
Informes Técnicos Ciemat 1098
Febrero, 2007

Laboratorio Nacional de Fusión por Confinamiento Magnético

Visual Data Analysis in the TJ-II
Remote Participation System

E. Sánchez
A. Portas
A. Pereira
J. Vega

 Visual Data Analysis in the TJ-II Remote Participation System

Sánchez, E.; Portas, A.; Pereira, A.; Vega, J.

 20 pp. 4 figs. 16 refs.

Abstract:
A general-purpose data visualization tool has been developed to provide the TJ-II remote participation
system with the same visualization capabilities already available in the TJ-II local environment. The
visualization software has been developed in the Java language. It provides a user-friendly graphical interface
that permits users on-demand plotting of time traces in a very flexible manner. In order to facilitate on-line
tracking of experimental operation, the application also allows automatic refreshing of data. This software
has been integrated into the TJ-II remote participation system distributed environment. Data are accessed
remotely using web technologies and HTTP protocol and are transferred in a compressed format, which
reduces bandwidth requirements. Both metadata and binary compressed data are transported in multipart
messages. Message oriented middleware software is used to distribute information on-line, in particular
notifications of data availability for automatic data refreshing or local events. Plot layouts can be stored in
a centralized database for subsequent recovery from anywhere. Finally, this software is integrated into the
general security framework provided by the PAPI system.

Análisis Visual de Datos en el Sistema de Participación Remota de TJ-II

Sánchez, E.; Portas, A.; Pereira, A.; Vega, J.

 20 pp. 4 figs. 16 refs.

Resumen:
Se ha desarrollado una herramienta de visualización de datos de propósito general para dotar al sistema de
participación remota de TJ-II de las capacidades de visualización de datos ya disponibles en el entorno local.
El software de visualización se ha desarrollado en lenguaje Java y proporciona una interfaz de usuario
amigable que permite a los usuarios visualizar bajo demanda trazas temporales de una manera muy flexible.
Para facilitar el seguimiento en directo de la operación, la aplicación proporciona también la funcionalidad
de refresco automático. Este software se ha integrado en el sistema de participación remota de TJ-II. El
acceso a los datos se realiza usando tecnologías web y el protocolo http y los datos se transfieren en un
formato comprimido para reducir las necesidades de ancho de banda en la red. Los datos binarios
comprimidos se transportan junto con meta-datos en mensajes multiparte. Para distribuir información en
directo se usa un software intermedio orientado a mensajes. En particular, se distribuyen notificaciones
acerca de la disponibilidad de datos experimentales para el refresco automático o eventos locales. El diseño
de los gráficos se puede almacenar en una base de datos centralizada para ser recuperados con
posterioridad desde cualquier parte. Finalmente, este software se integra dentro del entorno de seguridad
proporcionado por PAPI.

CLASIFICACIÓN DOE Y DESCRIPTORES

S70
TOKAMAK DEVICES; DATA ANALYSIS: REMOTE SENSING; COMPUTER OUTPUT
DEVICES; JAVA; STELLARATORS; CALIBRATION

INDEX

1. Introduction 1

2. Motivation 2

3. Software architecture 4

4. The Java Application for Signal Visualization 9

5. Summary 17

6. Acknowledgements 18

7. References 19

- 1 -

1. Introduction

TJ-II is a medium size stellarator (R = 1.5 m, a = 0.22 m, B ≤ 1.2 T) operated in the

Laboratorio Nacional de Fusion, Madrid, Spain since 1997 [1]. The Data Acquisition System

(DAQ) developed for TJ-II [2] has provided users with software tools for data storage, data

acquisition control and programming, as well as for basic data visualization within its local

area network. The acquisition of data was originally carried out with VXI and CAMAC

systems [3,4]. During machine operation all acquisition processes were commanded from a

central ALPAH/AXP Tru64 UNIX server where the acquired data were also stored in a

multilayer database MLDB [5]. In the original system the users programmed their desired

parameters for the acquisition systems through a Graphic User Interface (GUI). The DAQ

also provides users with a software tool for fast visualization of data during operation [2].

