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Abstract

We review the motivations for the search for stochastic backgrounds of

gravitational waves and we compare the experimental sensitivities that can be

reached in the near future with the existing bounds and with the theoretical

predictions.



Stochastic Backgrounds of GWs 399

1 Motivations

A possible target of gravitational wave (GW) experiments is given by stochastic
backgrounds of cosmological origin. In a sense, these are the gravitational analogues
of the 2.7 K microwave photon background and, apart from their obvious intrinsic
interest, they would carry extraordinary information on the state of the very early
universe and on physics at correspondingly high energies. To understand this point,
one should have in mind the following basic physical principle:

� a background of relic particles gives a snapshot of the state of the universe at

the time when these particles decoupled from the primordial plasma.

The smaller the cross section of a particle, the earlier it decouples. Therefore par-
ticles with only gravitational interactions, like gravitons and possibly other �elds
predicted by string theory, decouple much earlier than particles which have also
electroweak or strong interactions. The condition for decoupling is that the inter-
action rate of the process that mantains equilibrium, �, becomes smaller than the
characteristic time scale, which is given by the Hubble parameter H ,

�� H ) decoupled (1)

(we set �h = c = 1). A simple back-of-the-envelope computation shows that, for
gravitons, �

�

H

�
=

�
T

MPl

�3
; (2)

so that gravitons are decoupled below the Planck scaleMPl � 1019 GeV, i.e., already
10�44 sec after the big-bang. This means that a background of GWs produced in the
very early universe encodes still today, in its frequency spectrum, all the information
about the conditions in which it was created.

For comparison, the photons that we observe in the CMBR decoupled when
the temperature was of order T ' 0:2 eV, or 3 � 105 yr after the big bang. This
di�erence in scales simply re
ects the di�erence in the strength of the gravitational
and electromagnetic interactions. Therefore, the photons of the CMBR give us a
snapshot of the state of the universe at t � 3 � 105 yr. Of course, from this snapshot
we can also understand many things about much earlier epochs. For instance, the
density 
uctuations present at this epoch have been produced much earlier, and
the recent Boomerang data indicate that they are compatible with the prediction
from in
ation. Therefore, from the photon microwave background we can extract
information on the state of the Universe at much earlier times than the epoch of
photon decoupling. In this case, conceptually the situation is similar with trying
to understand the aspect that a person had as a child from a picture taken when
he was much older. Certainly many features can be inferred from such a picture.
Gravitational waves, however, provide directly a picture of the child, and therefore
give us really unique information.

It is clear that the reason why GWs are potentially so interesting is due to their
very small cross section, and the very same reason is at the basis of the diÆculty
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of the detection. In the next sections we will review the experimental aspects of
the search for stochastic backgrounds and the theoretical expectations. Details and
more complete references can be found in ref. [1].

2 Characterization of stochastic backgrounds

of GWs

The intensity of a stochastic background of GWs can be characterized by the di-
mensionless quantity


gw(f) =
1

�c

d�gw

d log f
; (3)

where �gw is the energy density of the stochastic background of gravitational waves,
f is the frequency (! = 2�f) and �c is the present value of the critical energy den-
sity for closing the universe. In terms of the present value of the Hubble constant
H0 and Newton's constant GN , the critical density is given by �c = 3H2

0=(8�GN ).
The value of H0 is usually written as H0 = h0 � 100 km/(sec{Mpc), where h0
parametrizes the existing experimental uncertainty. However, it is not very con-
venient to normalize �gw to a quantity, �c, which is uncertain: this uncertainty
would appear in all the subsequent formulas, although it has nothing to do with the
uncertainties on the GW background itself. Therefore, we rather characterize the
stochastic GW background with the quantity h20
gw(f), which is independent of
h0. All theoretical computations of a relic GW spectrum are actually computations
of d�gw=d log f and are independent of the uncertainty on H0. Therefore the result
of these computations is expressed in terms of h20
gw, rather than of 
gw.

