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the strong growth of hydrodynamic perturbations associated with a negative adiabatic

sound speed squared. In this paper we revisit the stability issue in the framework of

linear perturbation theory in a model independent way. The criterion for the stability of

a model is translated into a constraint on the scalar-neutrino coupling, which depends

on the ratio of the energy densities in neutrinos and cold dark matter. We illustrate

our results by providing meaningful examples both for stable and unstable models.
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1. Introduction

Precision observations of the cosmic microwave background [1–3], the large scale

structure of galaxies [4], and distant type Ia supernovae [5–8] have led to a new standard

model of cosmology in which the energy density is dominated by dark energy with

negative pressure, leading to an accelerated expansion of the universe.

The simplest possible explanation for dark energy is the cosmological constant

which has P = wρ with w = −1 at all times. However, since the cosmological constant

has a magnitude completely different from theoretical expectations one is naturally led

to consider other explanations for the dark energy. A light scalar field rolling in a

very flat potential would for instance be a candidate better motivated from high energy

physics [9–11]. In the limit of a completely flat potential it would have w = −1. Such

models are generically known as quintessence models [12–17]. The scalar field is usually

assumed to be minimally coupled to matter and to curvature, but very interesting effects

can occur if this assumption is relaxed (see for instance [18–24]). In general such models

alleviate the required fine tuning in order to achieve ΩX ∼ Ωm, where ΩX and Ωm are the

dark energy and matter densities at present. Also by properly choosing the quintessence

potential it is possible to achieve tracking behaviour of the scalar field so that one also

avoids the extreme fine tuning of the initial conditions for the field.

Many other possibilities have been considered, like k-essence, which is essentially a

scalar field with a non-standard kinetic term [25–27]. It is also possible, although not

without problems, to construct models which have w < −1, the so-called phantom

energy models [28–30]. Finally, there are even more exotic models where the

cosmological acceleration is not provided by dark energy, but rather by a modification

of the Friedmann equation due to modifications of gravity on large scales [31, 32], or

even due to higher order curvature terms in the gravity Lagrangian [33–35].

A very interesting proposal is the so-called mass varying neutrino (MaVaN)

model [36–38] in which a light scalar field couples to neutrinos. Due to the coupling,

the mass of the scalar field does not have to be as small as the Hubble scale but can be

much larger, while the model still accomplishes late-time acceleration. This scenario also

holds the interesting possibility of circumventing the well-known cosmological bound on

the neutrino mass [3, 4, 40–51]. The scenario is a variant of the chameleon cosmology

model [52–54] in which a light scalar field couples democratically to all non-relativistic

matter.

The idea in the MaVaN model is to write down an effective potential for the scalar

field which as a result of the coupling contains a term related to the neutrino energy

density. If the pure scalar field potential is tuned appropriately the effective potential

including the neutrino contribution will have a minimum with a steep second derivative

for some finite scalar field VEV. The scalar field is therefore locked in the minimum and

when the minimum evolves due to changing neutrino energy density the field tracks this

evolution adiabatically. This naturally leads to a dynamical effective equation of state

for the combined scalar - neutrino fluid close to w = −1 today, and to a neutrino mass
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which is related to the combined neutrino-scalar field fluid’s energy density ρDE. Since

ρDE decreases with time, also the neutrino mass varies in this kind of scenario, where

its present value is explained in terms of ρ
1/4
DE(a = 1). Possible tests for the MaVaN

scenario can be found in Ref. [55–62].

MaVaN models, however, suffer from the problem that for some choices of scalar-

neutrino couplings and scalar field potentials the combined fluid is subject to an

instability once the neutrinos become non–relativistic. Effectively the scalar field

mediates an attractive force between neutrinos which can possibly lead to the formation

of neutrino nuggets [63]. This in turn would make the combined fluid behave like cold

dark matter and thus render it non-viable as a candidate for dark energy.

In perturbation theory the formation of these nuggets can be seen as a consequence

of an imaginary speed of sound for the combined fluid, signaling fast growth of

instabilities. However, an imaginary speed of sound cannot be generally used as a

sufficient criterion for the instabilities, since it is also crucial that the scalar field-induced

interaction between neutrinos dominates over the drag provided by cold dark matter.

The instability can occur in these models because the effective mass associated with

the scalar field is much larger than H . Accordingly, its effective Compton wavelength

sets the scales as of which perturbations are adiabatic to be much smaller than the

Hubble radius . This is a consequence of the steepness of the effective potential and can

be remedied by making the potential sufficiently flat. In this case the evolution of the

field is highly non-adiabatic [64, 65]. However, this model has the disadvantage that the

neutrino mass is no longer related naturally to the dark energy density and equation of

state.

