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Abstract

Here, and in a sequel, we invoke the invariant spin field to provide an in–depth study
of spin motion at and near low order orbital resonances in a simple model for the effects
of vertical betatron motion in a storage ring with Siberian Snakes. This leads to a clear
understanding, within the model, of the behaviour of the beam polarisation at and near
so–called snake resonances in proton storage rings.

1 Introduction

In earlier papers we and collaborators have emphasised the utility of the invariant spin field

(ISF) and the amplitude dependent spin tune (ADST) for analysing spin motion in circular
particle accelerators and storage rings [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In particular, under certain
conditions, the ISF is unique up to a global sign and in that case it allows estimates to be
made of the maximum equilibrium beam polarisation and the maximum time averaged beam
polarisation in proton storage rings. Then, for example, for a given equilibrium distribution of
particles in phase space, the maximum attainable polarisation at the chosen high energy can be
estimated before embarking on extensive computer simulations of the effect on the polarisation
of acceleration from low energy. Once a machine configuration has been found which appears
to be acceptable at the chosen high energy, one then studies the effect of acceleration to assess
whether the configuration is still acceptable. Acceleration can involve crossing many spin–orbit

resonances and that can lead to a loss of polarisation. The latter problem can be partially solved
by the inclusion in the ring of so–called Siberian Snakes [11, 12], magnetic field configurations
that cause the average spin precession rate on the design orbit to be independent of the nominal
beam energy. Nevertheless, spin–orbit resonances can still occur but their identification then
often requires a more careful definition of the spin precession rate than has been common
among practitioners, involving the amplitude dependent spin tune. A full understanding also
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requires a careful definition of an adiabatic invariant for spin motion. In most of the numerical
investigations described in [1, 2, 3, 4, 5, 6, 7, 9, 10], orbital resonance is avoided. Moreover,
it is shown that the spin–orbit systems tend to avoid exact spin–orbit resonance. These and
other matters are explained and illustrated in great detail in the sources cited above. In order
to keep this paper to a reasonable length we will assume that the reader is familiar with that
material.

Of course, the ISF and the concepts derived from it, may be of little help if the ISF is not
unique. That can be the case if the orbital motion is resonant or if the system is on spin–orbit
resonance [5, 7]. Nevertheless, as we show below, special choices from sets of non–unique ISF’s
can be useful for investigating spin motion near some kinds of orbital resonance. Moreover,
the ISF is still useful at rational vertical orbital tunes corresponding to the so–called odd order
snake “resonances”. At these tunes the Siberian Snakes apparently do not succeed in preventing
loss of polarisation during acceleration [13, 14, 15, 16, 17, 18]. However, with the exceptions of
[19, 20, 5, 21], discussions about spin motion at or near to these tunes have made no reference
to the ISF. The treatment in [19, 20] involved a mathematical approximation to the model used
in this paper. Then in [5] it was pointed out for the first time that at these tunes the ISF is an
irreducibly discontinuous function of the vertical orbital phase and that the discontinuities can
be moved, thereby demonstrating non–uniqueness. In [21] the necessity of the discontinuities
was disputed (see Section 3.4). In Section 2 we explain that exactly at these special tunes,
the term “snake resonance” does not fit with our preferred definition of spin–orbit resonance.
Nevertheless, for simplicity, we adopt the now traditional nomenclature. In [5] it was also made
clear how non–uniqueness can occur at other rational tunes.

In this paper and in a sequel (called Part II) we extend the investigations in [5]. In the initial
and pioneering work on snake resonances in [13, 14, 15], emphasis was placed on the significance
of the so–called “perturbed spin tune”, a measure of the angles of spin rotation around the real,
unit length, eigenvectors of 1–turn SO(3) spin maps. See also [22]. However, these eigenvectors
are usually not solutions of the Thomas–Bargmann–Michel–Telegdi (T–BMT) equation along
the trajectories. Thus, while it is clear from calculations that the “perturbed spin tune” can
show strong variations, we do not consider its behaviour to be relevant to the discussion [8].
In [13, 14, 15] spin motion was also analysed in terms of an essentially perturbative expansion
of the p–turn SU(2) spin transfer matrix, T (p), and it was found that at snake–resonance
tunes, |T21(p)| could increase without limit as the number of turns p increased. In so far as
it relates to positions in tune space, this behaviour, which is an artifact of the perturbative
approach, appears to be consistent with the snake resonance phenomenon. However, although
an unlimited increase of a matrix element in a perturbative expression for a rotation matrix does
suggest exceptional behaviour, it destroys the unitarity of the matrix, thereby demonstrating
an invalid approximation and implying a consequent limitation of the predictive power of the
calculation. For example, in the absence of other input, one might suppose that an unlimited
growth of |T21| could infer that initially vertical spins are simply flipped. Alternatively, the
growth might be a hint that the vertical component of the beam polarisation oscillates as spins
rotate around a horizontal axis. Lastly, simulations reported in [10, 23, 24] demonstrate the
effects of varying the rate of acceleration near snake–resonance tunes. The number of turns
needed to traverse a given energy range depends on the energy gain per turn. Then, if weight
is given to the perturbative treatment, the number of turns determines how large |T21| can
become. The rate of acceleration is certainly important in the Froissart–Stora calculation [25]
of the loss of polarisation when crossing spin–orbit resonances in rings without snakes, and
the phenomenology is well understood. However, the simulations in [10, 23, 24] show that the
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dependence of the final polarisation on the acceleration rate can be complex and unexpected
and that no clear picture emerges.

To summarise, in our opinion, although snake resonances have presented problems [17, 18],
the numerical and theoretical investigations made so far have provided no completely coherent
picture of spin motion at and near snake–resonance tunes, either with or without acceleration.

