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NOMENCLATURE

AAA : Advanced Accelerator Applications

ADS : Accelerated Driven System

AFCI : Advanced Fuel Cycle Initiatives

AGCR : Advanced Gas Cooled Reactor

BWR : Boiling Water Reactor

CANDU : Canadian Deuterium Uranium

CEA : French Atomic Energy Commission

CoreRatioMT : Core Ratio of MOX Fuel in PWR in MOX Thermal Option

CoreRatioMTO : Core Ratio of MOX Fuel in PWR in MOX Thermal Only Option

COSI : Simulation Software for a Pool of Reactors and Fuel Cycle Plant

DUPIC : Direct Use of Spent PWR Fuel in CANDU

DYMOND : Dynamic Model of Nuclear Development

EndYearMT : Ending Year of MOX Fuel in PWR in MOX Thermal Option

FAST : Nuclear Fuel Cycle Analysis and Simulation Tool

FCCG : Fuel Cycle Crosscut Group of GEN-IV Program

FirstStepA : Annual Grid Ratio Increase up to First Target Year of ADS in NPP Grid

FirstStepH : Annual Grid Ratio Increase up to First Target Year of HTGR in NPP Grid

FirstStepS : Annual Grid Ratio Increase up to First Target Year of SFR in NPP Grid

FirstTargA : ADS Grid Ratio in First Target Year of ADS in NPP Grid

FirstTargH : Heat Generation in First Target Year of HTGR in NPP Grid
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FirstTargS : SFR Grid Ratio in First Target Year of SFR in NPP Grid

FR : Fast Reactor

GCR : Gas Cooled Reactor

GEN 1V : Generation IV

HLW : High Level Waste

HTGR : High Temperature Gas Cooled Reactor

IAEA : International Atomic Energy Agency

ICECAT : Integrated Cost and Needs of the Fuel Cycle Analysis Tool

INPRO : International Project on Innovative Nuclear Reactors and Fuel Cycles

IntYearA : Introduction Year of ADS in NPP Grid

IntYearH : Introduction Year of HTGR in NPP Grid

IntYearMT : Introduction Year of MOX Fuel in PWR in MOX Thermal Option

IntYearMTO : Introduction Year of MOX Fuel in PWR in MOX Thermal Only Option

IntYearS : Introduction Year of SFR in NPP Grid

KAERI : Korea Atomic Energy Research Institute

KALIMER : Korea Advanced Liquid Metal Reactor

LANL : Los Alamos National Laboratory

LWR : Light Water Reactor

MOCIE : Ministry of Commerce, Industry and Energy of Korea

MOX : Mixed Oxide

NFC : Nuclear Fuel Cycle
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OECD/NEA : Nuclear Energy Agency of Organization for Economic Co-operation and

Development

PGFHTGR : Power Generation Fraction of HTGR

PHWR : Pressurized Heavy Water Reactor

PowerGenScenario : Power Generation Scenario

PWR : Pressurized Water Reactor

ReactorStra : Reactor Strategies

SecondStepA : Annual Grid Ratio Increase up to Second Target Year of ADS in NPP Grid

SecondStepH : Annual Gird Ratio Increase up to Second Target Year of HTGR in NPP Grid

SecondStepS : Annual Grid Ratio Increase up to Second Target Year of SFR in NPP Grid

SecondTargA : ADS Grid Ratio in Second Target Year of ADS in NPP Grid

SecondTargH : Heat Generation in Second Target Year of HTGR in NPP Grid

SecondTargS : SFR Grid Ratio in Second Target Year of SFR in NPP Grid

SFR : Sodium Fast Reactor

ShareADS : Power Ratio of ADS

ShareCANDU : Power Ratio of CANDU

ShareHTGR : Power Ratio of HTGR

SharePWR : Power Ratio of PWR

ShareSFR : Power Ratio of SFR

TargYearA : First Target Year of ADS in NPP Grid

TargYearH : First Target Year of HTGR in NPP Grid
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TargYearS : First Target Year of SFR in NPP Grid

VISTA : Nuclear Fuel Cycle Simulation System
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Chapter 1 Introduction

Recently, international programs to develop innovative nuclear energy systems,
including both reactors and fuel cycle technologies, have been initiated under the names
of the Generation IV International Forum (GIF) led by the United States [1] and the
International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO)
organized by the International Atomic Energy Agency (IAEA) [2]. The Republic of
Korea has been participating in both programs as well as performing its own
comprehensive R&D programs in which several different reactor types, such as the
sodium fast reactor (SFR), the high temperature gas cooled reactor (HTGR) and the
accelerator driven system (ADS), are taken into consideration.

As a result of all these vigorous research activities, future nuclear energy systems in
most countries will consist of various mixes of nuclear reactors and fuel cycle
technologies. Although such a situation requires a dynamic systems analysis which
includes all the aspects of economics, safety, proliferation and radioactive waste, there
have been little efforts in that regard. With this realization, the Korea Atomic Energy
Research Institute (KAERI) has recently developed a computer program for simulating
various nuclear fuel cycles that have potential application in Korea, and thus making it
easy to understand policy implications when such fuel cycles are deployed in this

country.

The report intends to describe this computer program, the Nuclear Fuel Cycle Analysis
and Simulation Tool (FAST) which now allows a mass flow analysis and is being
extended to include cost and environmental analyses. Results of several tryout-
simulations from the FAST are also discussed in the report in order to demonstrate how
this program works. The users are advised that, since it has not yet reached the testing
and benchmarking stage, the results discussed here cannot be certified. With completion
of this program, however, it is hoped to contribute to the decision making process of
shaping the future nuclear fuel cycle development paths in Korea.



KAERI/TR-3005/2005

Chapter 2 Previously Developed Nuclear Fuel Cycle System Analysis
Tools

In order to assess the viability of nuclear power plants and their fuel cycles, the
estimation of their material flows are firstly required. Currently, several computer tools
are available for such estimation: the Nuclear Fuel Cycle Simulation System (VISTA)
which has been developed by the IAEA [3], the Integrated Cost and Needs of the Fuel
Cycle Analysis Tool (ICECAT) by the OECD/NEA [4], the Dynamic Model of Nuclear
Development (DYMOND) by the GIF [5], the Simulation Software for a Pool of
Reactors and Fuel Cycle Plant (COSI) by the CEA [6], the system analysis modeling for
the AFCI program [7], and the Dynamic Analysis of Nuclear Energy System Strategies
(DANESS) by the Argonne National Laboratory (ANL) [8].

This chapter introduces briefly these programs.
21VISTA

The Nuclear Fuel Cycle Simulation System (VISTA) [3] is a scenario-based computer
program for the estimation of fuel cycle service requirements. This simulation tool was
originally used to assess the different scenarios outlined by the Working Groups of the
International Symposium on Nuclear Fuel Cycle and Reactors Strategies: Adjusting to
New Realitiesheld from 3 to 6 June 1997 in Vienna, Austria.

The VISTA takes three groups of parameters as input: strategy parameters, fuel
parameters and control parameters. The strategy parameters include nuclear capacity
variants, reprocessing-recycling strategies, reactor type mixtures and load factors for
each type of reactor. The reactor types taken into consideration in this program are the
pressurized water reactor (PWR), the boiling water reactor (BWR), the pressurized
heavy water reactor (PHWR), the advanced gas cooled reactor (AGCR), the gas cooled
reactor (GCR), WWER, all of which are currently being commercially operated. The
fuel parameters include average discharge burnup, average initial enrichment and
average tail assay of enrichment plants on an annual basis. The control parameters are
share of MOX (Mixed Oxide) fuel in reactor fuel, lead and lag times for different

processes and the number of spent fuel reprocessing cycles.

Taking these three groups of parameters as input, the VISTA gives various output data
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including natural uranium, conversion and enrichment service requirements, spent fuel

arisings, actinide contents of spent fuel and reprocessing service requirements.

The current version of the simulation tool is in MS Excel spreadsheet format. In the
future the program will be converted into a web application, and made available for the

use of interested Member States and specialists with their own scenarios.
2.21CECAT

The Integrated Cost and Needs of the Fuel Cycle Analysis Tool (ICECAT) is a program
designed for simulating the future development of installed nuclear capacity in order to
forecast demand for fuel as well as the associated costs [4]. It has been created by the
OECD/NEA for its own use and potentially that of experts from interested Member

countries.

The ICECAT, a program driven by energy demand, operates under the iThink software
environment. Data on the existing reactors and scenarios for energy demand are stored
in a MS Access formatting database, while output files are formatted in the MS Excel to

allow users easily update this database with the most recent data available.

Currently, the ICECAT offers a choice of 7 fuel cycle scenarios:

- LWR (Light Water Reactor) Once-through-Cycle (OTC)

- LWR mono Pu recycling

- LWR multi Pu recycling

- LWR OTC + FR (Fast Reactor) multi Pu recycling

- LWR mono Pu recycling + FR multi Pu recycling

- LWR mono Pu recycling + FR multi Pu recycling + Pu feedback

- Direct use of Spent PWR Fuel in CANDU (DUPIC)

The current version of the ICECAT is not final and thus, continues to be modified.