To understand the e�ect of the stochastic background on a detector, we need
however to think in terms of amplitudes of GWs. A stochastic GW at a given point
~x = 0 can be expanded, in the transverse traceless gauge, as

hab(t) =
X

A=+;�

Z
1

�1

df

Z
d
̂ ~hA(f; 
̂) e

�2�ift eAab(
̂) ; (4)

where ~hA(�f; 
̂) = ~h�A(f; 
̂). 
̂ is a unit vector representing the direction of prop-

agation of the wave and d
̂ = d cos �d�. The polarization tensors can be written
as e+ab(
̂) = m̂am̂b � n̂an̂b ; e

�

ab(
̂) = m̂an̂b + n̂am̂b ; with m̂; n̂ unit vectors or-

togonal to 
̂ and to each other. With these de�nitions, eAab(
̂)e
A0;ab(
̂) = 2ÆAA

0

.
For a stochastic background, assumed to be isotropic, unpolarized and stationary,
we can de�ne the spectral density Sh(f) from the ensemble average of the Fourier
amplitudes,

h~h�A(f; 
̂)
~hA0(f 0; 
̂0)i = Æ(f � f 0)

1

4�
Æ2(
̂; 
̂0)ÆAA0

1

2
Sh(f) ; (5)

where Æ2(
̂; 
̂0) = Æ(���0)Æ(cos ��cos �0). Sh(f) has dimensions Hz�1 and satis�es
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Sh(f) = Sh(�f). The choice of normalization is such thatZ
d
̂d
̂0 h~h�A(f; 
̂)

~hA0(f 0; 
̂0)i = Æ(f � f 0)ÆAA0

1

2
Sh(f) : (6)


gw and Sh are related by


gw(f) =
4�2

3H2
0

f3Sh(f) : (7)

In general, theoretical predictions are expressed more naturally in terms of h20
gw(f),
while the equations involving the signal-to-noise ratio and other issues related to
the detection are much more transparent when written in terms of Sh(f). Eq. (7)
is the basic formula for moving between the two descriptions.

The characteristic amplitude hc(f) is instead de�ned from

hhab(t)h
ab(t)i = 2

Z f=1

f=0

d(log f) h2c(f) : (8)

hc(f) is dimensionless, and represents a characteristic value of the amplitude, per
unit logarithmic interval of frequency. The factor of two on the right-hand side of
eq. (8) is part of the de�nition, and is motivated by the fact that the left-hand side
is made up of two contributions, given by h~h�+

~h+i and h~h
�

�

~h�i. In an unpolarized

background these contributions are equal, while the mixed term h~h�+
~h�i vanishes,

eq. (5). The relation between hc and Sh is

h2c(f) = 2fSh(f) : (9)

Actually, hc(f) is not yet the most useful dimensionless quantity to use for com-
parison with experiments. In fact, any experiment involves some form of binning
over the frequency. In a total observation time T , the resolution in frequency is
�f = 1=T , so one does not observe h20
gw(f) but ratherZ f+�f

f

d(log f) h20
gw(f) '
�f

f
h20
gw(f) ; (10)

and, since h20
gw(f) � f3Sh(f) � f2h2c(f), it is convenient to de�ne

hc(f;�f) = hc(f)

�
�f

f

�1=2
: (11)

Using 1=(1 yr) ' 3:17�10�8 Hz as a reference value for �f , and 10�8 as a reference
value for h20
gw, one �nds

hc(f;�f) = 7:111� 10�22
�
1mHz

f

�3=2�
h20
gw(f)

10�8

�1=2�
�f

3:17� 10�8Hz

�1=2
:

(12)
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3 Characterization of the detectors

The response of a detector is characterized by two important quantities: the strain
sensitivity ~hf , which gives a measure of the noise in the detector, and the pattern
functions FA(�; �), which re
ect the geometry of the detector.

3.1 Strain sensitivity

The total output of the detector S(t) is in general of the form

S(t) = s(t) + n(t) (13)

where n(t) is the noise and s(t) is the contribution to the output due to the gravita-
tional waves. Both are taken to be dimensionless quantities. If the noise is gaussian,
the ensemble average of the Fourier components of the noise, ~n(f), satis�es

h~n�(f)~n(f 0)i = Æ(f � f 0)
1

2
Sn(f) (14)

(actually, non-gaussian noises are potentially very dangerous in GW experiments,
and must be carefully minimized or modelled). The above equation de�nes the
function Sn(f), with Sn(�f) = Sn(f) and dimensions Hz�1.

