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Abstract

The gravitational waves, that are expected to be observed with the new

generation of detectors, are supposed to be generated by systems involving

very compact objects during processes like the coalescence of binary systems.

First order estimation of the gravitational radiation emitted by those sys-

tems can be carried out from the quadrupole formula. A more precise descrip-

tion of the gravitational radiation requires improved formulae which would

probably take into account further multipole structure of the sources.

This conduces immediately to the issue of which is the appropriate frame of

reference that should be used to de�ne the multipole structure of the system.

Even the notion of angular momentum is dependent on the frame that one is

using to make the calculation.

For example, if one uses an inappropriate frame, which is moving and is

not round, to describe the asymptotics of Schwarzschild spacetime, one could

�nd a nonzero angular momentum and a complicated multipole structure.

Instead, when one wishes to describe the gravitational radiation, one is

interested in determining the intrinsic structure of the sources, and therefore

intends to avoid information associated to an inappropriate choice of frame.

In a few words, one is interested in using a frame that captures the idea of

being at rest with the sources, which is around the sources and that is centered

in relation to the central distribution. All these properties are required to be

satis�ed at all times; which is not a trivial requirement for systems in which

the back reaction due to gravitational radiation are important.

The appropriate reference frame at future null in�nity is constructed using

the so-called nice sections that we introduced some time ago.

In this occasion we would like to report on the latest results of our program;

which allow us to provide a notion of center of mass frame, which is used to

de�ne intrinsic angular momentum, and can also be used to describe the

multipolar structure of the sources of gravitational waves.
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1 Introduction

At present the observational evidence for the existence of gravitational radiation

can be explained in the terms of the quadrupole radiation formula[4],

FQ =
1

5

3X
i;j=1

�
d3Qij

dt3

�2

: (1)

In the future we expect to have access to observation that would require another

formula which will take into account further structure of the sources; namely angular

momentum and multipole moments.

F = F (multipole structure): (2)

This conduces us to the question of the reference frame in which these quantities

are de�ned.

In the absence of gravitational radiation, things are easy; since the asymptotic

structure of a stationary isolated system mimics that of linearized gravity. This

means that it is possible to single out a rest frame suitable for calculating the

intrinsic angular momentum[5] and multipole structure of the source.

In linearized gravity the geometrical structure is characterized by the symmetries

of Minkowski spacetime; namely the Poincar�e group; whose generators are the four

translations and the six Lorentz rotations:

k� =
@

@x�
; k�� = x�

@

@x�
� x�

@

@x�
;

with �; � = 0; 1; 2; 3.

Given an energy momentum tensor one can de�ne global quantities associated

with the generators of the Poincar�e group. In this way one has

P� =

Z
V

Tab k
b
� dV

a ; J�� =

Z
V

Tab k
b
�� dV

a;

where V is a spacelike hypersurface and it is observed that the total momentum is

de�ned in terms of the generators of the translations k�, and the angular momentum

is de�ned in terms of the generators of the Lorentz rotations.

Due to the divergent free nature of the energy momentum tensor, these global

quantities are conserved; i.e., they are independent of the particular spacelike hy-

persurface V ; and therefore depend only on the boundary of V , the 2-surface S.

In order to de�ne a rest frame system, one can transform to a reference system

in which the spacelike components of the vector P� are zero. This �xes the Lorentz

freedom of the Poincar�e group, leaving a four dimensional space of translations.

2 Isolated radiating systems

Things are much more complicated when one considers a gravitating isolated sys-

tem which emits gravitational radiation. These systems are modeled by asymp-

totically 
at spacetimes. In this case the asymptotic geometric structure at future
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null in�nity (normally called scri and denoted by I) is characterized by the in�-

nite dimensional Bondi-Metzner-Sachs (BMS) group. In this group one can still

identify a Lorentz freedom associated to six asymptotic symmetries, and an in�nite

dimensional freedom of translations; the so-called supertranslations.

The topology of future null in�nity is R � S2, whose natural coordinates are

the Bondi coordinates; which are labeled by (u; �; ��), where (�; ��) are complex

stereographic coordinates of the sphere S2 and u takes values in R. Given an

arbitrary function 
(�; ��) of the sphere to real numbers, we say that u = 
(�; ��)

de�nes a section of I. The BMS group is de�ned by the following coordinate

transformation:

~u = K
�
u� 
(�; ��)

�
; ~� =

a� + b

c�� + d
; (3)

with

ad� bc = 1; K =
1 + � ��

ja� + bj2 + jc� + dj2

where a; b; c; d are complex constants and 
 is a real function on the sphere.

The generators of the BMS group can be expressed in terms of the Bondi coor-

dinate system; in particular the supertranslations are

klm = Ylm(�; ��)
@

@u
; (4)

where l = 0; 1; :::;1, m = �l;�l+ 1; :::; l and Ylm are the spherical harmonics.