Other fuel cycles, such as the thorium fuel cycle and fast breeder fuel cycle, as well as

10



KAERI/TR-3005/2005

the management of minor actinide are being added, while the ADS option is considered

to be added in the near future.
2.3DYMOND

The Dynamic Model of Nuclear Development (DYMOND) was originally created by
Mr. Anton Moisseytsev, a Texas A&M graduate student, as a summer project when he
was employed by the Reactor Analysis and Engineering Division at the Argonne
National Laboratory (ANL) in 2001 [5]. It has been modified and extended by Dr. Latif
Yacout at ANL by adding the thorium cycle option in this model. Later, it had used in
the GEN IV Fuel Cycle Crosscut Group (FCCG) [5].

The DYMOND employs the iThink dynamic modeling platform to model 100-year
dynamic evolution scenarios for postulated global nuclear energy parks. The scenarios
use the worldwide deployments of fuel cycle facilities and power plants in the year of

2000 as initial conditions.

The VISTA gives various output data including the front and back-end mass flows,
inventories of spent fuel, plutonium and minor actinides in interim storage. The code
also quantify the scales of deployment of mining/milling, enrichment services, fuel
fabrication plants, reprocessing capacities, required capacities of interim storage

facilities and final disposal repositories.
2.4 COSI

The Simulation Software for a Pool of Reactors and Fuel Cycle Plant (COSI) was
originally developed by the French Atomic Energy Commission (CEA) in 1991 and
used for the material flow calculation in the OECD/NEA report, Trends in the Nuclear
Fuel Cycle, published in 2001 [6].

2.5 AFCI System Analysis M odeling

The Los Alamos National Laboratory (LANL) has been using a series of computer
models in order to assess/evaluate the future, advanced nuclear fuel cycle scenarios in
terms of three main issues of economics, environmental impacts and proliferation risk.
The figure below illustrates the relationships among these models of DELTA, FCOPT
and NFCSim [7].

11
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The DELTA, a steady-state (equilibrium) model, evaluates scenarios based on key
performance indicators such as cost, waste mitigation, proliferation risk and resource
utilization. Based on these equilibrium analyses, optimizations and simulations are
performed by use of FCOPT and NFCSim. The FCOPT, created by the Los Alamos
National Laboratory, is to optimize a comprehensive set of nuclear fuel cycle options.
Using Linear Programming (LP) methods and taking the time factor into consideration,
the FCOPT tracks a number of nuclear materials and related processes. Based on the
demand for nuclear-electric energy, the FCOPT considers available technologies and

then determine the optimal nuclear fuel cycle scenario.

Together with the above two models, the NFC Simulation (NFCSim) model completes
the troika of systems models used for the AFCI program. The NFCSim has been
benchmarked by the COSI under an NFC modeling benchmark collaboration between
the CEA and the LANL.
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Fig. 1 Spectrum of System Analysis Modeling of AFCI Program
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2.6 DANESS

The Dynamic Analysis of Nuclear Energy System Strategies (DANESS) is an integrated
nuclear process model intended for the dynamic analysis of multiple development paths
for nuclear energy systems which has recently gained interest worldwide [8]. Using of
1Think software and being accompanied with a MS Access database and the MS Excel,
the DANESS allows users to simulate all aspects of a varying mix of reactor and fuel
types. According to the ANL, the model allows simulating up to 20 different reactor
types and up to 20 different fuel types in one simulation. In its current version, the code
only allows mass flow analysis and economics, but is being extended to include life-

cycle analysis data, non-proliferation metrics and non-nuclear energy sources.

13
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Chapter 3 Nuclear Fuel Cycle Analysisand Simulation Tool

3.1 Overview

As described in Chapter 2, several international bodies have developed computer tools
that calculate material flows of various nuclear fuel cycles. Unfortunately, being
developed for their own uses, all of those are not commercially available. Besides, none
of those are useful when considered future nuclear fuel cycles that have potential
application in Korea. With this realization, the Korea Atomic Energy Research Institute
(KAERI) has recently developed its own computer program, the Nuclear Fuel Cycle
Analysis and Simulation Tool (FAST).

The Nuclear Fuel Cycle Analysis and Simulation Tool (FAST) is a computer program
that estimates quantity requirements for each nuclear fuel cycle step, such as ore mining,
conversion, enrichment and fuel fabrication. Such estimation could be made on a yearly

basis, or over a particular time frame, up to the year of 2100.

The Fig. 2 gives an overview of the Nuclear Fuel Cycle Analysis and Simulation Tool
(FAST) linked with the FORECAST, which projects a future nuclear energy need in
Korea and whose output is transferred automatically to the FAST. The boxes at the top

and the bottom sides of the figure show input and output parameters, respectively.

14
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Tc-199 Inventory
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Spent Fuel Arisings

Conversion Requirement
Reprocessing Requirement
Mining and Milling Requirement

Fig. 2 Schematic Diagram of FAST Linked with FORECAST

3.2 FORECAST: Projection of a Future Nuclear Energy Need

A study on the nuclear fuel cycle must begin with an estimation of the growth in nuclear
power during a time frame considered. The growth in nuclear power will depend on
both nuclear power market share and total electricity generation. The total electricity
generation will also depend on per capita electricity demand in a specific country [9, 10].
This logic, as shown in Fig. 3, is used in the FORECAST.

15
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Historical population data and

projection

Per capita electricity demand
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Projection of per capita electricity demand
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Nuclear share in base Projection of nuclear share
year using logistics curve

A

Convert nuclear share to nuclear electricity
generation

DT .

!

Convert nuclear electricity generation to
electricity capacity

Fig. 3 Calculation Procedure of FORECAST Model

The formula for estimating the electricity demand per capita is given as follows:

E =

o 1+ e—(aE+bET)

Where;

E:: electricity demand per capita in year t

E. : asymptotic limit for the demand E,

T: time in years since the base year

16
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ag and bg,: parameters estimated by the regression

ag +beT = log% 2)

0 1

Given that the asymptotic electricity consumption per capita and the historically-based
electricity consumption per capita, the parameters, ag and bg, can be estimated by the
regression analysis. As a result, electricity demand per capita can be projected from the

equation (1).

To project nuclear electricity market share, the logistics curve model [9] is used. The
logistics curve for this purpose is defined by an initial point and two parameters, nuclear
electricity market share and halving time (eq. (3)). The initial point is the nuclear
electricity market share of the base year. The first parameter is the nuclear electricity
market share at a given date in the long term or the asymptotic limit. The second
parameter, halving time, is defined as the time taken, counted from the base year, for
nuclear electricity market share of total electricity generation to reach a value half-way

between the value of the base year and the asymptotic limit.

SN
- 1+ e—(aN +byT)

S €)

Where

StN : nuclear electricity market share of total electricity generation in year t

T: time in years since the base year

N
S, : asymptotic limit for nuclear electricity market share StN

17
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% and b. : parameters estimated by the regression

= )

N
S : nuclear electricity market share of total electricity generation in the base year

Hy : halving time, i.e., the time taken, counted from the base year, for nuclear electricity market
share of total electricity generation to reach a value half-way between the value at the base year

and the asymptotic limit.

Share S, (%)

7 N

S Asymptotic limit

le—>| Time t

Fig. 4 Logistics Curve for Forecasting Nuclear Power Capacity
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3.3 FAST: Estimation of Fuel Cycle Service Requirements & Calculating of
Material Flows

3.3.1 Scenario Description

In the FAST, nuclear fuel cycles are categorized into 11 scenario groups, combinations
of PWR, CANDU, SFR, ADS and HTGR. These reactor types taken into consideration
are those in operation now (PWR and CANDU) or those that have potential application
in Korea. All the scenarios groups are based on the current power plant grid and the 2nd
Basic Plan of Electricity Demand and Supply [11] which was announced by the Korean
Ministry of Commerce, Industry and Energy (MOCIE) in 2004. All the related data is

pre-provided in its database.

3.3.1.1 Scenario Group 1 (PWR + CANDU (Constant ratio))

Scenario group 1 considers a situation in which only the existing reactor types of PWRs
and CANDU reactors would be operated in Korea. As all the other scenarios, the group
1 is based on the 2nd Long-term Nuclear Power Generation Plan which blueprints the
nuclear power situation in Korea up to the year of 2017. After 2017, this group assumes
that the ratio of CANDU reactors to total nuclear electricity capacity continues to be
constant until 2100. The ratio, according to the 2 Plan, will be 0.102 in 2017 with the

completion of the plan.

The spent PWR and CANDU fuels are permanently disposed of in centralized storage
facilities.