These papers provide a new contribution towards such a picture, at least within our adopted
simple model. We carry out our study against the background of our standard philosophy,
namely that to detect exceptional behaviour, one should start spin–orbit tracking simulations
with an equilibrium distribution of particles in phase space and with each spin parallel to the
ISF vector corresponding to the position of the particle in phase space [7]. Then any unexpected
behaviour is signalled by long term or turn–to–turn variations of the polarisation of the beam.
This gives a much cleaner view of the situation than if one just begins in the common way
with spins parallel to the direction of the ISF on the closed orbit. Accordingly, with the ISF at
the centre of our discussion we show how, in the cases considered, the long term behaviour of
spins can be inferred, at least qualitatively, from some features of the ISF. On low order orbital
resonance, an ISF can be calculated almost trivially from the spin maps of a few turns.

For our purposes, and in order to allow direct comparison, it suffices just to consider a
model used in earlier literature [13, 14, 15], namely a model with two Siberian Snakes. Since
the ranges of the relevant parameters and the number of possible configurations is huge, this
study, which is mainly numerical, is not exhaustive. We fully appreciate that storage rings do
not run on low order orbital resonance, that spin–orbit resonances need not be well separated,
that particles have three modes of oscillation and that particle motion in real rings can be
nonintegrable. Nevertheless our study provides useful insights.

The paper is structured as follows. We continue in Section 2 by recalling the simple idealised
and traditional model of spin motion for protons considered in [5, 13, 14, 15] and specify the
notation commonly used to describe it. Then in Section 3 we use the model to study spin
motion exactly at orbital resonances including an odd order snake resonance and show how the
chief features of spin motion can be guessed from the characteristics of the ISF. We summarise
our studies in Section 4. Part II of this study completes the picture by addressing spin motion
close to, but not at, an odd order snake–resonance tune. The numerical calculations were
carried out with purpose–built spin–orbit tracking codes, with the spin–orbit tracking facilities
in the code SPRINT [3, 4] and with the SODOM–II algorithm [26] embedded in SPRINT.

2 Recapitulation – the single resonance model with two

snakes

Spin motion in the electric and magnetic fields at the point ~z in the 6–dimensional phase
space at beam energy E0 and at the position s around the ring, is described by the T–BMT
precession equation d~S/ds = ~Ω(~z; s, E0) × ~S [27, 28, 1] where ~S is the spin expectation value

(“the spin”) in the rest frame of the particle and ~Ω(~z; s, E0) contains the electric and magnetic
fields in the laboratory and depends on the beam energy E0. The ISF, whose value at (~z; s)
is denoted by n̂(~z; s), is a 3–vector field of unit length obeying the T–BMT equation along
particle trajectories (~z(s); s) and fulfilling the periodicity condition n̂(~z; s+C) = n̂(~z; s) where

C is the circumference1. Thus n̂( ~M(~z; s); s + C) = n̂( ~M(~z; s); s) = R
3×3

(~z; s)n̂(~z; s) where

1We emphasise that the non–trivial ISF vector n̂(~z; s) should not be confused with the trivial vector ~n used

to denote ~Ω in [15, equation 2.46] and in [29, equation 1] and having the same periodicity.
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~M(~z; s) is the new position in phase space after one turn starting at ~z and s, and R
3×3

(~z; s) is
the corresponding spin transfer matrix. For convenience we have suppressed the dependence
of ~M,R and n̂ on E0. In addition to the kinematical constraint |n̂| = 1, a complete definition
of the ISF requires the specification of a constraint on its regularity with respect to ~z. For
example, one could require that n̂(~z; s) is continuous in ~z. It is clear that such regularity
conditions are needed since, for example, a piece–wise continuous ISF exists if a continuous
one exists but not vice versa. See Section 3.4 and [5]. However, since the emphasis of the
paper is on numerical results, we only occasionally dwell on the matter of regularity. We use
the term “global uniqueness” if two ISF’s can differ only by a sign. Thus in the case of global
uniqueness, either exactly two ISF’s, ±n̂, exist as in Section 3.1 or none, as in Section 3.4. We
use the term “local uniqueness” if any two ISF’s, n̂ and n̂′ are parallel, i.e. n̂× n̂′ = 0, so that n̂
and n̂′ can differ only by a sign function. Of course global uniqueness implies local uniqueness
but not vice versa. Since the issue of local uniqueness is beyond the scope of this paper, it will
be addressed only briefly. If an ISF exists and parameters such as E0 are constant, the scalar
product Js = ~S · n̂/|~S| is invariant along a trajectory.

For a turn–to–turn invariant particle distribution in phase space, a distribution of spins
initially aligned along the ISF remains invariant from turn–to–turn, i.e., in “equilibrium”.
Moreover, for integrable orbital motion and away from both orbital resonances and spin–orbit
resonances (see below), the average |〈n̂(~z; s)〉| of n̂ over the phases on a torus is the maximum
attainable time averaged beam polarisation P

lim
. Away from orbital resonances and spin–

orbit resonances the actual time averaged polarisation can be written as P
lim
P

dyn
where the

P
dyn

= |〈Js〉| depends on the history of the beam [4]. For a turn–to–turn invariant particle
distribution in phase space P

lim
= |〈n̂(~z; s)〉| is also the maximum attainable equilibrium beam

polarisation. This is reached when P
dyn

= 1.
Under appropriate conditions Js is an adiabatic invariant while system parameters such as

the beam energy E0 are slowly varied [3, 9]. In fact n̂ then serves as a “template” for spin
motion. Several examples of this are given in Section 3.

The ADST νs( ~J) at the amplitudes (actions) ~J , is the number of spin precessions around
the n̂ per turn on a trajectory, viewed in a so–called uniform precession frame (UPF). See [7] for
precise definitions for smooth systems, i.e., systems with continuously differentiable functions,
and for an explanation of how a particular ADST is, in fact, a member of an equivalence
class. Note that although the systems in this paper are not smooth in s due to the presence of
point–like snakes (see below), their smoothness in ~z facilitates a close analogy with the smooth
systems of [7].

In general, an ADST does not exist if the trajectory is on orbital resonance but on the other
hand, one avoids running a machine on orbital resonances, at least those of low order. If an
ADST exists, it depends only on ~J , hence the name ADST.