In an analogous way, as it was done in linearized gravity, one can de�ne the

components of the corresponding supermomentum[6], in terms of a Bondi system,

by the expression

Plm = � 1p
4�

Z
�

Ylm(�; ��) 	(u; �; ��) d�
2; (5)

where � is a section of future null in�nity and

	 = 	2 + � _�� + g
2��; (6)

with 	2 and � being the leading order asymptotic behavior of the second Weyl

tensor component and the Bondi shear respectively, and where we are using the

Geroch-Held-Penrose (GHP) notation[2] for the eth operator of the unit sphere;

and the dot means @=@u.

The total Bondi energy-momentum vector at a given section of null in�nity can

be expressed by

(P a) =

�
P00;� 1p

6
(P11 � P1;�1);

ip
6
(P11 + P1;�1);

1p
3
P10

�
; (7)

where a = 0; 1; 2; 3.
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In order to de�ne a rest frame system one could make a Lorentz rotation so

that in the new frame the Bondi momentum is timelike. But in general the other

spacelike components of the supermomentum will still be di�erent from zero.

There is a one to one relation between asymptotic Minkowskian frames and

Bondi systems at future null in�nity. And, there is also a one to one relation

between a Bondi system and a section together with a timelike direction.

Since we have the natural timelike direction at future null in�nity given by

the Bondi momentum, the question can be phrased in the following way: can one

�nd sections at future null in�nity such that all the spacelike components of the

supermomentum are zero?

If we can �nd them they would be the natural choice for de�ning rest frames in

which it will be meaningful to de�ne the multipole structure of the sources.

These set of sections are called nice sections[6] and are determined by the equa-

tion

g
2�g2
 = 	(
; �; ��) +K3(
; �; ��)M(
) ; (8)

where the Bondi mass is given byM = P aPa, the conformal factorK can be related

to the Bondi momentum by

K =
M

P ala
; (9)

P a is evaluated at the section u = 
; which is calculated through the integral (7)

and la is given by

(la) =

�
1;

� + ��

1 + � ��
;

� � ��

i(1 + � ��)
;
� �� � 1

1 + � ��

�
: (10)

Equation (8) is the nice section equation and it is interesting to know whether

it has solutions for radiating isolated systems.

When these sections were initially introduced[6] we proved local existence.

Later we proved global existence[9], with techniques that used the implicit func-

tion theorem. The result was that for small radiation data there exists a global

4-parameter family of nice sections at future null in�nity. Due to the nature of the

techniques employed, the notion of \small radiation" has a topological meaning.

Our last result[1] on the proof of existence is based on the �xed point theo-

rem, which allows us to have a physically realistic condition on the gravitational

radiation.

Let us de�ne a real function x = x(�; ��) on the sphere to be a translation if

g
2�g2x = 0. Note that this implies that x has an expansion in spherical harmonics

with l = 0; 1. An arbitrary regular function 
 can be decomposed in the form


 = x+ y;

where y has an expansion with l � 2. Given an arbitrary x, equation (8) is an

equation for y.

Our new result is the following Theorem[1]:
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Theorem 1 If 	 is a smooth function on scri, the total energy P 0 is bounded by the

constant E0, the total mass M is bounded from below by M �M0, M0 > 0; and the

gravitational energy density 
ux j _�j2 � �; where the constant � satis�es

� <

p
27

4
(1 + (2CK)

4)�1;

and CK is given by

CK =
E0

M0

+

s
E2
0

M2
0

� 1;

then

(i) For every translation x there exists a solution y of equation (8), and y is a smooth

function on the sphere.

(ii) The solutions 
 = x + y(x) are continuous in the 4-parameter translation x,

and if x1 and x2 are two translations such that the di�erence, x2 � x1, corresponds to

a future directed timelike vector, then


(x1; �; ��) < 
(x2; �; ��):

Since the mass M is a decreasing function of u, the constant M0 is the �nal rest

mass as u!1. Note that while M0 is Lorentz invariant P
0 is not.

It is important to stress that all the hypotheses of the theorem are in terms of

physical quantities; namely the total mass M , the energy P 0 and the gravitational

energy density 
ux j _�j2. Theorem 1 essentially says that solutions of equation (8)

exist and have the expected physical properties, when the gravitational radiation

of the spacetime is �nite but not too high.

The property stated in part (ii) of the theorem can be visualized in �gure 1.

To give an idea of the physical relevance of the conditions let us compare with

the case of the head-on collision of two black holes[8] [7]. In �gure 2 one can �nd

the quadrupole radiation energy for the head on black hole collision, the bounds

required in our theorem and the area theorem[3] bounds.

3 Intrinsic angular momentum and center of mass

Having the rest frames de�ned at future null in�nity one can concentrate in de�ning

the physical quantities of the isolated system as for example the intrinsic angular

momentum.