Nat. U(NU) Fuel

Fabrication ’ ‘

v

A 4
A 4

Ml'nl_ng/ Conversion Enrichment f—> LEL.J Fu_el — — (AR — Pe_rmanent
Milling Fabrication Storage Disposal

Fig. 5 Schematic Diagram of Scenario Group 1

19
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3.3.1.2 Scenario Group 2 (PWR + CANDU (Phase out))

Scenario group 2 is identical with the Group 1 except that the ratio of CANDU reactors

to total nuclear electricity capacity is phased out. This means a new CANDU reactor

will be no more constructed up to the year of 2100.

v

Mining/
Milling

A 4

Nat. U(NU) Fuel
Fabrication ’

v

A 4

AFR
Storage

Permanent
Disposal

Conversion Enrichment f—p LE‘? Fu.el s 4 —
Fabrication

Fig. 6 Schematic Diagram of Scenario Group 2

3.3.1.3 Scenario Group 3 (PWR + CANDU + HTGR)

In scenario group 3, the HTGR, which is used both in hydrogen production and

electricity generation, is taken consideration in addition to the PWR and CANDU

reactors. As in Group 2, the CANDU reactors are phased out in this group after the end

of their life time.

3.3.1.4 Scenario Group 4 (PWR (Thermal recycle) + CANDU)

Scenario group 4 deals with the thermal recycle in which the PWR spent fuel is wet-
reprocessed and reused as MOX fuel in the existing PWRs while the CANDU spent fuel
is permanently disposed of without reprocessing. As in Groups 2 and 3, the CANDU

reactors are phased out after the end of their life time. The remaining PWR and MOX

spent fuels are permanently disposed of at centralized storage facilities.

20
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Recovered U(REU)

Fig. 8 Schematic Diagram of Scenario Group 4

3.3.1.5 Scenario Group 5 (PWR + CANDU + SFR)

- »{Conversion »| Enrichment f—> LEL.J Fu_el — — (AR — Pe!’manent
Milling Fabrication Storage Disposal
s
‘ HTGR Fgel
Fabrication
Hydrogen Production
Fig. 7 Schematic Diagram of Scenario Group 3
_ | Nat. U(NU) Fuel )
v Fabrication .
MOX Fuel v
.. AFR »| Permanent
Mining/ . : A : y| LEU Fuel d .
Milling »IConversion »|Enrichment [ e —( PWR | Storage Disposal
UoO, Fue
»| MOX Fuel | Pu Wet .| HLW Permanent
Depleted U Fabrication [ Reprocessing i Disposal

Scenario group 5 introduces to Korea the SFR in which reprocessed PWR spent fuel is

used. The spent SFR fuel can also be reprocessed and continuously recycled in the SFR.
The use of blanket fuel in the SFR is optional. On the other hand, CANDU spent fuel is
not reprocessed and permanently disposed of at centralized storage facilities. The
CANDU reactors, as in the Groups of 2, 3 and 4, are phased out after the end of their

life time.

21
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I
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Reprocessing

!

Metal Fuel
Fabrication

v

Fig. 9 Schematic Diagram of Scenario Group 5

3.3.1.6 Scenario Group 6 (PWR + CANDU + HTGR + SFR)

In this scenario, the HTGR, both for hydrogen production and electricity generation, is

introduced. Except that the HTGR is taken consideration, the deployment of Scenario
Group 6 is the same as the Group 5 in which both PWR and SFR spent fuels are

reprocessed and reused in the SFR.

3.3.1.7 Scenario Group 7 (PWR + CANDU + ADS + SFR)

In scenario group 7, the ADS is included for transmuting actinide and long-lived fission

products. As in the previous scenario, both PWR and SFR spent fuels are reprocessed
and reused in the SFR. The PWR spent fuel can also be reused in the ADS. Tc and I
from PWR and SFR spent fuels are fabricated as a target fuel and transmuted in the

ADS.

22
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Fig. 11 Schematic Diagram of Scenario Group 7
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3.3.1.8 Scenario Group 8 (PWR + CANDU + ADYS)

In scenario group 8, the PWR, CANDU reactors and the ADS are deployed. PWR and
ADS spent fuels are reprocessed and reused in the ADS, instead of the SFR and Tc and
I in the PWR spent fuel are fabricated as a target fuel and transmuted in the ADS.

3.3.1.9 Scenario Group 9 (PWR + CANDU + HTGR + ADYS)

In scenario group 9, the PWR, CANDU reactors, the HTGR and the ADS are deployed.
As in the previous scenario group 8, PWR and ADS spent fuel is reprocessed and
reused in the ADS. Tc and I in the PWR spent fuel are fabricated as a target fuel and
transmuted in the ADS. The HTGR, both for hydrogen production and electricity

generation, is also deployed.

v

Nat. U(NU) Fuel
Fabrication

A\ 4

Mining/ . . o .| LEU Fuel AFR Permanent
> > > — —b] .
Milling Conversion Enrichment o —p Storage Disposal

Uo, Fuel 1
Depleted U(DU) Dry
Reprocessing
Tc, | MAl
A _ Metal Fuel
Y | Fabrication
_| Target Fuel
"| Fabrication |

Fig. 12 Schematic Diagram of Scenario Group 8
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13 Schematic Diagram of Scenario Group 9

3.3.1.10 Scenario Group 10 (PWR + CANDU + HTGR + SFR + ADS)

. N . | LEU Fuel AFR Permanent
Conversion P»|Enrichment » Fabrication‘_> e Storage Dlssosa
uo, Fud T
Depleted U(DU) bry
Reprocessing

TC, | MAL

A | Metal Fuel

Y | Fabrication

_| Target Fuel

| Fabrication

In scenario group 10, all the reactor types that have potential application in Korea are
deployed. PWR spent fuel is reprocessed and reused in the SFR and/or the ADS, while
spent fuels from the SFR and the ADS are continuously recycled in the ADS. Tc and I
in the PWR spent fuel are fabricated as a target fuel and transmuted in the ADS. The

HTGR, both for hydrogen production and electricity generation, is also deployed.

3.3.1.11 Scenario Group 11 (PWR (Thermal Recycle) + CANDU + HTGR + ADS)

This is the same scenario as the previous group except that the thermal recycle of MOX

fuel in the PWR is added. It is similar to the “double strata” concept of Japan and
Europe: At first, the thermal recycle using MOX fuel in the PWR is performed. Then,

actinide and long-lived fission products are burned in the ADS and/or the SFR.
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3.3.2 Reactor Grid Calculation

Given that the projection of the nuclear power generation is determined, the power
generations are allocated to each reactor grid. The reactor grids except for PWR and
CANDU are inputted by use of two step target grid. With two step target grid ratio, each
reactor grid deployed in Korean nuclear reactor system can be automatically calculated

year by year with following rationale.

The grid ratio means the electricity capacity portion of a specific nuclear type of all
nuclear reactor types deployed. Therefore, the sum of nuclear grid ratios will be as

followings:

ShareHTGR + SharePWR + ShareCANDU + ShareADS + ShareSFR =1

Where,

-ShareHTGR : the ratio of HTGR power capacity,
-SharePWR : the ratio of PWR power capacity,
-ShareCANDU : the ratio of CANDU power capacity,
-ShareADS : the ratio of ADS power capacity, and

-ShareSFR : the ratio of SFR power capacity.

HTGR Grid Ratio

The HTGR grid is calculated from the introduction year to first step target year with
constant increase ratio. Annual increase of power (GWe/year) up to first target year of
HTGR is as follows:
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FirstStepH = FirstTargH / (TargYearH — IntYearH + 1) x Efficiency

Where,

-FirstStepH : Annual increase (GWe/year) up to first target year of HTGR,
-FirstTargH : Heat generation (GWth) in first target year of HTGR,
-IntYearH : Introduction year of HTGR in NPP Grid, and

-TargYearH : First target year of HTGR in NPP Grid.

Annual increase of power up to second target year of HTGR is also calculated with

similar concept as follows:

SecondStepH = (SecondTargH - FirstTargH) / (SecondTargYearH - TargYearH) x
Efficiency

Where,
-SecondStepH : Annual increase (GWe/year) up to second target year of HTGR,
-SecondTargH : Heat generation (GWth) in second target year of HTGR, and

-SecondTargYearH : Second target year of HTGR.

The main purpose of HTGR introduction is to make hydrogen and for the case heat
generation (GWth) is important. Actually annual increase (GWe/year) for the electricity
generation, therefore, power generation fraction of HTGR to hydrogen production
should be considered.
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The grid ratio for the HTGR 1is described as follows:

ShareHTGR =0 (Year <IntYearH, or Year > SecondTargYearH )
ShareHTGR = Z FirstStepH x PGFHTGR (IntYearH < Year < TargYearH )
year

ShareHTGR = Z SecondStepH x PGFHTGR (TargYearH < Year < SecondTargYearH)
year

Where, the PGFHTGR is power generation fraction of HTGR.