The ADST provides a way to quantify the degree of coherence between the spin and or-
bital motion and thereby predict how strongly the electric and magnetic fields along particle
trajectories disturb spins. In particular, the spin motion can become very erratic close to the
spin–orbit resonance condition νs( ~J) = k0 + k1Q1 + k2Q2 + k3Q3 where the Q’s are orbital
tunes and the k’s are integers. Near these resonances the ISF can spread out so that P

lim
is very

small. The spin tune on the design orbit ν0 ≡ νs(~0) always exists and so does n̂0(s) ≡ n̂(~0; s).
In this paper we shall be concerned mainly with those orbital resonances where the Q’s are

rational. We write the fractional parts, [Qi], of rational tunes Qi (i = 1, 2, 3) as ai/bi where
the ai and bi are integers. Here and later the brackets [...] are used to signal the fractional
part of a number. For rational [Qi] a trajectory is periodic over c turns where c is the lowest
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common multiple of the bi. This opens the possibility that in this case the ISF at each (~z; s)
can be obtained (up to a sign) as the unit length real eigenvector of the 3 × 3 orthogonal
matrix representing the c–turn spin map (c.f. the calculation of n̂0 from the 1–turn spin map
on the closed orbit). However, the corresponding eigentune cνc extracted from the complex
eigenvalues Λc = e±2πicνc, depends in general on the synchrobetatron phases at the starting
~z. Thus in general νc cannot be used to find a spin tune. Nevertheless if c is very large the
dependence of νc on the phases can be very weak so that it can approximate well the ADST of
nearby irrational tunes. For non–resonant orbital tunes, the spin tune can be obtained using
the SODOM–II algorithm [26] or from averaging the pseudo spin tune [3, 4].

In perfectly aligned flat rings with no solenoids, n̂0 is vertical and ν0 can be chosen to be
aγ0 where γ0 is the Lorentz factor on the closed orbit and a is the gyromagnetic anomaly of the
particle. In the absence of skew quadrupoles, the primary disturbance to spin is then from the
radial magnetic fields along vertical betatron trajectories. The disturbance can be very strong
and the beam polarisation can be small near the condition aγ0 = κ ≡ k0 ± Q2 where k0 is an
integer and mode 2 is vertical motion. This can be understood in terms of the “single resonance
model” (SRM) whereby a rotating wave approximation is made in which the contribution to ~Ω
from the radial field along a vertical betatron trajectory is dominated by the Fourier component
at κ with resonance strength ǫ(J2). The SRM can be solved exactly and the ISF is given by
[30] n̂(φ2) = ± (δê2 + ǫ(ê1 cosφ2 + ê3 sinφ2)) /λ where δ = aγ0 −κ is the distance in tune space
to the parent resonance, λ =

√
δ2 + ǫ2, φ2 is the difference between the vertical betatron phase

and the phase of the Fourier component and (ê1, ê2, ê3) are horizontal, vertical and longitudinal
unit vectors. The tilt of n̂ away from the vertical n̂0 is | arcsin(ǫ/λ)| so that it is 90◦ at δ = 0 for
non–zero ǫ. At large |δ|, the equilibrium polarisation directions n̂(J2, φ2; s), are almost parallel
to n̂0(s) but as we see from the above formula, at δ = 0, n̂ lies in the horizontal plane and
P

lim
= 0. In this simple model νs exists and is well defined near spin–orbit resonances for all

Q2. In our calculations we choose the phase of the Fourier harmonic to be zero so that φ2

represents the phase of the vertical betatron motion.
It is found both in practice and in simulation, that in the absence of special measures,

acceleration of the beam through δ = 0 at practical rates can lead to loss of beam polarisation.
This loss can be ascribed to a loss of invariance of Js and it can be quantified in terms of
the Froissart–Stora formula [25]. Luckily, the loss of polarisation can be reduced by installing
pairs of Siberian Snakes [11, 12], magnet systems which rotate spins by π, independently of ~z,
around a “snake axis” in the machine plane. For example, one puts two snakes at diametrically
opposite points on the ring. Then n̂0 · ê2 = +1 in one half ring and −1 in the other. With the
snake axes relatively at 90◦, the fractional part of ν0 becomes 1/2 for all γ0. For calculations
one often represents the snakes as elements of zero length (“point–like snakes”). Then if, in
addition, the effect of vertical betatron motion is described by the SRM, and orbital resonances
are avoided, at most J2, the fractional part of the ADST is 1/2 too, independently of γ0

[10, 31, 5]. This is a special feature of this model. Thus for [Q2] away from 1/2, the system
is not at the first order spin–orbit resonance νs(J2) = [Q2]. Therefore such resonances are
not crossed during acceleration through δ = 0 and the polarisation can be preserved. This is
confirmed by tracking simulations. However, simulations have shown also that the polarisation
can still be lost if [Q2] = ã2/2b̃2 where here, and later, ã2 and b̃2 are odd positive integers
with ã2 < 2b̃2 [13, 14, 15]. This is the “snake resonance phenomenon” and it has also had
practical consequences [13, 14, 15, 17, 18], especially for small b̃2. Such a [Q2] fits the condition
1/2 = (1− ã2)/2 + b̃2[Q2]. Since such tunes correspond to orbital resonance an ADST does not
exist at most amplitudes. Then, according to our definition the system is not on a spin–orbit
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resonance νs(J2) = (1− ã2)/2+ b̃2[Q2]. However, for nearby irrational [Q2] an ADST can exist,
namely with the value 1/2. Then one can say that the system is close to spin–orbit resonance.
This case is studied in Part II. Because the system is on orbital resonance and using the analogy
with the smooth systems [7], even a smooth n̂ need not be globally unique. Even if it were,
there would be no guarantee that the maximum time averaged polarisation on a torus would
be given by |〈n̂(~z; s)〉|. We investigate these matters in the next section. Note that the rings
in the Relativistic Heavy Ion Collider, RHIC [17, 18] contain two snakes and that the RHIC
team has avoided running near snake–resonance vertical tunes. Even away from the dangerous
orbital tunes just mentioned, snake layouts should be chosen carefully. Methods for choosing
layouts are discussed in [3, 4].