This visualization tool provides, among others, the useful feature of automatically refreshing

acquired data when a new plasma discharge takes place in TJ-II. It has been routinely used in

the TJ-II control room to follow operation since the stellarator start-up phase in 1997. Almost

the same data visualization functionalities were provided by a second application that was

developed for other computers other than the central server, thereby reducing the

consumption of server computation resources by the visualization tools [6]. However, this

application does not provide an automatic refresh feature.

In recent years the TJ-II DAQ has received some major upgrades: i. e. new

acquisition systems, based on PCI and PXI standards, were incorporated to the TJ-II DAQ

[7] and the TJ-II Remote Participation System (RPS) was designed and developed [8,9]. The

design of the RPS focused on providing tools to follow discharge production,

reading/writing information in the databases, and performing simple visual data analysis

- 2 -

from outside the laboratory. In a first step, tools for remote data acquisition programming,

remote diagnostic control and remote access to the logbook were developed.

In the present paper a recently developed general-purpose data visualization tool is

presented. It is designed to provide the TJ-II RPS with the same visualization capabilities

already available in the TJ-II local environment. The motivation, the architecture and the

characteristics of this software are described.

2. Motivation

The original visualization software included in the TJ-II DAQ [2,6] was developed in

the C programming language. It made use of the X Toolkit (Xt) and Motif (Xm) libraries,

that made this software platform dependent. In fact the visualization application is only

available for an ALPHA/UNIX platform. Two versions of the visualization application are

available. The first version is devoted to “on-line” visualization of data; it runs on the central

server and it is synchronized with the rest of acquisition tasks running in the server by means

of local inter-process communication (IPC) tools: shared memory, UNIX signals, FIFOS and

pipes [2]. Use is made of these tools to provide automatic refreshing of user-selected data

when a new plasma discharge takes place in the TJ-II device. Rapid access to the most

recently acquired data is possible because of the use of a large shared memory area in the

central server. A second visualization application was provided for visualizing data without

synchronization with central server DAQ processes. This application can be run in any

ALPHA AXP/UNIX computer. It uses the Remote Procedure Call (RPC) data access

routines [10] for reading data from the central database.

These visualization tools have been used extensively for many years and have

proved to be very flexible. However they present some drawbacks for current situation. First

- 3 -

of all, they can only be run in the ALPHA/UNIX platform; the porting of these applications

to other platforms would require a significant programming effort. Generally, GUI

applications require a lot of code lines that usually are very platform dependent; in the

present case, the GUI application for data visualization has about 30,000 of C code lines and

hundreds of calls to functions from Xt and Xm graphic libraries. Secondly, these applications

were designed to work in a local environment only. The on-line version runs on the central

computer and requires local IPC tools for synchronization with TJ-II operation. The “off-

line” version, although it does not use local IPC’s and can access data remotely, uses Open

Network Computing (ONC) RPC protocol to retrieve data that presents some problems for

use in Wide Area Networks (WAN). First, it requires an explicit access authorization to

ONC RPC ports in the institutional firewalls that sometimes is not accepted because it is

considered a non-secure protocol. On the other hand data are transported from the central

server to the client application in the machine independent but non-compressed format

External Data Representation (XDR) that implies a payload for translation. Indeed this is not

a good option for very large data transfers.

Finally, Personal Computers (PC) running MS Windows operating system have

substituted the old ALPHA AXP/UNIX workstations in the TJ-II control room. As a result

of this the possibility to use the off-line version of the application even within the local area

network is reduced.

Taking into account the limitations in current software it has become inevitable to

design new visualization software to provide remote users with almost the same basic tools

for data visualization and analysis that are available in the local environment. Now, in order

to maximize exploitation of the development effort, the newly developed tools should be

available also for the local environment, thus providing an upgrade to present tools.

- 4 -

3. Software architecture

The software has been designed following the distributed architecture of the TJ-II

RPS into which it is integrated. We can distinguish two main parts of the software, firstly the

Java Application for Signal Visualization (JASVI) that acts as a client application which can

be run in any computer in the network. This application is described in some detail in the

next section. Second a software infrastructure is installed locally to provide this application

access to data and resources for synchronization with the local environment.