SFR Grid Ratio

The SFR grid is also calculated from the introduction year to first step target year with
constant increase ratio. Annual grid ratio increase up to first target year of SFR in NPP

Grid is as follows:
FirstStepS = FirstTargS / (TargYearS — IntYearS + 1) x Efficiency

Where,
-FirstStepS : Annual grid ratio increase (%) up to first target year of SFR in NPP grid,
-FirstTargS : SFR grid ratio (%) in first target year of SFR,

-IntYearS : Introduction year of SFR in NPP grid, and
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-TargYearS : First target year of SFR in NPP Grid.

Annual grid ratio increase up to second target year of SFR in NPP grid is also calculated
as follows:

SecondStepS = (SecondTargS - FirstTargS) / (SecondTargYearS - TargYearS) x
Efficiency

Where,
-SecondStepS : Annual grid ratio increase (%) up to Second target year of SFR in NPP grid,
-SecondTargS : SFR grid ratio (%) in second target year of SFR, and

-SecondTargYearS : Second target year of SFR.

The grid ratio for the SFR can be described as follows:

ShareSFR =0 (Year <IntYearS, or Year > SecondTargYearS )

ShareSFR = Z FirstStepS (IntYearS < Year < TargYearS )
year

ShareSFR = Z SecondStepS (TargYearS < Year < SecondTargYearS)
year

ADS Grid Ratio
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The SFR grid is calculated by use of the same concept as the SFR case. Annual grid
ratio increase up to first target year of ADS in NPP Grid is as follows:

FirstStepA = FirstTargA / (TargYearA — IntYearA + 1) x Efficiency

Where,

-FirstStepA : Annual grid ratio increase (%) up to first target year of ADS in NPP grid,
-FirstTargA : SFR grid ratio (%) in first target year of SFR,

-IntYearA : Introduction year of SFR in NPP grid, and

-TargYearA : First target year of SFR in NPP Grid.

Annual grid ratio increase up to second target year of ADS in NPP grid is also

calculated as follows:

SecondStepA = (SecondTargA - FirstTargA) / (SecondTargYearA - TargYearA) x
Efficiency

Where,
-SecondStepA : Annual grid ratio increase (%) up to second target year of ADS in NPP grid,
-SecondTargA : ADS grid ratio (%) in second target year of ADS, and

-SecondTargYearA : Second target year of ADS.
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The grid ratio for the ADS can be described as follows:

ShareADS =0 (Year <IntYearA, or Year > SecondTargYearA )

ShareADS = Z FirstStepA (IntYearA < Year < TargYearA )
year

ShareADS = Z SecondStepA (TargYearA < Year < SecondTargYearA)
year

PWR and CANDU Reactor Grid Ratio

For the CANDU reactor grid, two cases are assumed considering the 2nd Basic Plan of
Electricity Demand and Supply which includes plant construction plans up to 2017. One
is that the CANDU reactor grid ratio remains constant after 2017. The other is that after
2017 CANDU reactor is phased out.

Finally, the PWR grid ratio will be calculated by the following equation.

SharePWR = 1 —(ShareHTGR + ShareCANDU + ShareADS + ShareSFR)

3.3.3 Material Flow Calculation

The model is designed for estimating fuel cycle service requirements form uranium
mining to final disposal. Such estimation is calculated on a yearly basis up to the year of
2100. The calculating method and the algorithm are described below in detail.

The input variables and their notations used in the model are as follows:

- Total nuclear capacity by year (NuclearCapacity (year)) (MWe)
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- Ratio of nuclear power by reactor type by year and type (ShareType (type,
year))(%) (Here, the “type” means reactor type)

- Average load factor by reactor type and year (LoadFactor (type, year)) (%)
- Average load factor by all reactor type (AvgLoadFactor) (%)
- Average thermal efficiency by reactor type and year (Efficiency (type, year)) (%)

- Average discharge burnup by reactor type and year (Burnup (type, year, ft))
(GWd/MtU) (Here, the “ft” means fuel type, and it is assumed that PWR fuel has

different-typed burnup and initial enrichment)

- Consumption ratio of heavy metal during burning in reactor (ConsumpRate (type,
year, ft) (%)

- Reprocessing ratio by reactor type, year and fuel type (Reprocessing (type, year,
ft)) (%)

- Initial fissile content in fresh fuel by reactor type, year and fuel type (Enrichment
(type, year, ft)) (wt %)

- SFR type (TypeSFR): 1 for blanket type SFR (150MW type KALIMER), 1 for no
blanket type SFR (600MW KALIER)

- Average enrichment tails assay by year (TailsAssay (year)) (wt%)

- Process loss coefficients by year (EnrichLoss (type, ft), FabLoss (type, ft),
ReproLoss (type, ft), ConvLoss (type, ft)) (%)

Using the above input parameters, the followings can be calculated year by year and

reactor type by reactor type.

- Total Power Capacity (year) = Total Power Generation (year) / AvglLoadFactor,
where, the Total Power Generation comes from the FORECAST module.
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Power Capacity (type, year) = ShareType (year, type) X Total Power Capacity
(year)

Annual fresh fuel requirements (type, year, ft) (ton)

= Power Capacity (type, year) X 365 X (LoadFactor (type, year) /
((Efficiency (type, year)

X Burnup (type, year, ft) X 1000)
Annual spent fuel arisings (type, year, ft)
= Annual fresh fuel requirements (ton) X (1-ComsumpRatio (type, year, ft))
Annual fuel fabrication requirement (type, year, ft) (ton)
= Annual fresh fuel requirements (type, year, ft) / (1- FabLoss (type, ft))
Annual Enrichment Requirement (type, year, ft) (SWU)

= EnProduct (type, year, ft) X V, + EnTail (type, year, ft) X V; — EnFeed
(type, year, ft) X V¢

Where,
EnProduct = mass of uranium to be charged in the fuel fabrication facility,

EnFeed = mass of uranium feed in enrichment plant (and output of

conversion plant), and

EnTail = mass of uranium discharged from the enrichment plant (i.e.,

depleted uranium).
Where, V, is expressed as follows;

ex
(1-ey)
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where x is the subscript for f, p or t,

e, = fraction of 25U in the uranium feed,

e, = fraction of **°U in the tails, and

er= fraction of *’U of uranium to be charged in enrichment plant.

(ep—e)
(ef —e)

Then, EnFeed = EnProduct X and EnTail = EnFeed / (1-

ReproLoss(type, ft)) — EnProduct.

If EnProduct and three fractions of the *°U in enrichment plant are known,

then the SWU (Separated Work Unit) as well as EnFeed and EnTail can be

calculated from the above equations.
Annual Conversion Requirement (type, year, ft) (ton)
= EnFeed (type, year, ft) / (1- ConvLoss (type, ft))

Annual Natural Uranium Requirement (type, year, ft) (Mt-U;Og)

U;04

= Annual Conversion Requirement (type, year, ft) X where

U,

WU}O%/VU is the weight fraction of uranium in the uranium resources
3

(U30g).

Interim Storage Requirement of Spent Fuel (type, year)

= Spent Fuel Accumulation (type, year) — z Spent Fuel Storage Pool

year

Capacity (type, year)
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- Spent Fuel Accumulation (year, type)
= Z Spent Fuel Arisings (type, year) - z Reprocessing Amount (type,
year year
year)
- Spent Fuel Storage Pool Capacity (type, year)
= Existing Spent Fuel Pool Capacity (type) (Year <2004)

= Annual Spent Fuel Arisings (type, year) X Pool Reserve Years (type, year)
(2004 < Year)

- Reprocessing Requirement

PWR Reprocessing Requirement = Repro. amount for MOX(year) + Repro.
amount for SFR (year) + Repro. amount for ADS(year)

Unloaded spent fuel can be either reprocessed or disposed of directly, depending on
types of reactor and fuel, as well as the strategy considered. For example, it is assumed
that the CANDU spent fuel is not reprocessed, while the ADS and the SFR fuels are
multiple-recycled. The PWR spent fuel can be also reprocessed and reused.

Concerning the lead and lag time, all actions are performed next step one year before.
For example, the fuel fabrication is done one year before loading in a reactor and

reprocessing is also carried out one year before fuel fabrication.
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Chapter 4 Description of Interface

As shown in Fig. 2, the FAST, based on the nuclear power generation data from the
FORECAST, estimates quantity requirements for each nuclear fuel cycle step and
calculates material flows for various nuclear fuel cycles. As a computational simulation
tool, the FAST has several advantages. First, it has a logistics function which links the
code to the FORECAST, a program that projects a future nuclear energy need in Korea
and whose output is transferred automatically to the FAST. Second, the FAST employs
a MS Excel spread sheet with the Visual Basic Application. Such an application allows
users manipulate the program very easily. The speed of the calculation is also quick
enough to make comparisons among different options in a considerably short time. The
Fast can also be used by non-nuclear fuel specialists putting only a few basic data and
develop different energy scenarios.

The FAST code has one input sheet for FORECAST model and three input sheets for
FAST model : Scenario sheet, Reactor sheet and Fuel sheet. Each sheet is explained
below.