The factor 1=2 is conventionally inserted in the de�nition so that the total noise
power is obtained integrating Sn(f) over the physical range 0 � f <1, rather than
from �1 to 1,

hn2(t)i =

Z
1

0

df Sn(f) : (15)

The function Sn is known as the spectral noise density. This quantity is quadratic
in the noise; it is therefore convenient to take its square root and de�ne the strain
sensitivity ~hf

~hf �
p
Sn(f) ; (16)

where now f > 0; ~hf is linear in the noise and has dimensions Hz�1=2.

3.2 Pattern functions

GW experiments are designed so that their scalar output s(t) is linear in the GW
signal: if hab(t) is the metric perturbation in the transverse-traceless gauge,

s(t) = Dabhab(t) : (17)

Dab is known as the detector tensor. Using eq. (4), we write

s(t) =
X

A=+;�

Z
1

�1

df

Z
d
̂ ~hA(f; 
̂) e

�2�iftDabeAab(
̂) : (18)
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It is convenient to de�ne the detector pattern functions FA(
̂),

FA(
̂) = DabeAab(
̂) ; (19)

so that

s(t) =
X

A=+;�

Z
1

�1

df

Z
d
̂ ~hA(f; 
̂)FA(
̂)e

�2�ift ; (20)

and the Fourier transform of the signal, ~s(f), is

~s(f) =
X

A=+;�

Z
d
̂ ~hA(f; 
̂)FA(
̂) : (21)

Explicit expressions for the pattern functions of various detectors can be found in
ref. [1].

3.3 Single detectors

For a stochastic background the average of s(t) vanishes and, if we have only one
detector, the best we can do is to consider the average of s2(t). Using eqs. (5) and
(20),

hs2(t)i = F

Z
1

0

df Sh(f) ; (22)

where

F �

Z
d
̂

4�

X
A=+;�

FA(
̂)FA(
̂) (23)

is a factor that gives a measure of the angular eÆciency of the detector. For inter-
ferometers F = 2=5, while for cilindrical bars F = 8=15.

In a single detector a stochastic background will manifest itself as an eccess
noise. Comparing eq. (15) and eq. (22), we see that the signal-to-noise ratio at
frequency f is

SNR =

�
FSh(f)

Sn(f)

�1=2
: (24)

We use the convention that the SNR refers to the GW amplitude, rather than to
the GW energy. Since h20
gw(f) � h2c(f) the SNR for the amplitude is the square
root of the SNR for the energy, hence the square root in eq. (24).

Using eq. (7) and Sn(f) = ~h2f , we can express this result in terms of the minimum

detectable value of h20
gw, at a given level of SNR, as

h20

min
gw (f) ' 10�2

(SNR)2

F

�
f

100Hz

�3 ~hf

10�22Hz�1=2

!2

: (25)
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3.4 Correlated detectors

A much better sensitivity can be obtained correlating two (or more) detectors. In
this case we write the output Si(t) of the i�th detector as Si(t) = si(t) + ni(t),
where i = 1; 2 labels the detector, and we consider the situation in which the GW
signal si is much smaller than the noise ni. We correlate the two outputs de�ning

S12 =

Z T=2

�T=2

dt

Z T=2

�T=2

dt0 S1(t)S2(t
0)Q(t� t0) ; (26)

where T is the total integration time (e.g. one year) and Q is a real �lter function.
The simplest choice would be Q(t� t0) = Æ(t� t0). However, if one knows the form
of the signal that one is looking for, i.e. Sh(f), it is possible to optimize the form
of the �lter function. It turns out that the optimal �lter is given by [2, 3, 4, 5, 6]

~Q(f) = c
�(f)Sh(f)

S
(1)
n (f)S

(2)
n (f)

(27)

with c an arbitrary normalization constant; Sh(f) is the spectral density of the

signal and S
(i)
n (f) the noise spectral densities of the two detectors. Since in general

Sh(f) is not known a priori, one should perform the data analysis considering a set
of possible �lters. For many cosmological backgrounds, a simple set of power-like
�lters Sh(f) � f� should be adequate. Actually, many of the most interesting
cosmological backgrounds are expected to be approximately 
at within the window
of existing or planned experiments.

The function �(f) in eq. (27) is the (unnormalized) overlap reduction function;
it is de�ned as

�(f) �

Z
d
̂

4�

"X
A

FA
1 (
̂)F

A
2 (
̂)

#
exp

�
2�if
̂ �

�~x

c

�
; (28)

where �~x is the separation between the two detectors. It gives a measure of how
well the two detectors are correlated; for instance, if the distance between them is
much bigger than the typical wavelength of the stochastic GWs, the two detectors
do not really see the same GW backgrounds, and nothing is gained correlating them.
It also depends on the relative orientation between them.