Although one can describe spin motion in terms of orthogonal 3x3 matrices, here, we prefer
to use SU(2) matrices. Correspondingly, the orientation of a spin is encoded in a two–component
spinor2. We write the SU(2) matrices as

I cos(ψ/2) − i~σ · m̂ sin(ψ/2) (1)

where I is the 2× 2 unit matrix, m̂ is the unit vector along the effective rotation axis, ψ is the
angle of rotation around that axis and the three components of ~σ are the Pauli matrices. The
rotation is right handed when ψ > 0. Equation (1) can be re–written as

Ir0 − i~σ · ~r (2)

where
∑3

i=0 r
2
i = 1. We call the real ordered quadruple (r0, ~r) a unit quaternion [32, 4]. Spin

maps are then concatenated using the multiplication rule

(a0, ~a) (b0, ~b) = (a0b0 − ~a ·~b, a0
~b+ ~ab0 + ~a×~b) = (c0, ~c) (3)

where (a0,~a), (b0,~b) and (c0,~c) are unit quaternions. The elements of the usual 3 × 3 matrices
are given by Rij = (2r2

0−1)δij +2rirj +2r0ǫijkrk where δij is the Kronecker symbol and ǫijk is the
Levi–Civita symbol. Note that the Rij are homogeneous quadratic forms in the ri. This implies
that Rij(r0, ~r) = Rij(−r0,−~r) which simply reflects the fact that SU(2) covers SO(3) twice. In
this paper, as in [5], we consider a system with two point–like snakes placed at diametrically
opposite points on the ring. The snake axes are respectively at 0◦ and 90◦ to the longitudinal
direction. The effect of vertical betatron motion is modelled by the SRM. The components of
the unit quaternion for one turn starting with phase φ0

2 just before the first (0◦) snake are then

r0 =
( ǫ

λ

)2

sin2 πλ

2
sin(2φ0

2 + 2πκ)

r1 =

(

− ǫ

λ
sin πλ sin πκ− 2

ǫ

λ

δ

λ
sin2 πλ

2
cosπκ

)

sin(φ0
2 + πκ)

r2 = − cos2 πλ

2
−

(

δ

λ

)2

sin2 πλ

2
−

( ǫ

λ

)2

sin2 πλ

2
cos(2φ0

2 + 2πκ)

r3 =

(

− ǫ

λ
sin πλ cosπκ + 2

ǫ

λ

δ

λ
sin2 πλ

2
sin πκ

)

sin(φ0
2 + πκ) . (4)

As mentioned above, on orbital resonance, the vector n̂ can be obtained (up to a sign) as the
eigenvector of unit length of the appropriate c–turn spin map. In terms of unit quaternions, n̂

2 Of course, these spinors should not be interpreted as “spin wave functions”: here we are dealing with
classical equations of motion for spin expectation values.
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is simply the unit vector along the vector ~r(c) for the c–turn unit quaternion and we are free to
choose the sign.

It is clear from (4) that with small but non–zero ǫ/λ, the 1–turn spin map is close to a
rotation by the angle π around an axis close to the vertical. This is expected on physical
grounds too: at large |δ|, i.e., far from the parent resonance, or at small ǫ, the perturbation
embodied in ǫ is relatively unimportant and the spins precess by an amount per turn similar to
that on the design orbit. Then, the map for an odd number of turns is also close to a rotation
by the angle π around the vertical but the map for an even number of turns is close to the
identity. If λ is an even integer, the 1–turn spin map is always a rotation by the angle π around
the vertical.

It is straightforward to show that at most small values of ǫ/λ and with [Q2] = a2/b2, the
rotation vector ~r(b2) for a b2–turn map is close to vertical for [Q2] = 1/3, 2/3, 1/5, 2/5, 3/5,
4/5, 1/7, 2/7, 3/7, 4/7, 5/7, 6/7, . . . and for [Q2] = 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/12,
5/12, 7/12, 11/12, . . ., and that unless λ is an even integer, it is close to the horizontal plane
for [Q2] = 1/6, 5/6, 1/10, 3/10, 7/10, 9/10, 1/14, 3/14, 5/14, 9/14, 11/14, 13/14, · · ·,
corresponding to snake resonances.

3 Polarisation in the model ring at rational [Q2]

We now use our model to study and contrast the equilibrium beam polarisation, the time
averaged beam polarisation and the beam polarisation surviving after acceleration, for the first
members of the three classes of rational tunes just listed, namely for [Q2] = 1/3, 1/4 and 1/6.
We are primarily interested in [Q2] at and near 1/6 but the other cases serve to familiarise the
reader with the “normal” cases.

3.1 Off orbital resonance

To set the scene, and at variance with the title of this section, we first consider a case where the
system is off orbital resonance and off spin–orbit resonance so that the smooth ISF n̂ is globally
unique. Thus figure 1 shows the components of n̂ for δ = 0 in the range 0 < [φ2/2π] ≤ 1 obtained
by stroboscopic averaging [1, 2, 3, 4] at the irrational tune Q2 = 47+

√
5−2 = 47.236067977 . . .3.

In this and in all other figures in this paper, the spins are viewed just before the 0◦ snake.
Furthermore, for all calculations in this paper, the resonance strength, ǫ, is 0.4 and the integer
k0 is 1800, corresponding to a proton energy of about 970 GeV. These are the values used in
[5] and we use them again here to allow comparisons to be made.

We remind the reader that n̂ is 2π–periodic in φ2. In principle, the stroboscopic averaging
could have been carried out at each value of [φ2/2π] separately. However, away from orbital
resonances one can cover a torus by simply finding n̂ at some [φ2/2π], setting a spin parallel to
this n̂ and then recording the spin components while transporting the spin for a large number
of turns. Since Js is invariant along a trajectory we then have the components of n̂ all along the
trajectory. This is the approach adopted for figure 1 and we see confirmation that n̂ is a single
valued continuous function of [φ2/2π]. The average 〈n̂〉 of n̂ over φ2 is vertical and P

lim
= 0.47.