4.1 FORECAST Sheet

The Fig. 16 shows the main sheet of the FORECAST for projecting the nuclear
electricity generation. In the upper part of the sheet, users can input an asymptotic
electricity demand per capita and a base year. There are three options that the users
could choose for the asymptotic electricity demand per capita: low, reference and high.
In the down part of the sheet, nuclear electricity market share of the base year, halving
time and a targeted market share of nuclear power are chosen. An average load factor is
used to calculate the capacity of the nuclear. Given above data and historical data such
as per capita electricity demand, total electricity generation, national population and
nuclear electricity generation, coefficients described in Equation 1, 4 and 5 are
calculated automatically by the regression analysis, and then the projections for per
capita electricity demand, total electricity generation, national population and nuclear

electricity generation are calculated.
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Fig. 16 Illustration of FORECAST Main Sheet

4.2 Scenario Sheet

The scenario sheet, shown in Fig. 17, considers two sets of scenarios: the level of

nuclear power generation and the reactor type mixtures.

The Power Gen. Scenario, which is in the combo box of the left side, uses the projection
data of the nuclear power generation calculated from FORECAST. Users can choose
one of the three options for the nuclear power generation scenario in Korea: low,
reference and high. In the Reactor Strategies box, a reactor mix can be chosen. The total
of 11 scenarios, which are generated from the combination of PWR, CANDU, HTGR,
SFR and ADS, are considered in the FAST. As shown in the Fig. 17, these 11 scenarios

are categorized into four clusters: the once-through cycle, the MOX thermal recycle,
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SFR and ADS related cycles. The once-through cycle covers scenario groups 1 through
3 while the MOX thermal recycle covers Group 4. As for the SFR, the FAST considers
both 150MW KALIMER type, which uses several different blanket fuels and 600MW
KALIMER type, which uses only driving fuel without any blanket fuels.

Other input cells in the Scenario Sheet are for the calculation of each reactor grid by the
method described in section 3.3.2. After taking the two main input parameters above,
the “Enter” button should be pressed for inputting further data. When the button is
pressed, the color of the input cells in the three input sheets is changed into green. If all
the data were given appropriately in the green cell boxes, outputs are automatically
calculated, which can be obtained from the drop down menu of the “Simulation

Results” in the upper line.
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Fig. 17 Illustration of Scenario Sheet
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The average plant load factor on the right upper side is to induce nuclear power capacity
from the nuclear power generation which calculates in the FORECAST.

4.3 Reactor Sheet

As shown in Fig. 18, the Reactor Sheet includes input parameters related to reactor
information such as load factors, burnup, efficiency and pool capacity. There are also
specific SFR and ADS information sections in the middle of the sheet since the SFR and

the ADS are required more reactor information.

As for the SFR, if the I50MW KALIMER type is chosen in the Scenario Sheet, the
number of fuel assembly of each fuel type and their power fraction are needed for the
calculation of the average weighted burnup. As for the ADS, there are TRU
(transuranium) fuel and target fuel made by technetium and iodine. Users have to put
other information such as TRU fuel and target fuel weight per core and TRU
contribution ratio of thermal power.

For a CANDU reactor, the plant life time is required because CANDU reactors are
phased out except for scenario group 1.

mhsh  gEW A 0] IeBEith A B Pl e, o sma Apeens

1
Db el B ek SRR An T T e E o7 35 L [RE] e 1 UL =! it i, 0 NN N |
wi B B -5 R .y mi
i
= Bt il B il 134 :ILIII-..IH-ﬂ
] Fap CMMEpD  JFR  ADE  RETOE AT (L1 S v,
" THE R [ ek | Lo | Bo.oE | oo 0w IurI'I::r#I-t:m-ll-r--'n'lh-.-m
: s UL?"E;IIHH.I-'.E;mlﬁ. 2 L .|.|'I = - 'r!‘llln':-l L rl‘-!l:'lb""l-ml e

1 T - i 33 T
= W T 3.8 I'-'" T T '_"'. (N -!Hl_ T W T ||| I -:l T T
4 EEE hlsmisison AL Biluriiialei
En Wimde r1 Funl Trps M0 IWS N Fami wwielil el amrn | amis
md i ema 11 TSN ml W S 1.l I TN Ea b L L
= imiwrwal bianksi] T I_."::“"_
i imdiah binsker) 1AL 8 1 | E i
b Fowmy fracticsm fa 1 I=CEEs | O 'l_l-"l'l'll'
b imimrmal fisnke II'I ﬁ{l!'!- _-ﬁ'l'n-l
a0 veediml Eeimrden ] O ERE] | DR
21 i bk OB of n».|_ - b Pt Piml Serposdsfal | ks
=4 radial Bilmbai CE: & PR L 3
¥ ek B FEN Sopen iboaiica Bed e | (L)
ﬁ Poramy Traas ioad 0,080 | 00, e of Thermu| Poser Fes MTH
an My Hlmsked Fred Trpeesd By
& o AN of S0EEs S IR
i
] Tt TEE Zi Lilg mur
b ol Py sJimen u = IETOENL TR 1
; | [T kw24 )

Fig. 18 Illustration of Plant Sheet

40



KAERI/TR-3005/2005

4.4 Fuel Sheet

The Fuel Sheet, as shown in Fig. 19, deals with information on fresh fuels and spent
fuels of each reactor type. In addition, process losses in various steps, which are in the
down part of this sheet, are put in this sheet. The fuel contents consist of Pu, U , U,
MA, Tc, I which are put with unit of weight percent of heavy metal. On the right side,
there is a heavy metal consumption rate which means burning amount of each fuel in
reactors.

o 4 drvrersl e S v 6 Beferroes el o 5 besbeps ol W H 0 wmiaE 0 i s BT - mEFR

Kl

| 3 | Fown Funi Ryt Fusd

[ 4 N row ok Pl i Pcimam womd 5TFEIS PRER (IR [r——
BB k = g
R T A T e [PRTo e Ta v Tamala i ww Tom
BN L 1S R N——" PR (OGRAR |

|28 1

| bE )

[ 12 8 o st vt e e TR TR

| 13 = : L 8 tt

ETE In o mae UL |1.$ﬁ|u.-|u'-5|l.1n|l'.“|-.7- i!n
B

16 0 9% 1 e B, 1 i iy PR AT

| 17 Fids ik Tl i ¥ Ba b4 Ea Tew I o

8l [ noom [ ness [ nms | pom | nom mmie]| [l aom o] e s m e il.-
T.! TR (Pialid lasber, |4 378 M LR

|- 0 | Lk Tl I w R T AN AR

FiR Bu  IHA4 Bi Tew  Em U

r_fj EFE: (ko Wi, |5 AR R LR ARCE BN RN D i 1.m
E: h s 1y Tom i ¥

Sl [ [ nmes | nome | poooss | Do | Dmmar T e T

B L Bu @ W T GiW W

ES ra [iTen ik Tom = ¥ i w
|57 Morm | Goms | omes | Gomes | oo | e |

| | T (e Mk | T TR

B ] 0o Pt ret ponerasumn M DB ML T nm U [
| 32 |

Lzl Wik Takd [IE ] w [ oo | o oo | noomsa] o] = m o
T | nrm | oTEm

| vma | woam | opme

t i % TIE Rkl Flakaa 10 FTUISE (M
. P = L} L § o
i T T T
E I
li_': IR vy Plaalien, | 2 £ (16§
-3 [ ST Px Y MA TR Om O
Bl
f{ PR (T P, B SGEALET

: P i | 1] o
£ EENET O T R R e i A
:':1- W|T o 2

I | L) i LiF ]

!"'E [ IEECIEEC A R [T i :.-_
= s

: Pu A HA TS WO

50| [ o wms [ sia] i) v [ e in.n
BN R ]

| 52 FEL .= Ch SMEN)  IFRLG AN HTGRE

Bl B L (R X

(LY e i.a o

EE B Pabosincal W | o [N} wax | m um]|

E_:_'l Fap ey !.n Lm | Lm |1 1

Fig. 19 Illustration of Fuel Sheet

41



KAERI/TR-3005/2005

Chapter 5 Example of Applications

The following simulations have been performed for several different reactors and fuel
cycle options by using the FAST. It should be noted that these results are only given as
examples of how to use the model. Since the software has not yet reached the testing
and benchmarking stage. However, there is an indirect testing method for this code.
That is to compare the simulation data on spent fuel arisings with historical data. Fig. 20
shows the result of the FAST code simulation on spent fuel arisings for Scenario Group
1. The dot mark in this figure means the real data on spent fuels generated in Korea
from 1978 to 2000. As seen in this figure, the simulation results are nearly consistent
with the real data.
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Fig. 20 Comparison of Simulation Results with Real Data on Spent Fuel Arisings

in Korea
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5.1 Nuclear Electricity Generation from FORECAST

In this section, nuclear electricity generation is projected by the use of the FORECAST.
First, the per capita electricity demand (kWh/man/year) is estimated with three options
(low, reference, high) and then the share of electricity is calculated using the logistics

curve. The inputs used in this case study are as follows.
5.1.1 Input Data
*  Assumed asymptote to which per capita demand trend
-Low : 10,000kWh/man/year
-Reference : 11,000kWh/man/year
-High : 13,000kWh/man/year
* Base year: 2017

* Historical and future population : used the database of Korea National Statistical
Office [12]

*  The nuclear share of total electricity generation in the base year : 46.7% in 2017 [11]

* An asymptote to which the nuclear share of total electricity generation trends : 60%

For the nuclear electricity data, up to 2003, the historical data was used, while form
2004 to 2017 the 2nd Basic Plan of Electricity Demand and Supply which includes

plant construction plans up to 2017 was used.
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5.1.2 Output

The outputs of the FORECAST are shown in From Fig. 21 to Fig 24.
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5.2 Scenario Group 1
5.2.1 Scenario Parameters (PWR + CANDU)

Scenario Group 1 is the once-through cycle with the PWRs and the CANDU reactors,
and after 2017, the CANDU reactor grid ratio remains constant. Reference Scenario for

nuclear electricity generation is used in example cases.
5.2.2 Reactor Parameters

*  Load factor: Up to 2003, the historical data were used. After 2004, 85% for the PWR
and 90% for the CANDU were assumed.