It is conventional to introduce the (normalized) overlap reduction function


(f) [3, 4]


(f) =
�(f)

F12
; (29)

where

F12 �

Z
d
̂

4�

X
A

FA
1 (
̂)F

A
2 (
̂)jaligned : (30)

Here the subscript means that we must compute F12 taking the two detectors to
be perfectly aligned, rather than with their actual orientation. If the two detectors
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are of the same type, e.g. two interferometers or two cylindrical bars, F12 is the
same as the constant F de�ned in eq. (23). The use of �(f) is more convenient
when we want to write equations that hold independently of what detectors (inter-
ferometers, bars, or spheres) are used in the correlation (furthermore, in the case of
the correlation between an interferometer and the scalar mode of a sphere F12 = 0,
so this normalization is impossible; then, one just uses �(f), which is the quantity
that enters directly in the SNR).

The SNR for two correlated detectors, with optimal �ltering, is

SNR =

�
2T

Z
1

0

df �2(f)
S2h(f)

S2n(f)

�1=4
: (31)

Comparing with eq. (24) we see that now the SNR is given by an integral over all
frequencies, rather then by a comparison of Sh(f) with Sn(f) at �xed f . We denote
by �f the frequency range where both detectors are sensitive and at the same time
the overlap reduction function �(f) is not much smaller than one. Then, if the
integration time T is such that T�f � 1, correlating two detectors is much better
than working with the single detectors.

Finally, it can be useful to de�ne a dimensionless characteristic noise associated
to the correlated detectors. It turns out that the quantity that is meaningful to
compare directly to the characteristic dimensionless amplitude hc(f) of the GW
(de�ned in sect. 2) is a characteristic noise hn(f) de�ned by

hn(f) �
1

( 1
2
T�f)1=4

�
fSn(f)

�(f)

�1=2

: (32)

The characteristic noise hn(f) is a useful but approximate concept, since the cor-
rect expression of the SNR for correlated detectors is obtained integrating over all
frequencies, eq. (31), and not comparing hn(f) and hc(f) at �xed f .

4 Experiments

4.1 Resonant bars

There are �ve ultracryogenic resonant bars around the world, in operation since a
few years:

Compared to interferometers, they are narrow band detectors, since they operate
in a frequency band of the order of a few Hz, with resonant frequency of the order
of 900 Hz (it should be observed, however, that with recent improvement in the
electronics, EXPLORER has now a useful band of the order of a few tens of Hz).
Fig. 1 shows the sensitivity curve of NAUTILUS.

4.2 Ground-based interferometers

The �rst generation of large scale interferometers is presently under construction.
LIGO consists of two detectors, in Hanford, Washington, and Livingston, Louisiana,
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detector location taking data since

NAUTILUS Frascati, Rome 1993
EXPLORER Cern (Rome group) 1990
ALLEGRO Louisiana, USA 1991
AURIGA Padua, Italy 1997
NIOBE Perth, Australia 1993

Table 1: The existing resonant bars.

Figure 1: The sensitivity curve of NAUTILUS (courtesy of the NAUTILUS collaboration)

with 4 km arms. VIRGO is under construction near Pisa, and has 3 km arms.
Somewhat smaller are GEO600, near Hannover, with 600m arms and TAMA300
in Japan; these smaller interferometers also aim at developing advanced techniques
needed for second-generation interferometers. Fig. 2 shows the planned VIRGO
sensitivity curve. Interferometers are wide-band detectors, and will cover the region
between a few Hertz up to approximately a few kHz. Comparing the data in �g. 2
with eq. (25) we see that used as single detectors, VIRGO and LIGO could measure

h20
gw>�10
�2 : (33)

As discussed in the previous section, much more interesting values can be obtained
correlating two interferometers, an interferometer and a bar, or two bars. The
values for one year of integration time are given in table 2.
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Figure 2: The planned VIRGO sensitivity curve.

detector 1 detector 2 h20
gw

LIGO-WA LIGO-LA 5� 10�6

VIRGO LIGO-LA 4� 10�6

VIRGO LIGO-WA 5� 10�6

VIRGO GEO 5:6� 10�6

VIRGO TAMA 1� 10�4

VIRGO AURIGA 4� 10�4

VIRGO NAUTILUS 7� 10�4

AURIGA NAUTILUS 5� 10�4

Table 2: The sensitivity for various two-detectors correlations.