The ADST is 1/2.
Figure 2 shows the beam polarisation, sampled every hundred turns for 106 turns, for an

ensemble of particles distributed uniformly in the range 0 < [φ2/2π] ≤ 1 at δ = 0 when the

3Of course, we are aware that in calculations in a digital computer, all irrational numbers must be represented
by rational numbers, but then of very high order.
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Figure 1: The three components of n̂(φ2) for the SRM with 2 Siberian Snakes with axes at 0◦ and 90◦ and
for [Q2] = 0.236067977 . . .. Viewing point: just before the 0◦ snake. δ = 0 and ǫ = 0.4.
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Figure 2: For initially vertical spins, the vertical component of the beam polarisation, sampled every 100
turns, at δ = 0 for [Q2] = 0.236067977 . . ..
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spins are all initially vertically upward. The horizontal components remain at zero but the
vertical component oscillates, at least for millions of turns, between time independent maxima
and minima with a time average of about 0.3. As expected, this is less than P

lim
. A constant

polarisation equal to the maximum 0.47 could have been attained by setting the spins initially
parallel to their respective n̂ vectors. See also figure 9 in [1]. Inspection of the turn–by–turn
data reveals that the oscillations have a period of about four turns, as expected for a [Q2] close
to one quarter and an ADST of 1/2. In the simple SRM and at δ = 0 the analogous simulation
would exhibit a beam polarisation oscillating between +1 and −1 as the spins precessed around
the horizontal n̂ at a rate λ = ǫ.

-1

-0.5

0

0.5

1

0 0.25 0.5 0.75 1

n

[φ2/2π]

 

n1
n2
n3

Figure 3: The three components of n̂(φ2) at δ = 10.6 for [Q2] = 0.236067977 . . ..

Figure 3 shows the components of n̂ for the parameters of figure 1 except with δ = 10.6,
a value corresponding to a beam energy far from that of the parent resonance, with non–even
λ but otherwise arbitrary. The vectors n̂(φ2) are almost vertical so that P

lim
is high, namely

0.998. Figure 4 shows the curve for P
lim

together with the beam polarisations, as ensembles
are accelerated through δ = 0 at the rates of 100 MeV, 500 MeV and 1 GeV per turn (p.t.).
The acceleration is simulated by incrementing δ by four equal amounts, namely just after each
snake and at the mid–points of the two arcs. At the start, δ = −10.6 and the particles are
distributed uniformly in [φ2/2π] with each spin initially set parallel to its corresponding n̂(φ2),
which is almost vertical. For protons, a rate of 100 MeV per turn corresponds to ∆ ≈ 0.19 for
the change of aγ0 per turn. For this rate the beam polarisation follows the curve for P

lim
vs.

δ, dipping to the value 0.47 at δ = 0. Moreover, detailed inspection shows that at each δ the
distribution of spins matches the ISF. This is a nice demonstration of the adiabatic invariance
of Js in this case [9]. The invariance of Js is lost at the higher rates. Slightly different curves
are obtained if the spins are set vertically upward at the start.

The rate of 100 MeV per turn corresponds to a value ǫ2/α ≈ 5.3 in the Froissart–Stora
formula [25] where α = ∆/2π. The Froissart–Stora formula describes the final polarisation
when a spin–orbit resonance is crossed in the SRM and for these parameters it would predict
almost full spin flip, corresponding to adiabaticity. However, our model includes the snakes and
there are therefore no first order spin–orbit resonances to cross. So the Froissart–Stora formula
does not apply. Nevertheless for our model, the rate of 100 MeV per turn is adiabatic.

9
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Figure 4: With each spin initially parallel to its n̂, the beam polarisation sampled turn–by–turn, for [Q2] =
0.236067977 . . . during acceleration from δ = −10.6 to δ = +10.6 at the rates of 100 MeV, 500 MeV and 1 GeV
per turn.

3.2 On orbital resonance: [Q2] = 1/3

We now consider our first case of orbital resonance, namely with Q2 = 47 +1/3, corresponding
to odd a2 and b2. Figure 5 shows the components of n̂ at δ = 0 and ǫ = 0.4. These components
are obtained by normalising to unity the ~r(3) corresponding to three turns in the range 0 <
[φ2/2π] ≤ 1/3, namely 0◦ to 120◦, and then transporting the n̂ for each [φ2/2π] in this range
for two or more turns with the 1–turn spin map, thereby filling up the full phase range. Note
that the curves are single valued functions of [φ2/2π] as required. The average |〈n̂〉| of n̂ over
[φ2/2π] in figure 5 is 0.05 and 〈n̂〉 is vertical. While the smooth ISF n̂ of figure 5 is globally
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Figure 5: The three components of n̂(φ2) at δ = 0 for [Q2] = 1/3.

unique, one looses global uniqueness if one allows discontinuities, as demonstrated in figure 6.
There, we introduce changes of sign in n̂ by hand at the arbitrarily chosen angles of 17.5◦ and
90◦, while constructing n̂ in the range 0◦ to 120◦ using ~r(3). We then transport this n̂ for two or
more turns as before. Naturally, the sign–discontinuities (often simply called “discontinuities”

10



from now on) are transported too. In particular, we see that the transported n̂ is still a single
valued function of [φ2/2π]. The average |〈n̂〉| in figure 6 is 0.164. It is clear that neither n̂
nor |〈n̂〉| are unique. Of course, an unlimited number of discontinuities could be introduced
in the same way. Then the curves would be smooth almost nowhere. Each of the n̂ obtained
in this way would correspond to a permissible equilibrium spin distribution. The n̂ obtained
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Figure 6: The three components of n̂(φ2) at δ = 0 for [Q2] = 1/3. Sign–discontinuities have been introduced
by hand.

by stroboscopic averaging [1] over the whole range 0 < [φ2/2π] ≤ 1 can have discontinuities
with positions that depend on the “seed” spin field used in the stroboscopic average but these
discontinuities can be removed to give the curves in figure 5. Since these discontinuities are
sign discontinuities, we do not exclude the possibility that the ISF is locally unique. However,
this issue is beyond the scope of this paper since it would lead us into a discussion of regularity
conditions.
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Figure 7: The three components of n̂(φ2) at δ = 10.6 for [Q2] = 1/3.