In this paper we study various choices of scalar-neutrino couplings and scalar field

potentials with the aim of identifying the conditions for the instability to occur. We

show that the condition of positive sound speed squared severely constrains the allowed

neutrino mass variation. In the next section we review the formalism needed to study

mass varying neutrinos and in section 3 we derive the equation of motion of the neutrino

perturbations. Section 4 contains our results for various couplings and potentials, and

finally section 5 contains a discussion and conclusion.

2. Formalism

The idea in the so-called Mass Varying Neutrino (MaVaN) scenario [36–38] is to

introduce a coupling between (relic) neutrinos and a light scalar field and to identify

this coupled fluid with dark energy. As a direct consequence of this new interaction, the

neutrino mass mν is generated from the vacuum expectation value (VEV) of the scalar

field and becomes linked to its dynamics. Thus the pressure Pν(mν(φ), a) and energy

density ρν(mν(φ), a) of the uniform neutrino background contribute to the effective

potential V (φ, a) of the scalar field. The effective potential is defined by

dV (φ)

dφ
=

dVφ(φ)

dφ
+ β(ρν − 3Pν) (1)
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where Vφ(φ) denotes the fundamental scalar potential, a is the scale factor, and

β = dlogmν

dφ
is the coupling between the scalar field and the neutrinos. Throughout the

paper we assume a flat Friedman-Robertson-Walker cosmology and use the convention

a0 = 1, where we take the subscript 0 to denote present day values.

Assuming the neutrino distribution to be Fermi-Dirac and neglecting the chemical

potential, the energy density and pressure of the neutrinos can be expressed in the

following form [39]

ρν(a, φ) =
T 4

ν (a)

π2

∫

∞

0

dy y2

√

y2 + m2
ν(φ)

T 2
ν (a)

ey + 1
,

Pν(a, φ) =
T 4

ν (a)

3π2

∫

∞

0

dy y4

√

y2 + m2
ν(φ)

T 2
ν (a)

(ey + 1)
, (2)

where Tν = Tν0
/a is the neutrino temperature and y corresponds to the ratio of the

neutrino momentum and neutrino temperature, y = pν/Tν .

The energy density and pressure of the scalar field are given by the usual

expressions,

ρφ(a) =
1

2a2
φ̇2 + Vφ(φ),

Pφ(a) =
1

2a2
φ̇2 − Vφ(φ). (3)

Defining w = PDE/ρDE to be the equation of state of the coupled dark energy fluid,

where PDE = Pν +Pφ denotes its pressure and ρDE = ρν + ρφ its energy density, and the

requirement of energy conservation gives,

ρ̇DE + 3HρDE(1 + w) = 0. (4)

Here H ≡ ȧ
a

and we use dots to refer to the derivative with respect to conformal time.

Taking Eq. (4) into account, one arrives at a modified Klein-Gordon equation describing

the evolution of φ,

φ̈ + 2Hφ̇ + a2V ′

φ = −a2β(ρν − 3pν). (5)

Here and in the following primes denote derivatives with respect to φ (′ = ∂/∂φ).

2.1. The fully adiabatic case

In the following let us consider the late time evolution of the coupled scalar-neutrino fluid

in the limit mν ≫ Tν where the neutrinos are non-relativistic. It is in this regime that

MaVaN models can potentially become unstable for the following reason: the attractive

force mediated by the scalar field (which can be much stronger than gravity) acts as

a driving force for the instabilities. But as long as the neutrinos are still relativistic,

the evolution of the density perturbations will be dominated by pressure which inhibits

their growth, as the strength of the coupling is suppressed when ρν = 3Pν .
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In the non-relativistic limit mν ≫ Tν , the expressions for the energy density and

pressure in neutrinos in Eq. (2) reduce to

ρν ≃ mνnν ,

Pν ≃ 0, (6)

such that Eq. (1) takes the form

V = ρν + Vφ = mνnν + Vφ. (7)

Assuming the curvature scale of the potential and thus the mass of the scalar field

mφ to be much larger than the expansion rate of the Universe,

V ′′ = ρν

(

β ′ + β2
)

+ V ′′

φ ≡ m2
φ ≫ H2, (8)

the adiabatic solution to the equation of motion of the scalar field in Eq. (5) applies

[38]‡. As a consequence, the scalar field instantaneously tracks the minimum of its

effective potential V , solution to the condition

V ′ = ρ′

ν + V ′

φ = m′

ν

(

∂ρν

∂mν

+
∂Vφ

∂mν

)

= m′

ν

(

nν +
∂Vφ

∂mν

)

= 0, (9)

As the universe expands the neutrino energy density gets diluted, thus naturally giving

rise to a slow evolution of V (φ). Consequently, the value of the scalar field φ evolves

on cosmological time scales. Note that as long as m′

ν does not vanish, this implies that

also the neutrino mass mν(φ) is promoted to a time dependent, dynamical quantity. Its

late time evolution can be determined from the last equality in Eq. (9).