4.3 Advanced interferometers

The interferometers presently under construction are the �rst generation of large-
scale interferometers, and second generation interferometers, with much better sen-
sitivities, are under study. In particular, the �rst data from the initial LIGO are
expected by 2002, and the improvements leading from the initial LIGO to the ad-
vanced detector are expected to take place around 2004-2006.

The overall improvement of LIGOII is expected to be, depending on the fre-
quency, one or two orders of magnitude in ~hf . This is quite impressive, since two

order of magnitudes in ~hf means four order of magnitudes in h20
gw(f) and there-
fore interesting sensitivity, h20
gw of order 10�5, even for a single detector, without
correlations.

Correlating two advanced detectors one could reach extremely interesting values:
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the sensitivity of the correlation between two advanced LIGO is estimated to be [5]

h20
gw ' 5� 10�11 : (34)

4.4 The space interferometer LISA

This project, approved by ESA and NASA, is an interferometer which will be sent
into space around 2010. Going into space, one is not limited anymore by seismic and
gravity-gradient noises; LISA could then explore the very low frequency domain,
10�4 Hz < f < 1 Hz. At the same time, there is also the possibility of a very long
path length (the mirrors will be freely 
oating into the spacecrafts at distances of
5�106 km from each other!), so that the requirements on the position measurement

noise can be relaxed. The goal is to reach a strain sensitivity ~hf = 4�10�21 Hz�1=2

at f = 1 mHz. At this level, one expects �rst of all signals from galactic binary
sources, extra-galactic supermassive black holes binaries and super-massive black
hole formation. Concerning the stochastic background, going to low frequencies
provides a terri�c advantage: eq. (7) tells that


gw(f) � f3Sh(f) : (35)

The ability to perform an interferometric measurement is encoded into the spectral
density of the noise, Sn(f), and with a single detector we can measure Sh(f) �
Sn(f). Then, if we are able to reach a good value of Sn at low frequency, eq. (35)
shows that we are able to measure a very small value of 
gw, thanks to the factor
f3. Going down by a factor 105 in frequency, say from 10 Hz to 1 mHz, the factor
f3 provides an improvement by a factor 1015! Even used as a single detector, LISA
can therefore reach very interesting sensitivities. Indeed, in terms of h20
gw the
sensitivity of LISA corresponds to

h20
gw(f = 1mHz) ' 1� 10�12 : (36)

We can now also understand why it is instead very diÆcult to build a good detector
of stochastic GWs at high frequencies, f � 1 kHz. One can imagine to build an
apparatus that measures extremely small displacements, at high frequencies, so that
at some f � 1 kHz, the spectral density of the noise Sn(f) is very small. However,
the quantity which is relevant for the comparison with theoretical prediction, and
on which strong theoretical bounds exist at all frequencies, is h20
gw, and once one
translates the sensitivity in terms of h20
gw, it will be very poor because the factor
f3 now works in the wrong direction.

5 Bounds on h
2
0
gw

In Fig. 3 we show the most relevant bounds on stochastic GW backgrounds, together
with the experimental sensitivities discussed above. On the horizontal axis we cover
a huge range of frequencies. The lowest value, f = 10�18 Hz, corresponds to a
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wavelength as large as the present Hubble radius of the universe; the highest value
shown, f = 1012 Hz, has instead the following meaning: if we take a graviton
produced during the Planck era, with a typical energy of the order of the Planck
or string energy scale, and we redshift it to the present time using the standard
cosmological model, we �nd that today it has a frequency of order 1011 or 1012 Hz.
This value therefore is the maximum possible cuto� of spectra of GWs produced in
the very early universe. The maximum cuto� for astrophysical processes is of course
much lower, of order 10 kHz [7, 8]. So this huge frequency range encompasses all
the GWs that can be considered. Let us now discuss in turn the various bounds.