The client visualization application is intended for use not only in the TJ-II local

environment, but also in remote computers connected to the Internet. Taking this into

account, it should be as multiplatform as possible. It has to be usable in Wide Area Networks

(WAN), so that the data transfer from the local environment to the client application should

be optimized for this end. It should also be taken into account that most institutions have

firewalls to preserve security. The software should be as transparent as possible to the

presence of institutional firewalls. Considering the environment for which this software is

intended, software deployment should also be as transparent as possible. Finally, because the

software can be used in many remote clients, security is an issue. Access to local resources

should be protected. Most of these requirements are the same as those imposed for the TJ-II

RPS from the design phase. Bearing in mind the remote participation environment for which

this software is developed it is worth to provide the functionality of visualizing data from

several different fusion devices simultaneously

3.1. Programming languages

To address the multiplatform requirement the visualization application has been

developed in the Java programming language, which was also chosen as the language for TJ-

II RPS applications. An important drawback of using Java is that the application

- 5 -

performance can decrease the byte code being interpreted by the Java virtual machine. This

drawback can be compensated in part by the continuously increasing calculation power of

desktop computers. In contrast, the advantage is that Java provides not only multiplatform

support but also an enormous number of libraries of already developed components. In

particular there are a lot of components that provide support for a good integration in

distributed environments using the standard protocols, Transmission Control Protocol (TCP)

and HyperText Transfer Protocol (HTTP) among others.

Some Java Server Pages (JSP) have been developed to provided access to the TJ-II

experimental data. These pages are served by Apache/Tomcat.

In addition, the C language has been used for developing a data server (DS) running

in the central database host that is in charge of the integration into, and the recovery of data

from, the central database.

3.2. Data access scheme

Access to the experimental data is performed by means of a client/server

architecture. In order to optimize network traffic, data are transferred from the server to the

client in a compressed format. The compression methods used here are the same lossless

methods used in the TJ-II MLDB [11] allowing on average savings of about 70% of the disk

space required to store data without compression that now allows us to decrease the

bandwidth necessities by the same factor. Data are directly read from the central database in

the compressed format; they are sent to the client without decompression, and are

decompressed in the client application. This also allows an enormous improvement in the

data transfer as compared to the RPC access routines that transferred the data from the server

to the client application in XDR format without compression.

- 6 -

A server program (DS) has been

developed in C language to read the data

from the central TJ-II database. This server

uses Berkeley sockets for communications

and sends/receives data in a compressed

format. Data are accessed from the client

visualization application (see next section)

through a Java Server Page (JSP) served by

Apache/Tomcat. This JSP page executes a

client component that calls the data from the

central database. The communication

between this client JSP page (Java) and the

server (C program) is carried out using

Berkeley sockets Application program

Interface (API). Data are packed into a multip

(MIME) message and sent forward from the web

protocol. The first part of the message contains th

(XML) format, describing the acquisition condi

The second (binary) part of the message carries

Use is made of the JavaMail API to manage M

client visualization application. A schematic vie

Fig. 1.

The use of HTTP protocol for data acc

make easier passing through institutional firewa

 CIEMAT LAN

Client computer

DAQ
web Server

Apache + Tomcat
HTTP port 80
 DAQ Central server

ALPHA Tru64 UNIX

TJ-II MLDB

Co
m

pr
es

se
d

da
ta

Data
server

DAQ JMS Server

OpenJMS + Tomcat
HTTP port 80

 Event
notifications

JSP page

Data
client

MIME message:
 - XML Header
 - Compressed data

Figure 1. Schematic view of the data access
architecture

art Multipurpose Internet Mail Extensions

 server to the client application using HTTP

e metadata in eXtensible Markup Language

tions of the data, number of data, and so on.

 the actual samples in a compressed format.

IME messages both in the JSP and in the

w of the data access architecture is show in

ess and the web server running on port 80

lls. Both HTTP protocol and port 80 use to

- 7 -

have allowed access in the firewalls so that it is not necessary to define new firewall rules,

neither in the client institution nor in the local one.