If the long term tracking simulation of figure 2 is repeated but with [Q2] = 1/3, the vertical
component of the beam polarisation oscillates quickly between about -0.3 and +0.8 for at least
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5 · 106 turns with a time average of about 0.25. This is higher than the |〈n̂〉| in figure 5 but no
significance can be attributed to this since |〈n̂〉| is not unique.

Figure 7 shows the components of the smooth ISF n̂ for the conditions of figure 5 but with
δ = 10.6. |〈n̂〉| is high as expected, namely 0.997 since ~r(3) is close to vertical. The existence
of the n̂ of figure 7, means that an ensemble of exactly vertical spins is close to a permissible
equilibrium spin distribution.

Figure 8 shows the beam polarisation for acceleration through δ = 0 from δ = −10.6 to
δ = +10.6 at the rates of 50 MeV, 300 MeV and 1 GeV per turn for this Q2. At the start, the
particles are distributed uniformly in [φ2/2π] and the spins are set parallel to the almost vertical
n̂ vectors of the smooth ISF. Up to an acceleration rate of 50 MeV per turn, Js is invariant, with
the beam polarisation dipping down to 0.05 around δ = 0 and returning to a high value at the
end. This is a demonstration that with the chosen smooth n̂, Js can be adiabatically invariant,
although the proof in [9] does not guarantee this because the system is on orbital resonance.
At the higher acceleration rates, the invariance is lost. By using stroboscopic averaging for
irrational [Q2] near 1/3 one finds ISFs similar to that in figure 5.
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Figure 8: With each spin initially parallel to its n̂, the beam polarisation, sampled turn–by–turn, for [Q2] = 1/3
during acceleration from δ = −10.6 to δ = +10.6 at the rates of 50 MeV, 300 MeV and 1 GeV per turn.

3.3 On orbital resonance: [Q2] = 1/4

For our second case of orbital resonance we choose Q2 = 47 + 1/4, corresponding to an odd a2

and a b2 which is twice an even integer. Figure 9 shows the components of n̂ at δ = 0 and ǫ = 0.4
obtained, in analogy with the previous case, from ~r(4) in the range 0 < [φ2/2π] ≤ 1/4 and from
transporting those n̂ for three or more turns. In this case we see “stray” points at multiples of
45◦ corresponding to the phases where the 4–turn map is the identity. For this figure we have
imposed the constraint that the components are continuous in the range 0◦ to 90◦, apart from
the stray points. If we had not imposed smoothness, the components would have changed sign
at 45◦ and the resulting discontinuities would have been transported to the remainder of the
phase range. So, for these parameters and for [Q2] = 1/4, n̂ can have discontinuities as in the
case of any rational Q2. But in contrast to a case discussed below, these discontinuities can be
suppressed. The n̂ obtained by stroboscopic averaging over the whole range 0 < [φ2/2π] ≤ 1
is smooth as in figure 9. Of course, as in the case of [Q2] = 1/3, we can also introduce an
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unlimited number of sign–discontinuities. The curves of figure 9 give |〈n̂〉| = 0.43. Note the
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Figure 9: The three components of n̂(φ2) at δ = 0 for [Q2] = 1/4.

similarity between figure 9 and figure 1. Such similarities are seen with other irrational [Q2]
near 1/4 and indicate a weak dependence of n̂ on such irrational [Q2]. This is consistent with
the prediction in [4, Section 4.8] that in mid–plane symmetric rings the ISF is well behaved
close to the condition ν0 = k0 + 2k2Q2, (k0, k2 ∈ Z).

If the long term tracking simulation of figure 2 is repeated but with [Q2] = 1/4, the vertical
component of the beam polarisation oscillates quickly, initially between about -0.1 and +0.7.
But these limits gradually change and become 0.1 and 0.4 respectively after 5 · 106 turns. The
time average of about 0.25. This is lower than the |〈n̂〉| in figure 9 but no significance can be
attributed to this since |〈n̂〉| is not unique.

Figure 10 shows the components of n̂ for the conditions of figure 9 but with δ = 10.6. The
average |〈n̂〉| is 0.99. Note that in contrast to the 3–turn map used for [Q2] = 1/3, at large |δ|
the 4–turn map is close to the identity. Nevertheless, ~r(4) is close to vertical.
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Figure 10: The three components of n̂(φ2) at δ = 10.6 for [Q2] = 1/4.

Figure 11 shows the beam polarisation as the simulation of figure 4 is repeated for [Q2] = 1/4.
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At the start, the spins are set parallel to the almost vertical n̂ vectors of the smooth ISF.
Up to an acceleration rate of 100 MeV per turn, Js is invariant, with the beam polarisation
dipping down to 0.43 around δ = 0 and returning to a high value at the end. This is again a
demonstration that with the chosen n̂, Js can be adiabatically invariant although the system is
on orbital resonance. At the higher acceleration rates, the invariance is lost.
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Figure 11: With each spin initially parallel to its n̂, the beam polarisation, sampled turn–by–turn, for [Q2] =
1/4 during acceleration from δ = −10.6 to δ = +10.6 at the rates of 100 MeV, 500 MeV and 1 GeV per turn.

3.4 On orbital resonance: [Q2] = 1/6

We now come to the first of the two cases of primary interest for this study, namely the case
when [Q2] = 1/6, i.e., a case of a snake resonance. Again, the integer part of Q2 is 47 and
ǫ = 0.4. Figure 12 shows the components of n̂ at δ = 0 obtained by transporting for five or
more turns the n̂ obtained from ~r(6) in the range 0 < [φ2/2π] ≤ 1/6.
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Figure 12: The three components of n̂(φ2) at δ = 0 for [Q2] = 1/6.

We see stray points at phases which are multiples of 30◦ and 90◦ corresponding to the phases
where the 6–turn map is the identity. The vector ~r(6) has sign–discontinuities at these points
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but for this figure we have imposed the constraint that the components of n̂ are continuous in
the range 0◦ to 60◦, apart from the stray points. One sees that n̂ still has discontinuities, namely
at phases which are multiples of 60◦. Thus, in spite of smoothing n̂ in the initial range of 0◦

to 60◦, discontinuities persist. They cannot be removed without creating a vector field which
becomes double valued when it is transported turn–by–turn. However, the discontinuities can
be moved. These effects explain the failure of the MILES algorithm for n̂ at snake–resonance
tunes in [21] where the need for discontinuities in this model is nevertheless disputed. It is clear
that the curves in figs. 7 and 8 in [21] do not represent n̂ [5].