In order to specify good candidate potentials Vφ(φ) for a viable MaVaN model of

dark energy, we must demand that the equation of state parameter w of the coupled

scalar-neutrino fluid today roughly satisfies w ∼ −1 as suggested by observations [66].

By noting that for constant w at late times,

ρDE ∼ V ∝ a−3(1+w) (10)

and by requiring energy conservation according to Eq. (4), one arrives at [38]

1 + w = −1

3

∂ log V

∂ log a
. (11)

In the non-relativistic limit mν ≫ Tν this is equivalent to

1 + w = − a

3V

(

mν
∂nν

∂a
+ nν

∂mν

∂a
+

V ′

φ

a′

)

= −mνV
′

φ

m′

νV
, (12)

where in the last equality it has been used that V ′ = 0 according to Eq. (9). To allow

for an equation of state close to w ∼ −1 today one can conclude that either the scalar

potential Vφ has to be fairly flat or the dependence of the neutrino mass on the scalar

field has to be very steep.

‡ In this case for |φ| < Mpl ≃ 3 × 1018 GeV the effects of the kinetic energy terms can be safely

ignored [38].
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2.2. The general case

As it will turn out later, the influence of the cosmic expansion in combination with

the gravitational drag exerted by CDM on the neutrinos can have a major effect on

the stability of a MaVaN model. However, to begin we will neglect any growth-slowing

effects on the perturbations and proceed with a more general analysis of this case. In

this case, the dynamics of the perturbations are solely determined by the sound speed

squared which for a general fluid component i takes the following form,

c2
si =

δPi

δρi
, (13)

where Pi and ρi denote the fluid’s pressure and energy density, respectively. The sound

speed c2
si can be expressed in terms of the sound speed c2

ai arising from purely adiabatic

perturbations as well as an additional entropy perturbation Γi and the density contrast

δi = δρi/ρi in the given frame [67, 68],

wiΓi = (c2
si − c2

ai) δi, (14)

=
Ṗi

ρi

(

δPi

Ṗi

− δρi

ρ̇i

)

. (15)

Here wi denotes the equation of state parameter and Γi is a measure for the relative

displacement between hypersurfaces of uniform pressure and uniform energy density.

For most dark energy candidates (like quintessence or k-essence) dissipative processes

evoke entropy perturbations and thus Γi 6= 0.

However, in MaVaN models the effective mass of the scalar field ∼ mφ ≫ H

sets the scale, ∼ m−1
φ , where these processes and the associated gradient terms

become unimportant [63, 69], to be much smaller than the Hubble radius (in contrast

to a quintessence field with finely-tuned mass ∼<H and long range ∼> H−1). As a

consequence, on sub-Hubble scales > m−1
φ all dynamical properties of (non-relativistic)

MaVaNs are set by the local neutrino energy density [63]. In particular, for small

deviations away from the minimum of its effective potential, the scalar field re-adjusts

to its new minimum on time scales ∼ m−1
φ small compared to the characteristic

cosmological time scale H−1. In this case the hydrodynamic perturbations in MaVaNs

are adiabatic. This means the system of neutrinos and the scalar field can be treated as

a unified fluid with pressure PDE = Pν + Pφ and energy density ρDE = ρν + ρφ without

intrinsic entropy, ΓDE = 0.

If any growth-slowing effects can be neglected, the perturbations in a stable MaVaN

model are driven by a positive effective sound speed squared,

c2
a =

ṖDE

ρ̇DE
=

ẇρDE + wρ̇DE

ρ̇DE
= w − ẇ

3H(1 + w)
> 0, (16)

where Eq. (4) and Eq. (15) have been used. In the case c2
a > 0 the attractive scalar

force is offset by pressure forces and the fluctuations oscillate as sound waves. However,

for c2
a < 0 perturbations become unstable and tend to blow up.