* Efficiency : PWR 34%, CANDU 33%

PWR discharge burnup :

-1978 ~ 1984 : 33 GWd/MTU

-1985 ~ 1995 : 40 GWd/MTU

-1995 ~ 2015 : 43 GWd/MTU

-2016 ~ : 50 GWd/MTU

* CANDU discharge burnup : 75 GWd/MTU

*  Pool capacity : Up to 2003, the historical data were used. After 2004, storage pools of
PWR can employ spent fuels generated for 15 years and storage pools of CANDU can

employ spent fuels generated for 10 years.

5.2.3 Fuel Parameters

e Initial enrichment of the PWR fuels

33GWd/tHM | 40GWd/tHM | 43GWd/tHM | 50GWd/MtHM)
3.3% 3.8% 4.0% 4.3%
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e Initial enrichment of the CANDU fuel : 0.71%

*  Spent fuel contents

PWR (33GWd/tHM) Heavy Metal
Consumption

Pu U235 MA Tc99 1129 U rate

1.02% | 0.92% | 0.11% | 0.082% | 0.018% | 92.1% 1.5%
PWR (40GWd/tHM)

Pu U235 MA Tc99 1129 U

1.13% | 0.93% | 0.14% | 0.098% | 0.022% | 89.1% 2.0%
PWR (43GWd/tHM)

Pu U235 MA Tc99 1129 U

1.17% | 0.92% | 0.15% | 0.104% | 0.024% | 88.0% 2.5%
PWR (50GWd/tHM)

Pu U235 MA Tc99 1129 U

1.27% | 0.83% | 0.17% | 0.120% | 0.028% | 85.1% 3.0%
HWR (7.5GWd/tHM)

Pu U235 MA Tc99 1129 U

0.38% | 0.22% | 0.01% | 0.019% | 0.004% | 98.5% 1.0%

* Loss factors

PWR CANDU

Conversion 0.5% 0.5%

Enrichment 1.0%

Fabrication 0.5% 0.5%

e Enrichment : natural U of 0.71% and enrichment tail of 0.25% were assumed.
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5.2.4 Outputs
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Fig. 25 Reactor Mix Ratio of Scenario Group 1
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Fig. 26 Nuclear Power Plant Capacity of Scenario Group 1
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Fig. 27 Annual Fuel Fabrication Requirement of Scenario Group 1
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Fig. 32 Accumulated Tc-99 Embedded in Spent Fuels of Scenario Group 1
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Fig. 33 Accumulated I-129 Embedded in Spent Fuels of Scenario Group 1
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Fig. 34 Enrichment Requirement of Scenario Group 1
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Fig. 37 Mining and Milling Requirement of Scenario Group 1
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5.3 Scenario Group 2
5.3.1 Scenario Parameters (PWR + CANDU)

Scenario Group 2 is the same as Group 1 except that after 2017 CANDU reactor is
phased out.

5.3.2 Reactor Parameters

* Load factor and efficiency of the reactor, fuel discharge burnup and pool capacity are

the same as those of the Scenario Group 1.

*  For this group, the lifetime of the CANDU reactors is needed because the CANDU
reactors are phased out. The 40 years of lifetime for all CANDU reactors are assumed

in this case study.
5.3.3 Fud Parameters

* Initial enrichment of fuel, fuel content and enrichment parameters are the same as

those of the Scenario Group 1.
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5.3.4 Outputs
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Fig. 38 Reactor Mix Ratio of Scenario Group 2
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Fig. 39 Nuclear Power Plant Capacity of Scenario Group 2
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Fig. 42 Accumulated Interim Storage Requirement of Scenario Group 2
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5.4 Scenario Group 3
5.4.1 Scenario Parameters (PWR + CANDU + HTGR)

Scenario Group 3 is the once-through cycle with the PWR and CANDU and the HTGR.
The HTGR uses both of hydrogen production and electricity generation. It is assumed
that after 2015, CANDU reactors are phased out and no more constructed up to 2100. It
is also assumed that the HTGR is introduced from 2020 and their capacity is expanded
up to 25GWth by 2050 and 50 GWth by 2100.

5.4.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are the same as those of the Scenario Group
2.

* Load factor of HTGR : 80%
*  Thermal efficiency of HTGR : 45%

*  Power generation fraction of HTGR : 39%. (The remaining (41%) of thermal out will
be used for hydrogen production.)

* HTGR discharge burnup : 200 GWd/MTU

*  Pool capacity : The storage pool of HTGR can employ spent fuels generated for 10

years.
5.4.3 Fuel Parameters
*  Fuel parameters for PWR and CANDU are the same as those of the Scenario Group 2.
* Initial enrichment of HTGR : 15%

*  Spent fuel contents

HTGR (200GWd/tHM) Heavy Metal
Consumption

Pu U235 | MA Tc99 1129 U rate
0.90% | 1.10% | 0.10% | 0.100% | 0.100% | 99.0% 5.0%
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Loss factors

HTGR
Conversion 0.5%
Enrichment 1.0%
Fabrication 0.5%
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Enrichment : natural U of 0.71% and enrichment tail of 0.25% were assumed.
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5.4.4 Outputs
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Fig. 51 Reactor Mix Ratio of Scenario Group 3
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Fig. 58 Accumulated Tc-99 Embedded in Spent Fuels of Scenario Group 3
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5.5 Scenario Group 4
5.5.1 Scenario Parameters (PWR (M OX) + CANDU)

Scenario Group 4 is the thermal recycle system in which PWR spent fuel is wet-
reprocessed and reused as MOX fuel in existing PWRs. The MOX fuel is made by use
of depleted U and reprocessed Pu. After 2017, CANDU reactors are gradually phased
out. It is assumed that the MOX fuel is introduced from 2020 and the core ratio of MOX
fuel is 15%. The reprocessing of PWR spent fuels and MOX fuel fabrication will start
from 2018 and 2019, respectively.

5.5.2 Reactor Parameters

*  Reactor parameters for the PWR and the CANDU are the same as those of the Scenario
Group 2.

5.5.3 Fuel Parameters

*  Fuel parameters for LEU of PWR and CANDU are the same as those of the Scenario
Group 2.

¢ Fresh MOX Fuel Content

Pu U235 MA Tc99 1129 DepU
5.0% 0.25% 0.0% 0.0% 0.0% 95.0%
Spent MOX Fuel Contents
Pu U235 MA Tc99 1129 Consumption rate
3.60% | 0.10% | 0.45% | 0.116% | 0.034% | 56.5% 3.0%
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5.5.4 Outputs
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Fig. 64 Reactor Mix Ratio of Scenario Group 4
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5.6.1 Scenario Parameters (PWR + CANDU + SFR)

Scenario Group 5 is including the SFR system in which the spent SFR fuel is also

reprocessed and continuously recycled in SFRs. PWR spent fuel is also reprocessed and

reused in SFRs according to the balance of the plutonium production in SFR. The
blanket fuel in the SFR in which the blanket fuel is made by depleted uranium is

optional. In this case study, it is assumed that only driver fuel is used which means the

power capacity of 600 MWe.

It is also assumed that the SFR is introduced from 2030 and its grid ratio is expanded up
to 6% by 2050 and 30 % by 2100.

5.6.2 Reactor Parameters

* Reactor parameters for PWR and CANDU are the same as those of the group 2.

e Load factor of SFR : 80%

*  Thermal efficiency of SFR : 40%

*  Pool capacity : The storage pool of SFR can employ spent fuels generated for 10 years.