Stroboscopic averaging over the whole range 0 < [φ2/2π] ≤ 1 generates the curves of figure
12 directly i.e., without extra smoothing. The discontinuities of n̂ occur at phases where
the raw stroboscopic average passes through zero. The passage through zero is smooth. So
discontinuities in n̂ do not imply discontinuities in the stroboscopic average.

Our numerical calculations show that n̂ has such discontinuities at snake–resonance tunes
at most values of ǫ and that the minimum number of discontinuities is 2b̃2.

Of course, if n̂ is represented as the locus of points on the unit 2–sphere, one finds disjoint
segments. The average |〈n̂〉| over [φ2/2π] in figure 12 is 0.13. An arbitrary number of extra
discontinuities can be introduced by hand.

If the long term tracking simulation of figure 2 is repeated but with [Q2] = 1/6, the polari-
sation oscillates quickly, but with constant upper and lower limits with a time average of about
0.1, at least up to 5 · 106 turns. Thus the time averaged polarisation does not vanish. This is
illustrated in figure 13.
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Figure 13: For initially vertical spins, the vertical component of the beam polarisation, sampled every 1000
turns, at δ = 0 for [Q2] = 1/6.

Figure 14 shows n̂ obtained as for figure 12 but with δ = 10.6. Except when λ is an even
integer this is typical of the n̂ at large |δ| (and also at small ǫ). The value of ~r(6) is very small
and the 6–turn spin map is close to a rotation of 2π around n̂. The discontinuities persist
but in contrast to the earlier examples, the vertical component of n̂ is close to zero and the
horizontal components are piece–wise almost independent of [φ2/2π]. The average |〈n̂(φ2)〉| is
essentially zero. It would remain close to zero if sign–discontinuities were introduced by hand.
Since the horizontal components of n̂ are piece–wise almost independent of [φ2/2π] but also
different, and since the 1–turn spin map is a rotation of about π around an axis close to the
vertical, it essentially changes their signs from turn to turn, causing the discontinuities. Such
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Figure 14: The three components of n̂(φ2) at δ = 10.6 for [Q2] = 1/6.

discontinuities do not occur at large |δ| for [Q2] = 1/3 or [Q2] = 1/4 in figures 7 and 10 because
n̂ is close to vertical. The curves of figure 14 deform continuously into those of figure 12 as
δ is reduced to zero. The analogous curves for the other three tunes show the same kind of
behaviour and, of course, that behaviour is a prerequisite for Js is to be invariant in figures 4,
8 and 11.

For [Q2] = 1/6 with ǫ = 0.4 and large non–even integer λ, all equilibrium spin distributions
have spins close to the horizontal plane. Thus a spin distribution in which all spins are initially
vertically upward cannot be in equilibrium. This is confirmed in figure 15 where we repeat
the long term tracking simulation of figs. 2 and 13 but at δ = −10.6 and [Q2] = 1/6. We
now see that the polarisation falls, but slowly, over many tens of thousands of turns and
subsequently oscillates around zero. Then the time averaged polarisation is close to |〈n̂(φ2)〉| ≈
0. Nevertheless, since the system is on orbital resonance, the theorem [3, 4] on the maximum
time averaged polarisation does not enforce this. Although the initial spin distribution is not
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Figure 15: For initially vertical spins, the vertical component of the beam polarisation, sampled every 1000
turns, at δ = −10.6 for [Q2] = 1/6.
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Figure 16: The beam polarisation for [Q2] = 1/6 during acceleration from δ = −10.6 to δ = +10.6 at the
rates of 50 KeV, 10 MeV and 500 MeV per turn with the spins initially parallel to n̂.
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Figure 17: With each spin initially parallel to its n̂, 〈Js〉 during acceleration from δ = −10.6 to δ = +10.6 at
the rates of 50 KeV, 10 MeV and 500 MeV per turn with [Q2] = 1/6.
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Figure 18: For initially vertical spins, the beam polarisation for [Q2] = 1/6 during acceleration from δ = −10.6
to δ = +10.6 at the rates of 50 KeV, 10 MeV and 50 MeV per turn.
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Figure 19: The beam polarisation for [Q2] = 1/6 when δ is frozen at +10.6 after the acceleration cycle of
figure 18, and the spins are tracked for a further 5 · 106 turns.
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in equilibrium, it is not surprising that it takes about 105 turns before the polarisation reaches
zero. This is due to the fact that at large |δ| the eigentune, 6ν6, of the 6–turn spin map is almost
independent of [φ2/2π] and very close to an integer for this case. Since Js is invariant along a

trajectory, we can view the motion of a spin as a precession at a fixed angle cos−1(~S · n̂/|~S|)
around its n̂. In this case the angles are about 90◦. With eigentunes almost independent of
[φ2/2π] and close to an integer, the projections of spins on the planes perpendicular to their
respective n̂’s spread out (decoher) only slowly. Then, at the viewing position, the spins return
almost to their original directions after six turns.

For large |δ|, the 1–turn spin map corresponds to a rotation of about π around an axis close
to the vertical. So, it is again no surprise that the polarisation in figure 15 takes many turns
to reach zero. For even larger |δ| (e.g., over 100), n̂ can be taken to be horizontal but the
polarisation remains vertical and it takes many millions of turns for it to show signs of falling.
There is no fall if λ is an even integer since then, the 6-turn map is the identity.

