M)/2 − 1 we get a behavior ∼ Npix. But it can happen

that the last constraint makes two Cls at numerator equal. In this case the sum goes as N2
pix.

No further enhancement is possible.

B Higher order corrections in the definition of local non-Gaussianities

In Fourier space eq. (35) reads:

Φl = gl + fNLχ̃l + αf2
NLη̃l . (74)

In this appendix we want to prove that, although α enters in the Likelihood at order f2
NL, this

does not imply that data are sensitive to this parameter, unless it is huge compared to the naive

estimate α ∼ O(1). The new term gives the following contribution to the Likelihood at order

f2
NL:

Lα = αf̃2
NL

(

∑

l

−
1

Ω Cl
(glη̃−l − 〈glη̃−l〉) + 3

Npix

Ω
χ̃l=0

)

, (75)
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where we have neglected terms which are independent of f̃NL. We notice that both terms above

have zero average. However this is not enough to prove that there is no relevant dependence on

α because both terms have enhanced variance, so that they converge to zero very slowly. Their

importance with respect to the other terms in the Likelihood decreases as 1/ ln2 Npix. What

we are now going to prove is that, although both terms have large variance, they are strongly

correlated and their contributions in eq. (75) cancel up to terms suppressed by 1/Npix. Therefore

the dependence on α is extremely small as expected on physical grounds.

Defining:

S1 =
Npix

Ω2

∑

l

glg−l , S2 =
∑

l

1

Ω Cl
glη̃−l , (76)

we can write eq. (75) as:

Lα = αf̃2
NL (−∆S2 + 3∆S1) . (77)

We can now compute the correlation functions of S1 and S2:

〈S1〉 =
Npix

Ω2

∑

l

〈glg−l〉 =
Npix

Ω

∑

l

Cl , (78)

〈∆S2
1〉 =

N2
pix

Ω4

∑

l l̃

〈glg−lgl̃g−l̃〉 − 〈S1〉
2 = 2

N2
pix

Ω2

∑

l

C2
l , (79)

〈S2〉 = 2
Npix

Ω

∑

l

Cl , (80)

as computed before, and:

〈∆S2
2〉 =

∑

ll̃

1

ΩCl

1

ΩCl̃

〈glη̃−lgl̃η̃−l̃〉 − 〈S2〉
2 (81)

=
∑

ll̃

1

Ω2ClCl̃

〈gl

(

1

Ω

∑

l′

g−l−l′

(

1

Ω

∑

l′′

gl′−l′′gl′′ − Ωσ2δl′,0

))

×gl̃





1

Ω

∑

l̃′

g−l̃−l̃′





1

Ω

∑

l̃′′

gl̃′−l̃′′gl̃′′ − Ωσ2δl̃′,0







〉 − 〈S2〉
2 .

The summation is dominated by those terms which come from the contraction of the gl in each S2

with one of the three gls contained inside the η̃−l from the same S2 term. These are enhanced by

a factor of Npix with respect to the other contributions. Neglecting subleading terms we obtain:

〈∆S2
2〉 = 18

N2
pix

Ω2

∑

l

C2
l . (82)

Finally for 〈∆S1∆S2〉 = 〈S1S2〉 − 〈S1〉〈S2〉, we obtain:

〈∆S1∆S2〉 = 6
N2

pix

Ω2

∑

l

C2
l , (83)
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again keeping only leading terms. We see that S1 and S2 are fully correlated, up to correction

O(1/Npix):

〈∆S1∆S2〉
(

〈∆S2
1〉〈∆S2

2〉
)1/2

=
6

N2
pix

Ω2

∑

l C
2
l

(

2
N2

pix

Ω2

∑

l C
2
l × 18

N2
pix

Ω2

∑

l C
2
l

)1/2
= 1 . (84)

On each realization we have:

∆S2 =

(

〈∆S2
2〉

〈∆S2
1〉

)1/2

∆S1 = 3∆S1 , (85)

and therefore Lα = 0 up terms suppressed by 1/Npix.

We conclude that terms which depend on α are negligible in the Likelihood.
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