¢ Blanket Fuel Type (150MW)

blanket driver
Average burnup (GWd/tU) of 150MWe SFR 15.63 87.60
Burnup internal blanket 17.9
radial blanket 14.5
Average power fraction 0.061 0.939
Power fraction for 150MWe SFR BOC EOC
internal blanket 0.055 0.104
Power fraction radial blanket 0.041 0.063
internal blanket(No. of FA) 24
radial blanket(No. of FA) 48
blanket driver
Average power fraction 0.061 0.939
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The average burnup and power fraction are calculated considering the ratio of the

number of each fuel assembly.

Burnup of 600MWe SFR : 66.63 GWd/tU

5.6.3 Fuel Parameters

Fuel parameters for PWR and CANDU are the same as those of the Scenario Group.

Fresh SFR fuel content : The average content is calculated considering the ratio of the

number of each fuel assembly.

SFR (Inner Blanket,17.9GWd/MtHM)
Pu U235 MA Tc99 1129 U
0.000% 0.250% 0.000% 0.000% 0.000% | 100.000%
SFR (Radial Blanket,14.5GWd/MtHM)
Pu U235 MA Tc99 1129 U
0.000% 0.250% 0.000% 0.000% 0.000% | 100.000%
SFR (Avg. Blanket,15.63GWd/MtHM)
Pu U235 MA Tc99 1129 U
0.000% 0.250% 0.000% 0.000% 0.000% | 100.000%
SFR (Drive Fuel, 87.6GWd/MtHM)
Pu U235 MA Tc99 1129 U
28.277% 0.078% 0.893% 0.084% 0.019% | 70.830%
Spent SFR fuel contents
SFR (Inner Blanket,17.9GWd/MtHM)
Pu U235 MA Tc99 1129 U Consump. rate
3.18% | 0.14% | 0.02% | 0.029% | 0.007% | 96.8% 3.0%
SFR (Radial Blanket,14.5GWd/MtHM)
Pu U235 MA Tc99 1129 U Consump. rate
2.61% | 0.15% | 0.01% | 0.019% | 0.004% | 97.4% 3.0%
SFR (Avg. Blanket,15.63GWd/MtHM)
Pu U235 MA Tc99 1129 U Consump. rate
2.800% | 0.146% | 0.013% | 0.022% | 0.005% | 97.2% 3.000%
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SFR (Drive Fuel, 87.6GWd/MtHM)

Pu U235 MA Tc99 1129 U Consump. rate

27.47% | 0.07% 0.90% | 0.170% | 0.039% | 71.6% 3.1%
Loss factor
PWR CANDU SFR(B) SFR(D)

Conversion 0.5% 0.5%

Enrichment 1.0%

Fabrication 0.5% 0.5% 0.5% 1.0%
Reprocessing 1.0% 1.0% 1.0%
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5.6.4 Outputs
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5.7 Scenario Group 6
5.7.1 Scenario Parameters (PWR + CANDU + HTGR + SFR)

Scenario Group 6 is similar to Scenario Group 5 except that the Scenario Group 6 has
the HTGR in its grid. The PWR spent fuel is reprocessed and reused in SFRs. The spent
SFR fuel is also reprocessed and continuously recycled in SFRs. It is assumed that the
SFR is introduced from 2030 and its grid ratio is expanded up to 6% by 2050 and 30 %
by 2100.

The HTGR uses both of hydrogen production and electricity generation. It is assumed
that the HTGR is introduced from 2020 and their capacity is expanded up to 25GWth by
2050 and 50 GWth by 2100.

5.7.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are the same as those of the Scenario Group
2.

*  Reactor parameters for SFR are the same as those of the Scenario Group 5.

* Reactor parameters for HTGR are the same as those of the Scenario Group 3.
5.7.3 Fuel Parameters

*  Fuel parameters for PWR and CANDU are the same as the Scenario Group 2.

*  Fuel parameters for SFR are the same as the Scenario Group 5.

*  Fuel parameters for HTGR are the same as the Scenario Group 3.
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5.7.4 Outputs
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5.8 Scenario Group 7
5.8.1 Scenario Parameters (PWR + CANDU + ADS + SFR)

Scenario Group 7 is the recycle system including transmutation of actinide and long-
lived fission product in which the PWR spent fuel is reprocessed and reused in SFRs
and/or ADSs. The spent SFR fuel is reprocessed and continuously recycled in SFRs.
The long-lived fission products, Tc and I, from the PWR and the SFR spent fuel are

fabricated as a target fuel and transmuted in the ADS.

The Scenario parameters for the SFR are the same as the Scenario Group 5 and 6. It is
assumed that the ADS is introduced from 2040 and its grid ratio is expanded up to 10%
by 2070 and 20 % by 2100.

5.8.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are the same as those of the Scenario Group
2.

*  Reactor parameters for ADS are the same as those of the Scenario Group 5 and 6.

* Load factor of ADS : 80%

*  Thermal efficiency of ADS : 40%

*  Pool capacity : The storage pool of ADS can employ spent fuels generated for 10 years.

e ADS Reactor Information

Fuel weight(kgHM/core) 3,831

Target fuel weight(kg/core) T 129
663 199

Target fuel ratio 17.31% 5.19%

Annual burnup(a/o) of target fuel 5.92% 4.86%

Total Fuel Burnup(a/o) 20.00%

TRU contribution ratio of thermal power for ADS 98%
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5.8.3 Fuel Parameters

number of each fuel assembly.

KAERI/TR-3005/2005

Fuel parameters for PWR and CANDU are the same as those of the Scenario Group 2.
Fuel parameters for SFR are the same as those of the Scenario Group 5 and 6.

Fresh ADS fuel content : The average content is calculated considering the ratio of the

ADS Fresh Fuel (200GWd/MtHM)

Pu

U235 MA

Tc99

1129 U

74.69%

0.13% 13.60%

17.31%

5.19% 11.71%

number of each fuel assembly.

Spent SFR fuel contents: The average content is calculated considering the ratio of the

Pu U235 MA Tc99 1129 U Consumption rate
72.00% 0.16% | 14.34% | 0.100% | 0.100% | 13.63% 20.0%
Loss factors
PWR CANDU SFR(B) SFR(D) | ADS | HTGR
Conversion 0.5% 0.5% 0.5%
Enrichment 1.0% 1.0%
Fabrication 0.5% 0.5% 0.5% 1.0% 0.4% | 0.5%
Reprocessing 1.0% 1.0% 1.0% 1.0%
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5.8.4 Outputs
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5.9 Scenario Group 8

5.9.1 Scenario Parameters (PWR + CANDU + ADS)

Scenario Group 8 is the same as the Scenario Group 7 except that there is no SFR in this
system. PWR spent fuel is reprocessed and reused in ADSs. Spent fuel from the ADS is
continuously recycled in ADSs. The Tc and I generated from the PWR are fabricated as

a target fuel and transmuted in ADS

It is assumed that the ADS is introduced from 2040 and its grid ratio is expanded up to
10% by 2070 and 20 % by 2100.

5.9.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are those of the same as the Scenario Group
2.

¢ Reactor parameters for ADS are the same as those of the Scenario Group 7.
5.9.3 Fuel Parameters
*  Fuel parameters for PWR and CANDU are those of the same as the Scenario Group 2.

*  Fuel parameters for ADS are the same as those of the Scenario Group 7.
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5.9.4 Outputs
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5.10 Scenario Group 9
5.10.1 Scenario Parameters (PWR + CANDU + HTGR + ADS)

Scenario Group 9 is the same as the Scenario Group 8 except that the HTGR is added.
PWR spent fuel is reprocessed and reused in ADSs. The spent fuel from the ADS is
continuously recycled in ADSs. Tc and I from the PWR are fabricated as a target fuel
and transmuted in ADSs. The Scenario parameters for the HTGR are the same as the

Scenario Group 3.
5.10.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are the same as those of the Scenario Group
2.

*  Reactor parameters for HTGR are the same as those of the Scenario Group 3.

*  Reactor parameters for ADS are the same as those of the Scenario Group 7 and 8.
5.10.3 Fuel Parameters

*  Fuel parameters for PWR and CANDU are the same as the Scenario Group 2.

*  Fuel parameters for HTGR are the same as the Scenario Group 3.

*  Fuel parameters for ADS are the same as the Scenario Group 7 and 8.