3.3. Synchronization with local environment.

Synchronization with local acquisition processes is an important feature that aids

users to follow the routine operation of the TJ-II device. Indeed this feature was present in

the visualization software available in the local environment. Now for the tools described

here the Message Oriented Middleware (MOM) software recently introduced in the TJ-II

RPS [12] is used. OpenJMS [13] is used as the messaging broker. Local events are sent to

client applications that receive notifications by means of the Java Message Service (JMS)

API [14]. Automatic refreshing of data, when a new plasma discharge occurs in TJ-II is

implemented in the visualization application by taking advantage of this software.

Notifications about the start and the end of a new TJ-II discharge are also distributed to the

visualization application by means of the JMS middleware.

3.4. Multi-site access.

The functionality of visualizing data from several different fusion devices

simultaneously has been implemented by means of a plug-in architecture. This allows us to

maintain a common kernel in the visualization application while dynamically adding

different plug-ins that provide specific resources to obtain data and notifications from

different devices (data sources).

All the interactions between the visualization application and the TJ-II local

environment are implemented through a plug-in that is also loaded from the TJ-II web

server. This plug-in provides the tools for calling experimental data, decompressing them

and subscribing for receiving event notifications.

- 8 -

The interaction between the visualization application and the plug-in is implemented

through two interfaces: JasviDataSource and JasviMainApp. The JasviDataSource interface

defines the methods that a data plug-in has to provide in order to be “pluggable” into the

JASVI application. The second interface (JasviMainApp) defines the methods in the main

application that are exposed and can be called from a data plug-in to interact with the

visualization application. A Tj2DataSource class implementing the JasviDataSource

interface has been created for the TJ-II connection plug-in. It implements the methods related

to the services provided by the plug-in for the main application: to read the list of time

signals that are defined in the TJ-II database for which data are acquired routinely, to read

the number of the last TJ-II shot and to request the data acquired by a signal in a plasma

discharge. The plug-in automatically connects to the TJ-II JMS services in order to subscribe

and receive local event notifications (shot start, shot end and data availability). The number

of the last shot carried out can be updated synchronously by an interface method that reads it

from a JSP page and also asynchronously by the JMS services.

The JasviMainApp interface defines several methods: firstly there are two methods

that allow the data plug-in to send the main application notifications about data availability

for automatic refreshing and send it previously requested datasets for plotting. In addition,

several methods allow the plug-in to query the main application about disk cache settings:

availability, cache directory name, and maximum cache size. Finally, another method allows

the plug-in to send information messages concerning received notifications or errors

occurred in the plug-in code to the main application for display in the log window.

Interaction with other fusion environments can be implemented by means of

different plug-ins, while maintaining the same application kernel.

- 9 -

3.5. Software deployment and security

The application described in this paper is downloaded from a web page in the TJ-II

web server using Java Network Launching Protocol (JNLP) [15] that facilitates its updating

when needed. Also, in this way the user always executes the latest version that is available.

As many remote users can potentially use the visualization software application, it is

essential that all accesses are secure. This is warranted by the PAPI system [16] by using also

the extensions for Java applications provided by the PAPI development group. Only

Authenticated and authorized users can execute the visualization application. Data access is

also protected by PAPI and only authenticated users can access TJ-II data.

4. The Java Application for Signal Visualization

The Java application for signal visualization is a software application that allows

users to visualize experimental time traces in a user friendly GUI. In addition, it provides

both remote and local users with the same, and increased functionalities than were available

with the previous local visualization tools. It should be noted that more than 90% of the

experimental signals acquired in TJ-II are time traces, this is the reason why the visualization

software has focused first on providing tools for visualization of these kind of data.

A minimal visualization application was developed when the MOM software was

implanted into the RPS [12] to provide users with a tool for remote visualization of pre-

selected time traces. It provided a minimal set of features that have been greatly extended

and improved. In this previous application, data were sent to the client visualization software

by using the MOM software. This scheme has been abandoned and a new on-demand

scheme has been implemented here that is much more flexible and better suited. In the

present application, data are always called from the visualization application either as a

consequence of a user action or automatically after an event reception (see below).