-18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0
Log[ f (Hz) ]

-16.0

-14.0

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

Lo
g[

 h
02 Ω

gw
 ]

  

Nν=4

Nν=3.2

ms pulsars

COBE

single intf

bar-intf

2 intf

2 adv intf

LISA

Figure 3: The bounds from nucleosynthesis (horizontal dashed lines, for N� = 4 and for N� =

3:2), from COBE and from ms pulsars, together with the sensitivity of a single ground based

detector of the VIRGO or LIGO type (blue solid line), a bar-interferometer correlation (pink

star), a 2-interferometer correlation (blue solid line; LIGO-LIGO, LIGO-VIRGO and VIRGO-

GEO all give very similar sensitivities), two advanced LIGO correlation (blue dashed line ) and
LISA (pink dashed line).

5.1 Nucleosynthesis bound

The outcome of nucleosynthesis depends on a balance between the particle produc-
tion rates and the expansion rate of the universe, measured by the Hubble parameter
H . Einstein equation givesH2 � GN�, where � is the total energy density, including
of course �gw. Nucleosynthesis successfully predicts the primordial abundances of
deuterium, 3He, 4He and 7Li assuming that the only contributions to � come from
the particles of the Standard Model, and no GW contribution. Therefore, in order
not to spoil the agreement, any further contribution to � at time of nucleosynthesis,
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including the contribution of GWs, cannot exceed a maximum value. The bound is
usually written in terms of an e�ective number of neutrino species N� , and, applied
to GWs, reads Z f=1

f=0

d(log f) h20
gw(f) � 5:6� 10�6(N� � 3) : (37)

The limit on N� is subject to various systematic errors, which have to do mainly
with the issues of how much of the observed 4He abundance is of primordial ori-
gin, and of the nuclear processing of 3He in stars. Di�erent bounds on N� have
therefore been proposed. The analysis of ref. [9] gives N� < 3:2 at 95% c.l.; this
is shown in �g. 3, together with a more conservative bound N� < 4. Note that
the nucleosynthesis bound is really a bound over the total energy density, i.e. over
the integral of h20
gw(f) over d log f . However, if the integral cannot exceed this
value, also its positive integrand cannot exceed it over a sizable range of frequen-
cies. The actual bound on h20
gw(f) depends on its frequency dependence, and if
for instance h20
gw(f) is approximately constant between two frequencies fmin and
fmax, the bound on h20
gw is stronger by a factor � log(fmax=fmin). Of course, the
nucleosynthesis bound applies only to GW produced before nucleosynthesis, and is
not relevant for GW of astrophysical origin.

5.2 Bounds from millisecond pulsars

Millisecond pulsars are an extremely impressive source of high precision measure-
ments [10]. For instance, the observations of the �rst msec pulsar discovered,
B1937+21, after 9 yr of data, give a period of 1:557 806 468 819 794 5�0:000 000 000
000 000 4 ms. As a consequence, pulsars are also a natural detector of GWs, since
a GW passing between us and the pulsar causes a 
uctuation in the time of arrival
of the pulse, proportional to the GW amplitude hc(f). If the uncertainty in the
time of arrival of the pulse is � and the total observation time is T , this `detector'
is sensitive to hc(f) � �=T , for frequencies f � 1=T . The highest sensitivities can
then be reached for a continuous source, as a stochastic background, after one or
more years of integration, and therefore for f � 10�9�10�8 Hz. Based on the data
from PSR B1855+09, ref. [11] gives a limit, at f � f� = 4:4�10�9 Hz (at 90% c.l.),

h20
gw(f�) < 4:8� 10�9 : (38)

Since the resolution on hc(f) is proportional to 1=T and h20
gw � h2c , the bound
for f > f� is

h20
gw(f) < 4:8� 10�9
�
f

f�

�2
; (39)

and therefore it is quite signi�cant (better than the nucleosynthesis bound) even
for f � 102f�. For f < f�, instead, the pulsar provides no limit at all. With the
observation time the bound will improve steadily and will move toward lower and
lower frequencies. It is given by the wedge-shaped curve in �g. 3.
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5.3 Bound from COBE

Another important constraint comes from the COBE measurement of the 
uctua-
tion of the temperature of the cosmic microwave background radiation (CMBR).
The basic idea is that a strong background of GWs at very long wavelengths pro-
duces a stochastic redshift on the frequencies of the photons of the 2.7K radiation,
and therefore a 
uctuation in their temperature (Sachs-Wolfe e�ect). The analysis
of refs. [12, 5], where the e�ect of multipoles with 2 � l � 30 is included, gives a
bound

h20
gw(f) < 7� 10�11
�
H0

f

�2

; (3� 10�18Hz < f < 10�16Hz) : (40)