119



KAERI/TR-3005/2005

5.10.4 Outputs

1.000

0.900

PWR

0.800

0.700

0.600

0.500

0.400

Reactor Mix Ratio

0.300

0.200 [

0.100
ADS

0.000

1978 1988 1998 2008 2018 2028 2038 2048 2058 2068 2078 2088 2098
Year

Reactor Mix Ratio

Fig. 138 Reactor Mix Ratio of Scenario Group 9

60,000

50,000 |- total

40,000

30,000

20,000

Nuclear Power Capacity (MWe)

10,000

1978 1998 2018 2038 2058 2078 2098
Year

Nuclear Power Plant Capacity

Fig. 139 Nuclear Power Plant Capacity of Scenario Group 9

120



KAERI/TR-3005/2005

1,000

900

800

700

600 |

500 [

400

300 |

200

Annual Fuel Fabrication Requirement (ton)

target fuel for ADS

ADS \

. . = —————— b
1978 1998 2018 2038 2058 2078 2098
Year

100

Annual Fuel Fabrication Requirement

Fig. 140 Annual Fuel Fabrication Requirement of Scenario Group 9

700,000

600,000

500,000

400,000

300,000

Depleted Uranium Arising (ton)

200,000

100,000

1978 1998 2018 2038 2058 2078 2098
Year

Accumulated Depleted Uranium Arisings

Fig. 141 Accumulated Depleted Uranium Arisings of Scenario Group 9

121



KAERI/TR-3005/2005

60,000

54,000

48,000

42,000

36,000

30,000

24,000

18,000

Interim Storage Requirement (tHM)

12,000

6,000

HTGR

0

1978 1988 1998 2008 2018 2028 2038 2048 2058 2068 2078 2088 2098
Year

Accumuated Interim Storage Requirement

Fig. 142 Accumulated Interim Storage Requirement of Scenario Group 9

720

640

560

480

400

320

240

Accumulated Plutonium (ton)

160

80

0 - . = ADS
1978 1998 2018 2038 2058 2078 2098

Year

Accumuated Plutonium

Fig. 143 Accumulated Plutonium Embedded in Spent Fuels of Scenario Group 9

122



KAERI/TR-3005/2005

100

90

80

70

60

50

40

30

Accumulated Minor Actinide (ton)

20

10

7= ADS
1978 1998 2018 2038 2058 2078 2098
Year

Accumuated Minor Actinide

Fig. 144 Accumulated MA Embedded in Spent Fuels of Scenario Group 9

70,000
60,000 [
5 50,000 |-
=
o
i
e 40,000 |
°
]
]
S 30,000 |
£
35
[S]
Q
< 20,000 | reprocessed waste
amount of transmutation in ADS
0000 = NN T
0 o —————————— T IHTGR
1978 1998 2018 2038 2058 2078 2098

Accumuated Tc-99

Fig. 145 Accumulated Tc-99 Embedded in Spent Fuels of Scenario Group 9

123



KAERI/TR-3005/2005

16,000

14,000 [

12,000

10,000 [

8,000

6,000 [

Accumulated 1-129 (kg)

4.000 reprocessed waste

amount of transmutation in ADS

2,000
HTGR

1978 1998 2018 2038 2058 2078 2098
Year

Accumuated 1-129

Fig. 146 Accumulated I-129 Embedded in Spent Fuels of Scenario Group 9

15,000

13,500 |

12,000 r

10,500

9,000 |

7,500 |

6,000 |

Accumulated Uranium (ton)

4,500

3,000

1,500 |

1978 1998 2018 2038 2058 2078 2098
Year

Accumulated Reprocessed Uranium

Fig. 147 Accumulated Reprocessed Uranium of Scenario Group 9

124



Enrichment Requirement (tSWU)

Spent Fuel Arisings (MtHM)

6,000

5,000

4,000

3,000

2,000

1,000

KAERI/TR-3005/2005

total

HTGR

-

0

1978 1998 2018 2038 2058 2078 2098

Year
Enrichment Requirement
Fig. 148 Enrichment Requirement of Scenario Group 9
80,000
72,000 |
64,000 | total
56,000 |
48,000 | PWR
40,000 |
32,000 |
24,000 |
CANDU
16,000 |
8,000 |
HTGR
o : . .
1978 1998 2018 2038 2058 2078 2098
Year

Accumulated Spent Fuel Arisings

Fig. 149 Accumulated Spent Fuel Arisings of Scenario Group 9

125



KAERI/TR-3005/2005

10,000

9,000

8,000 |

total

7,000

6,000 |

5,000

4,000

3,000

Conversion Requirement (tonU)

2,000

1,000

—— e N
1978 1998 2018 2038 2058 2078 2098
Year

Conversion Requirement

Fig. 150 Conversion Requirement of Scenario Group 9

600

540

480

420

360

PWR for ADS

300

240

180

Reprocessing Requirement (tonU)

120

60

1978 1998 2018 2038 2058 2078 2098

HTGR
Year

Reprocessing Requirement

Fig. 151 Reprocessing Requirement of Scenario Group 9

126



Mining and Milling Requirement (tonU308)

KAERI/TR-3005/2005

16,000 1,000,000
14,400 [ 1 900,000 &
o)

52

12,800 | { 800000 2
Accumulated Total  wpy pot

11,200 700,000 §
£

g
9,600 600,000 3
Q

o
8,000 500,000 2
6,400 400000 =
g
4,800 300,000 £
£

=

3,200 200,000 ¢
3

8

1,600 100,000 <

0

Mining and Milling Requirement

Fig. 152 Mining and Milling Requirement of Scenario Group 9

127



KAERI/TR-3005/2005

5.11 Scenario Group 10
5.11.1 Scenario Parameters (PWR + CANDU + HTGR + SFR + ADS)

Scenario Group 10 is the mixed system including the fast recycle system by use of SFRs
and the once through system in PWRs and HTGRs. This group is the same as the
Scenario Group 7 except that this group is including the ADS system. PWR spent fuel is
reprocessed and reused in SFRs and/or ADSs. Spent fuels from the SFR and the ADS
are continuously recycled in ADSs. The Tc and I generated from PWR are fabricated as
a target fuel and transmuted in ADSs.

5.11.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are the same as those of the Scenario Group
2.

* Reactor parameters for HTGR are the same as those of the Scenario Group 3.
* Reactor parameters for SFR are the same as those of the Scenario Group 5.
*  Reactor parameters for ADS are the same as those of the Scenario Group 7.
5.11.3 Fuel Parameters
*  Fuel parameters for PWR and CANDU are the same as those of the Scenario Group 2.
*  Fuel parameters for HTGR are the same as those of the Scenario Group 3.
*  Fuel parameters for SFR are the same as those of the Scenario Group 5.

*  Fuel parameters for ADS are the same as those of the Scenario Group 7.
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5.12 Scenario Group 11
5.12.1 Scenario Parameters (PWR + CANDU + HTGR + SFR + ADS)

Scenario Group 11 is the case that all possible reactors and nuclear fuel cycles are
included. This group is the same as the Scenario Group 10 except that thermal recycle
of MOX fuel in PWR is added. This scenario is similar to double strata concept in Japan
and Europe and double tier concept in the US. The MOX fuel scenario in this group is a
little different from that of Scenario Group 4. The ending year of the MOX fuel is added.
It is assumed that the MOX fuel is used from 2020 and end in 2040. The core ratio of
MOX fuel is assumed to be 20%.

5.12.2 Reactor Parameters

*  Reactor parameters for PWR and CANDU are the same as those of the Scenario Group
2.

* Reactor parameters for HTGR are the same as those of the Scenario Group 3.
*  Reactor parameters for SFR are the same as those of the Scenario Group 5.
*  Reactor parameters for ADS are the same as those of the Scenario Group 7.
5.12.3 Fuel Parameters
*  Fuel parameters for PWR and CANDU are the same as those of the Scenario Group 2.
*  Fuel parameters for MOX are the same as those of the Scenario Group 4.
*  Fuel parameters for HTGR are the same as those of the Scenario Group 3.
*  Fuel parameters for SFR are the same as those of the Scenario Group 5.

*  Fuel parameters for ADS are the same as those of the Scenario Group 7.
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6. Conclusions

This paper describes the Nuclear Fuel Cycle Analysis and Simulation Tool (FAST)
which has been developed by the Korea Atomic Energy Research Institute (KAERI). As
described in Chapter III, the FAST categorizes various mixes of nuclear reactors and
fuel cycles into 11 scenario groups. The reactors that the FAST is taking into
consideration are the pressurized water reactor (PWR), the Canadian deuterium uranium
reactor (CANDU), the sodium fast reactor (SFR), the accelerator driven system (ADS)
and the high temperature gas cooled reactor (HTGR). The FAST then calculates all the
required quantities for each nuclear fuel cycle component, such as mining, conversion,
enrichment, fuel fabrication, interim storage and final disposal for each scenario. Such
calculation could be performed year by year or for a particular time period, up to the
year of 2100.

Compared with other simulation codes, the FAST has several advantages. First, it has a
logistics function which links the code to the FORECAST, a program that projects a
future nuclear energy need in Korea and whose output is transferred automatically to the
FAST. Such a function makes the output from the FAST much more reliable, for the

analysis is made based on the most updated nuclear energy demand.

Second, the FAST employs a MS Excel spread sheet with the Visual Basic Application.
Such an application allows users to manipulate the program with ease. The speed of the
calculation is also quick enough to make comparisons among different options in a

considerably short time.

This user-friendly simulation code now allows mass flow analysis and is being extended
to include cost and environmental aspects on it. With completion of the program, more
comprehensive analysis will be able to be made, and hopefully will contribute to the
decision making process of shaping the future nuclear fuel cycle development paths in
Korea.
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