- 10 -

In the next subsections the main characteristics of the visualization application are

described in detail.

4.1. A user friendly Graphic User Interface

The application has been designed to provide users with a tool for very flexible

visual analysis of time traces, while allowing them to change most of the visualization

settings by simple mouse actions. Data plots can be distributed in a non-limited number of

visualization windows, each of which contains a set of visualization areas distributed in rows

and columns into the time traces can be plotted. Moreover, several time traces can be

visualized in the same area simultaneously. For this the time traces share x and y axis while

different offset values and amplification factors can be individually applied to each signal

instance. A legend can be displayed also in each area. It provides the user with the data

source from which the data came (e.g. TJ-II), the signal name, the amplification factor and

the offset applied. In addition, a log window shows information about the result of user-

required actions, errors as well as notification of events received asynchronously from

different data sources to which the application can be connected.

In order to aid the user in customizing the visualization environment the visualization

areas can be copied and pasted into other areas and plot windows can be cloned to facilitate

the composition of a user-adapted framework. When copying an area and pasting it into

another, all the signal visualization instances from the first area are added to the destination

area while maintaining the destination area attributes (i.e., axis, grid, legend, labels, margins,

ticks and background color styles).

Next, all the visualization settings selected by a user can be stored thereby allowing

the user to recover the visualization status from the previous visualization session, thereby

saving on the time and effort necessary to customize a user environment again. These plot

- 11 -

layouts settings can be stored in local files (in the client computer) or in the TJ-II web server

for posterior recovery from anywhere. User data stored in the web server are PAPI protected

and limited in size. The number of different plot configurations stored in the web server is

also limited. The plot settings are stored in XML format thus allowing the portability

between different computing platforms. Figure 2. shows the JASVI GUI with a visualization

session containing a window with four visualization areas and the log window in the

background. A popup menu is also shown. It allows a user changing most of the plot style by

mouse actions.

4.2. Visual analysis of data

In order to facilitate the visual data inspection visualization areas can be zoomed

in/out with simple mouse clicks and drags. Signals can be vertically and horizontally

displaced very quickly by mouse movements and keyboard actions thereby helping in the

detailed inspection and comparison of traces. The offset value and the amplification factor

applied to a signal visualization instance can be set, or modified, both from a textbox as well

as by mouse and cursor movements over the visualization area. The information about the

acquisition conditions of a signal (number of bits in the ADC, sampling period, …) can be

visualized at any moment.

- 12 -

Finally, smooth filters (Gaussian, Rectangular and Hanning windows) can be applied

to signals for noise reduction. These filters are applied only for visualization purposes. The

filters can also be recursively applied to a time trace to produce even more smoothed results.

4.3.

Figure 2. Graphic User Interface of the Java Application for Signal Visualization showing a plot window
with four visualization areas and the log window behind. A popup menu is shown with some buttons that
allow customizing the plot style.

- 13 -

High quality plots.

The aim of this visualization software is to allow a user to perform basic visual

inspection and analysis of data while also allowing high quality figures to be produced. The

style of the data plot for printing can be customized by the user with mouse clicks. Signals

can be plotted with lines in different styles and colors. In addition, symbols can be added to

the data points as required. Fig. 3 is an example of a Plot Style window that allows a user to

define what signals are plotted in each visualization area and the plot style offset value and

factor for them. A user can customize both the content shown and the font for the legends.

The user can also show or hide a legend in any area. The axis, tick markers, labels and titles

fonts can be changed to produce publication quality figures. A grid can be added to the axis

ticks to help in the visualization and analysis of the traces. Plots can then be printed, from a

flexible print layout window in which the user can select the visualization areas to be

Figure 3. Plot style window

- 14 -

included. Figure 4 shows a Print Layout Window (PLW) where the areas to be printed are

chosen. In addition, plots can be copied to the system clipboard and pasted into other

applications documents.