This bound is stronger at the upper edge of its range of validity, f � 30H0 � 10�16

Hz, where it gives

h20
gw(f) < 7� 10�14 ; (f � 10�16Hz) : (41)

6 Theoretical predictions

Many cosmological production mechanisms have been proposed in recent years.
Four examples are shown in �g. 4:

In
ation. The ampli�cation of vacuum 
uctuations at the transition between
an in
ationary phase and the radiation dominated era produces GWs shown as the
curve (a) in �g. 4 and is one of the oldest [13] and most studied examples. The
condition that the COBE bound is not exceeded puts a limit on the value of h20
gw

at all frequencies, which is below the experimental sensitivities, even for LISA. So,
while it is one of the best studied examples, it appears that it is not very promising
from the point of view of detection.

String cosmology. In a cosmological model which follows from the low energy
action of string theory [14, 15] the ampli�cation of vacuum 
uctuations can give a
much stronger signal [16, 17]. The model has two free parameters that re
ect our
ignorance of the large curvature phase. The curve (b) in �g. 4 shows the very inter-
esting signal that could be obtained for some choice of these parameters, while for
other choices the value of h20
gw at VIRGO/LIGO or at LISA frequencies becomes
unobservably small.

Cosmic strings. These are topological defects that can exist in grand uni�ed
theories [18], and vibrating, they produce a large amount of GWs, shown in curve
(c) of �g. 4. Cosmic strings are characterized by a mass per unit length �, and the
most stringent bound on GN� comes from msec pulsars, and it is of order 10�6.

Phase transitions. Another possible source of GWs is given by phase tran-
sitions in the early universe. In particular, a phase transition at the electroweak
scale would give a signal just in the LISA frequency window, while the QCD phase
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transition is expected to give a signal peaked around f = 4 � 10�6 Hz. However,
the signal is sizable only if the phase transition is �rst order and, unfortunately,
in the Standard Model with the existing bounds on the Higgs mass, there is not
even a phase transition but rather a smooth crossover, so that basically no GW
is produced. However, in supersymmetric extensions of the Standard Model, the
transition can be �rst order, and a stronger signal could be obtained. Depending
on the strength of the transition, one could even get a signal such as curve (d) of
�g. 4.

-18.0 -14.0 -10.0 -6.0 -2.0 2.0 6.0 10.0
Log[ f (Hz) ]

-16.0

-14.0

-12.0

-10.0
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-2.0

0.0
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 h
02 Ω

gw
 ]

  

(a)

(b)

(c)

(d)

Figure 4: The backgrounds predicted, with optimistic choice of parameters, by (a) in
ation, (b)

string cosmology, (c) cosmic strings, (d) a �rst order phase transition at the electroweak scale,

together with the bounds and sensitivities of �g. 3.

Finally, there are very interesting astrophysical backgrounds, coming from a
large number of unresolved sources. These are displayed in �g. 5. For a discussion,
see [19] and the contribution of Ra�aella Schneider to these proceedings. Another
important issue, especially for LISA, is also how to discriminate cosmological from
astrophysical backgrounds, see e.g. [20].

The conclusion that emerges looking at �g. 3 is that in the next few years, with
the �rst generation of ground based interferometers, we will have the possibility
to explore �ve new order of magnitude in energy densities, probing the content in
GWs of the universe down to h20
gw � 10�5. At this level, the nucleosynthesis
bounds suggest that the possibility of detection are quite marginal. It should not
be forgotten, however, that nucleosynthesis is a (beautiful) theory, with a lot of
theoretical input from nuclear reaction in stars, etc., and its prediction is by no
means a substitute for a measurement of GWs. With the second generation of
ground based interferometers and with LISA, we will then penetrate quite deeply
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Figure 5: Stochastic backgrounds of astrophysical origin. From left to right, black hole-black

hole binaries, white dwarf-white dwarf binaries, neutron star-neeutron star binaries (the curve

extending up to 102), a pregalactic Population III stars, r-modes of neutron stars and supernova
collapse to black holes (�gure kindly provided by Ra�aella Schneider).

into a region which experimentally is totally unexplored, and where a number of
explicit examples (although subject to large theoretical uncertainties) suggest that
a positive result can be found.
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