We can improve on a previous [5] de�nition of angular momentum at future null

in�nity based on charge integrals of the Riemann tensor on a section � of the form:

Q� =

Z
�

C (11)
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Figure 1: Associated to a time translation in the space of parameters there is a time supertrans-

lation in the space of solutions. In Minkowski spacetime, a translation in the space of parameters

corresponds to a physical translation in the interior of the spacetime.

where the two-form Cab is given in terms of the Riemann tensor by

Cab � R� cd
ab wcd; (12)

and where the two-form wab is to be determined. Following [5] it is convenient to

express this form in terms of its spinorial components and to require on scri

�r B0

A wAB + c:c: = vBB
0

(13)

and

rE0(E wFG) = 0; (14)

where c.c. means complex conjugate and the vector vBB
0

is a generator of asymp-

totic Lorentz rotations.

Expressing wAB in terms of its components

wAB = w0 �̂
A �̂B � w1

�
ôA �̂B + �̂AôB

�
+ w2 ô

AôB (15)

the solutions of these equations for stationary spacetimes are given by

w2 = �1

3
v �m; (16)

w1 = w00
1 (�; ��) +

1

6
u gv �m; (17)

w0 = w00
0 + u

�
�2w00

1 +
2

3
�v �m

�
� 1

6
u2 g2v �m (18)
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Gravitational energy from quadrupole formula and bounds
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Figure 2: The �rst two curves from below, show the quadrupole radiation in the head on black

hole collision with equal mass (alpha = 1 case) and when one of the masses is 10% of the companion

(alpha = 0.1 case). The upper two lines show the bounds coming from the area theorem for these

systems. Right below the area theorem bounds appear the conditions required in our theorem; it

can be seen that they are almost the same as the area theorem bounds, and therefore the conditions

are very reasonable.
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where v �m = vAB0 �̂AôB
0

and w00
1 and w00

0 are spin weight 0 and 1 functions respec-

tively that solve the equations

g
2w00

1 =
1

3
g� �g�a+

1

2
� g�g�a = �g� w2 � 3

2
� gw2 (19)

and

gw00
0 = �2�w00

1 : (20)

In this way one obtains a two-form with functional dependence

w0
AB = w0

AB

�
�0(�; ��); v �m;u; �; ��

�
: (21)

When the spacetime contains gravitational radiation the shear � depends on the

time u and the equations (13) and (14) in general have no solution. However, given

a nice section � and an asymptotic symmetry va we de�ne the two-form wab on �

by the assignment

wAB = w0
AB

�
�(u = u0;�; ��); vm;u; �; ��

�
: (22)

With this de�nition the charge integral of the Riemann tensor can be expressed

by

Q�(w) =

Z
�

C = 4

Z
�

�
�w2

�
	0
1 + 2�g�� + g (���)

�
+

2w1

�
	0
2 + � _�� + g

2��
��

d�2 + c:c:

: (23)

This equation is reminiscent of the relation in Minkowski spacetime of the an-

gular momentum, the intrinsic angular momentum and the momentum, namely

J�� = S�� +R� P � � P�R� ; (24)

in which J�� is the total angular momentum, S�� is the intrinsic angular momen-

tum, P� is the total momentum and R� is the translation dependence of the angular

momentum. The condition

J�� = S�� ; (25)

eliminates three degrees of freedom in the choice of R�, leaving only the possibility

of parallel translation to P�.

This same condition is used in equation (23) to eliminate three degrees of freedom

contained in the de�nition of the nice sections � and therefore in Q�. Noting that

one can express

vm = ga; (26)
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we request

Q�(a) = 0 for all a = �a: (27)

This is the appropriate condition that leaves a one-dimensional family of nice

sections � that can legitimately be called center of mass frames.

Using these frames �cm, the intrinsic angular momentum is de�ned through

S(w) = Q�cm
(w): (28)

Our de�nition of angular momentum has the appropriate behavior in the pres-

ence of gravitational radiation. To see this, imagine that there is a spacetime in

which one can distinguish three stages; starting with a stationary regime, passing

through a radiating stage and ending in a stationary regime (see Fig. 3). By con-

struction it is clear that our de�nition gives the intrinsic angular momentum in all

the stages. In particular in the �rst and third, it agrees with the accepted notions

of angular momentum.

stationary stage

stationary stage

radiating stage

source

Figure 3: Behavior of the notion of intrinsic angular momentum in a spacetime with three stages;

beginning with a stationary stage, continuing with a radiating stage and ending with a stationary

stage.

It is important to remark that to construct the center of mass frames one needs

the notion of angular momentum and that in order to determine the intrinsic angular

momentum one uses the construction of the center of mass frames. That is, both

concepts are �xed in the same procedure.

As a summary let us say that given an observer (a gravitational wave detector)

at the point p of future null in�nity; there is a unique rest frame characterized by a
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nice section � and the Bondi momentum P a(�) which is the center of mass frame

of the isolated system at this retarded time; therefore this is the indicated frame to

de�ne the multipole moments and to describe their dynamical evolution.
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