4.4. Optimized plots

A time trace can be plotted many times in different (or the same) visualization areas

with different amplification factors, offsets and plot styles to allow comparison with different

signals. However, for all the visualization instances of the signal only a single copy of the

data corresponding to each time trace is maintained in memory in order to optimize memory

consumption.

In addition, a special routine has been developed to generate fast X-Y plots. To this

end the number of pixels that need to be plotted is minimized. In accordance with the

visualization settings selected by the user, the area size and monitor resolution, the extreme

vertical positions that a signal reaches for a given horizontal position in the visualization area

are computed and only the line joining these two points is plotted. It has been found that this

plot routine is much more efficient for plotting experimental traces than using directly the

routines provided by the Java package to calculate the pixels that need to be plotted. In the

case where a signal has many samples a lot of pixels should be calculated, many of the

experimental samples can be mapped into the same pixel; in this case it is better first to

calculate the independent pixels and plot only those. When a signal has few points for

plotting in the visualization area, it could be better to plot directly, but as there are few

samples the time needed for calculation is also very short.

- 15 -

During the visual analysis of experimental data some data may be plotted many

times to make cross comparisons. These multiple re-plots of data imply multiple accesses to

the same data. To decrease the read time for recently accessed data the visualization

application allows using a disk cache, so that accessed data can be stored in the local disk for

a faster subsequent access. This feature is very useful when access to experimental data is

Figure 4. Print Layout window showing the popup menu that allows choosing the visualization areas that
are included in the printed page.

- 16 -

done from very disparate sites. It is also useful in the local environment to decrease the data

server load by decreasing the number of data calls for recently read data.

4.5. Automatic data refresh.

In order to aid following of TJ-II operation, data can be automatically refreshed after

a new plasma discharge occurs. The application receives notification of events that have

occurred in the TJ-II local environment, e. g. the start or the end of a new plasma discharge

sequence, or the availability of experimental data in the database for a given (in course)

discharge. Hence, the user can program the automatic refreshing of time traces. In this way,

when a message informing of the availability of data in the TJ-II database is received, the

application automatically calls for the newly acquired data corresponding to the traces that

the user has selected for automatic refresh mode. Data refresh for a given shot number can

also be done manually on user demand. The user can also establish an offset for automatic

refresh so that when a new signal becomes available the data that are actually called do not

correspond to the last discharge, rather to the last one minus the user-defined refresh offset.

This feature helps when comparing signals from consecutive discharges.

The same data refresh feature is available for all the plug-ins that could be loaded to

access other data sources through the JasviMainApp interface methods (see the Multi-site

access section).

4.6. Data export

The visualization application also allows exporting signal data to ASCII files that can

then be read from other applications so that it constitutes a poor man TJ-II data access tool

for other software packages. It exports both the header data, with information about

acquisition conditions of the signal (number of bits in the ADC, number of samples,

sampling period, …) followed by the time-value pairs corresponding to the signal samples.

- 17 -

5. Summary

New software has been developed for visual data analysis of TJ-II experimental data.

This software is integrated into the TJ-II remote participation system and provides all the

data visualization functionalities previously available in the local environment, as well as

several new functionalities.

The visualization software is adapted to a remote participation environment and

allows visualizing data from different fusion devices simultaneously by means of the

integration of different data access plug-ins while maintaining the same application. TJ-II

data are transferred using XML/MIME messages over the standard HTTP protocol. The use

of a compressed format for the experimental data transfer allows optimizing the data transfer

and reduces bandwidth necessities. In addition, the visualization application allows the use of

a disk cache that reduces the access time for recently accessed data and also decreases the

data server load.

The use of Java as the programming language ensures multiplatform compatibility of

the software and reduced the development time. A lot of previously developed classes are

available for integration with web technologies and some of which were used.

MOM software proved useful to provide the on-line synchronization of the

visualization application with the local TJ-II environment and, in particular, to implement the

automatic data refreshing.

Visualization software provides a very flexible and user-friendly GUI. A user can

customize data plots in order to produce high quality plots. The feature of saving plot

settings greatly aids a user in defining his visualization complex framework. The ability of

- 18 -

saving these data in a centralized server is very useful for a remote participation environment

where the user is able to recover preferred settings from anywhere.