Figure 16 shows the beam polarisation for acceleration through δ = 0 at the rates of 50
KeV, 10 MeV and 500 MeV per turn for [Q2] = 1/6. At the start, the particles are uniformly
distributed in [φ/2π] and the spins are set parallel to the almost horizontal n̂ vectors of that ISF
which deforms into the ISF’s of figures 12 and 14. The initial beam polarisation is essentially
zero. During acceleration at rates up to 50 KeV per turn, the beam polarisation rises to 0.13,
corresponding to the |〈n̂〉| of figure 12, and then returns to around zero. A detailed inspection
of the data shows that for a rate of 10 MeV per turn, the spins deviate slightly from their
respective n̂ vectors at large |δ|. However, this effect is not apparent in the average over
[φ2/2π] contained in the beam polarisation. This is again a demonstration that with the chosen
n̂ and the chosen layout of accelerating cavities, Js can be approximately invariant even for
these discontinuous ISF’s and that at the higher acceleration rates, the invariance is lost. The
approximate invariance is confirmed in figure 17 which shows the corresponding behaviour of the
phase average of Js, 〈Js〉. In figure 17 we have suppressed data at δ’s where n̂ is indeterminate
because λ is an even integer.

Figure 18 shows the beam polarisation as the simulation of figure 16 is repeated but with the
spins initially vertically upward and for rates of 50 KeV and 10 MeV per turn and for 50 MeV
per turn, where Js is still approximately invariant. For these rates of acceleration the angle
between a spin and its n̂ remains around 90◦. Then the beam polarisation during acceleration
depends just on the geometry of the ISF and on the history of the rate of decoherence of the
projections of the spins on the planes perpendicular to the n̂’s. These rates depend, in turn,
on the magnitude of 6ν6 and its dependence on [φ2/2π]. We therefore expect that the final
polarisation could depend sensitively on the magnitude of the rate of acceleration and on its
time dependence. This is confirmed in figure 18 which shows that at a rate of 50 KeV per turn,
the polarisation is effectively lost at positive δ but that at the much higher rate of 50 MeV per
turn the final polarisation is around -0.4 at the end of the acceleration cycle. By now, the reader
will have realised that the polarisation of -0.4 cannot represent an equilibrium state. This is
confirmed in figure 19 where, after acceleration up to δ = 10.6, δ is frozen and the ensembles
are tracked for a further 5 · 106 turns. Figure 19 shows that after some large oscillations the
polarisation gradually decays to zero in a way and on a time scale familiar from figure 15. It
also shows that although the polarisation can be small at the end of the acceleration (as in
the case of 10 MeV/turn), the spin distribution is by no means isotropic but is such that the
polarisation can return to a large value later. In fact after the 5 · 106 turns, the curves of spin
vector versus [φ2/2π] are smooth curves for all three acceleration rates4. This suggests that

4 This vindicates the advice in [7, Section I] on the use of the term “depolarisation”.
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contrary to conventional expectation, a complete loss of polarisation is not inevitable during
acceleration exactly at a snake resonance with [Q2] = 1/6, at least not within the confines of
our model. This completes Part I of our investigation.

4 Summary and conclusion

In this paper we have presented and contrasted four scenarios for spin motion on and off orbital
resonance within the confines of our simple model, and by this means we have developed a
clean, elegant account of the special features of spin motion at a snake resonance. In all
four cases ~S · n̂ is an invariant at low enough rates of acceleration. For the first three cases
([Q2] = 0.236067977 . . . , 1/3, 1/4) the ISF is close to vertical at large |δ|, i.e., far away from
the energy for the parent resonance, and the spin motion is unexceptional. For example, after
acceleration from a large negative δ to a high positive δ, an initially vertical spin is still close
to vertical. These cases serve to emphasise the exceptional form of the ISF when [Q2] = 1/6.
In this case, far away from the parent resonance, the ISF lies close to the horizontal plane.
Then in contrast to the other three cases, an ensemble of particles with a uniform distribution
of [φ2/2π] and with vertically upward spins, cannot be at spin equilibrium. The subsequent
evolution of the beam polarisation depends on the chosen initial δ and is exemplified in figures
13 and 15. In particular, the polarisation oscillates at a rate depending on the proximity of
the eigentune of the 6–turn spin map to an integer and on the extent of the variation of that
eigentune with [φ2/2π]. Then at the energy of the parent resonance (δ = 0), the polarisation
oscillates quickly and the time averaged polarisation is small but non–zero. At most large |δ|,
the time averaged polarisation is zero but the polarisation oscillates slowly and it reaches zero
for the first time only after many thousands of turns.

As soon as one sees that at most large |δ| the ISF for [Q2] = 1/6 lies close to the horizontal
plane, it is no surprise that in this case the time averaged beam polarisation can become small
in the long term. Acceleration adds little to the story, except that within our model, after
starting with an ensemble of vertical spins at δ = −10.6, the final polarisation depends on
the rate at which one passes from the spin motion underlying figure 15 to the spin motion
underlying figure 13 and then beyond to large positive δ. The key features of spin motion at
[Q2] = 1/6 are encoded in the ISF. We see no necessity to invoke the perturbed spin tune
[14, 15]. Instead, we appeal to the eigentune of the 6–turn spin map, a quantity with physical
significance.

We emphasise that the main results presented here refer to a very special case, namely for
our model right at [Q2] = 1/6 and with ǫ = 0.4. As pointed out in [5], the ISF is extremely
complicated for values of [Q2] just below and just above 1/6. This is consistent with the
prediction in [4, Section 4.8] that in mid–plane symmetric rings the ISF need not be well
behaved close to the condition ν0 = k0 + (2k2 + 1)Q2, (k0, k2 ∈ Z). Thus in Part II of this
study we extend our calculations to cover such values of [Q2] and to larger values of ǫ. It will
be shown there that although the ISF for [Q2] = 1/6 has the special form described above, this
is an exception and that the loss of polarisation during acceleration near to [Q2] = 1/6 has a
different origin. We also comment on the findings in [10, 23, 24].

The analysis should then be extended to real synchrobetatron motion with misalignments
for a typical optic of a real ring and with the fields of real snakes. See, for example, [33].
Other snake–resonance tunes should also be covered. We note with interest that according
to simulations for RHIC, the loss of polarisation during acceleration is less severe when the
simulations are carried out with the magnetic fields of real snakes rather than with point–like
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snakes [34].
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