The routine developed for XY plotting of time traces has proven very efficient thus

allowing very fast plots.

The PAPI security framework provides the security characteristics that are needed in

a remote participation software. JNLP allows us to reduce at minimum the work related to

software deployment and version control.

6. Acknowledgements

The authors thank Dr. K. J. McCarthy for his help in revising the manuscript.

- 19 -

7. References

[1] C. Alejaldre, J. Alonso, L. Almoguera, et al. First plasmas in the TJ-II flexible

Heliac. Plasma Phys. Controlled Fusion 41, 1 (1999) A539

[2] J. Vega, C. Crémy, E. Sánchez, A. Portas. The TJ-II data acquisition system: an

overview. Fus. Eng. and Design, 43 (1999) 309.

[3] C. Crémy, J. Vega, E. Sánchez, C. M. Dulya and A. Portas. Multi-processor

Architecture to Handle TJ-II VXI-based Digitization Channels. Rev. Sci. Instr.

70:1 (1999) 513.

[4] C. M. Dulya, C. Crémy, A. Portas, E. Sánchez, J. Vega. Applying Object Oriented

Concepts to Online Data Acquisition. Rev. Sci. Instr. 70:1 (1999) 517

[5] J. Vega, C. Crémy, E. Sánchez, A. Portas, J. A. Fábregas y R. Herrera. Data

management in the TJ-II multilayer database. Fusion Engineering and Design, 48

(2000) 69.

[6] J. Vega, E. Sánchez, C. Crémy, A. Portas, C. M. Dulya, J. Nilsson. TJ-II data

retrieving by means of a client/server model. Rev. Sci. Instr. 70:1 (1999) 498.

[7] E. Sánchez, A. B. Portas, J. Vega, J. M. Agudo, K. J. McCarthy, M. Ruiz, E.

Barrera, S. López. Autonomous acquisition systems for TJ-II: controlling

instrumentation with a 4th Generation Language. Fus. Eng. & Design 71 (1-4)

2004, 123-127

[8] J. Vega, E. Sánchez, A. López, A. Portas, M. Ochando, A. Mollinedo, A. Sánchez,

M. Ruiz, S. López, E. Barrera. Design of the TJ-II remote participation system.

Rev. Sci. Instr. 74 (3) 2003, 1773-1777.

- 20 -

[9] J. Vega, E. Sánchez, A. Portas, A. Pereira, M. Ruiz, E. Barrera, S. López, D.

Machón. Overview of the TJ-II remote participation system. Fusion Engineering

and Design 2006 (in press)

[10] E. Sánchez, J. Vega, C. Crémy and A. Portas. Accessing TJ-II data with remote

procedure call. Rev. Sci. Instr., 72(1) (2001) 525-529

[11] J. Vega, C. Crémy, E. Sánchez, A. Portas, S. Dormido. Encoding technique for a

high data compaction in data bases of fusion devices. Rev. Sci. Instr. 67:12

(1996) 4154.

[12] E. Sánchez, A. Portas, J. Vega, A. Pereira. Applying a Message Oriented

Middleware architecture to the TJ-II remote participation system. Fusion

Engineering and Design 2006 (in press).

[13] http://openjms.sourceforge.net.

[14] JAVA Message Service. Richard Monson-Haefel & David A. Chappell. O’ Reilly.

2001

[15] M. Marinilli. Java Deployment with JNLP and Web Start. Sams Publishing (2001).

[16] R. Castro and Diego López. RedIris Bulletin, no. 60 (2002)

(http://www.rediris.es/app/papi/doc/TERENA-2001/)

1.2.

	1098.pdf
	1098.pdf
	Introduction
	Motivation
	Software architecture
	Programming languages
	Data access scheme
	Synchronization with local environment.
	Multi-site access.
	Software deployment and security

	The Java Application for Signal Visualization
	A user friendly Graphic User Interface
	Visual analysis of data
	High quality plots.
	Optimized plots
	Automatic data refresh.
	Data export

	Summary
	Acknowledgements
	References