After generalising the above treatment to include three neutrino generations, it

can be shown [70] that the requirement of positive sound speed squared in Eq. (16)
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leads to the following stability condition on the mass evolution for mνi
(a) ≫ Tν(a) with

i = 1, 2, 3,

3
∑

i=1

∂mνi
(a)

∂a
a2

(

5αT 2
ν0

(a)

3m2
νi

(a)
− 1

)

+
3
∑

i=1

25αT 2
ν0

(a)

3amνi
(a)

> 0, with

α ≡

∞
∫

0

dy y4

ey+1

2
∞
∫

0

dy y2

ey+1

≃ 6.47. (17)

Assuming a degenerate neutrino mass spectrum with mνi
(z) ∼ mν(z), the resulting

first order differential equation in mν(z) can be solved for the maximally allowed mass

evolution in a stable adiabatic MaVaN model. In fig. 1 the solution mν(z) is plotted

for mνi
(0) ∼ mν(0) = 0.312 eV. Apparently, if the perturbations are not stabilised by

growth-slowing effects to be discussed later on, the condition of positive sound speed

squared severely constrains the allowed mass variation at late times.

In the following we will argue that this result remains valid in the case of a

hierarchical neutrino mass spectrum independent of the absolute neutrino mass scale.

Therefore, let us consider two different scenarios possibly realised in nature. Either

all neutrinos are (highly) non-relativistic today such that Eq. (17) is applicable which

requires that all the neutrino masses are essentially constant at late times. Or, as allowed

by neutrino oscillation experiments, one neutrino mass eigenstate is still relativistic

today. It has been shown for a large class of MaVaN models that this case can only

be realised if the heaviest, non-relativistic neutrino is stable [71]. Otherwise, the scalar

field VEV and thus the neutrino masses are driven to a new scale such that none of

the neutrinos remains relativistic until today. This results in a cascaded instability

of the system because all components become unstable at nearly the same time§.
Consequently, at least in this class of models the stability condition requires the mass of

the heaviest, non-relativistic neutrino to be essentially constant at late times. Therefore,

in the case that all neutrino masses have the same dependence on the scalar field value,

they are forced to behave accordingly.

For simplicity, in the following stability analysis we will assume a degenerate

neutrino mass spectrum corresponding to three highly non-relativistic neutrinos today.

However, largely independent of the absolute scale and spectrum of neutrino masses our

results can be generalised to apply for all standard MaVaN models possibly subject to

a cascaded instability.

§ Possible alternative scenarios are so-called hybrid MaVaN models which involve a second light scalar

field [71, 72]. Since they allow for a steeper scalar potential, while accomplishing late-time acceleration,

they can be stable even in the presence of an unstable component until the present time.
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Figure 1. Maximally allowed mass evolution in a model with positive sound speed

squared for a degenerate neutrino mass spectrum with mνi
(0) ∼ mν(0) = 0.312 eV,

where i = 1, 2, 3.

3. Evolution of the Perturbations

In this section we will analyse the linear MaVaN perturbations in the synchronous gauge,

which is characterised by a perturbed line element of the form

ds2 = a(τ)2(−dτ 2 + (δij + hij)dxidxj), (18)

where τ denotes conformal time and hij is the metric perturbation. Here and in the

following dots represent derivatives with respect to τ . Most of our other notations

and conventions comply with those in Ma and Bertschinger [73]. Consequently, the

Friedmann equation takes the form

3H2 =
a2

M2
pl

(

φ̇2

2a2
+ Vφ(φ) + ρm

)

, (19)

with Mpl ≡ (
√

8πG)−1 denoting the reduced Planck mass and the subscript m

comprising all matter species.

Since the following perturbation equations have been widely discussed in the

literature (e.g. [23, 53, 65, 75, 76] and references therein), we will simply state them here

for neutrinos coupled to a scalar field.

The evolution equation for the MaVaN density contrast δν = δρν/ρν is given by [65],

δ̇ν = 3
(

H + βφ̇
) (

wν − c2
ν

)

δν − (1 + wν)

(

θν +
ḣ

2

)

+ β (1 − 3wν) δφ̇ + β ′φ̇δφ (1 − 3wν) , (20)

where β = d log mν

dφ
and cν is the neutrino sound speed (cf. Eq. 13). The quantity c2

ν can

be calculated directly from the sound speed of the combined fluid and the scalar field
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perturbations. We note that in general c2
ν 6= Ṗν/ρ̇ν (i.e. the neutrino part of the fluid is

not adiabatic in itself), and that c2
ν can in some cases become negative because of the

interaction.

Furthermore, the trace of the metric perturbation, h ≡ δijhij, according to the

linearised Einstein equations satisfies,

ḧ + Hḣ =
a2

M2
pl

[δT 0
0 − δT i

i ], where (21)

δT 0
0 = − 1

a2
φ̇δφ̇ − V ′

φ(φ)δφ −
∑

m

ρmδm, (22)

δT i
i =

3

a2
φ̇δφ̇ − 3V ′

φ(φ)δφ +
∑

r

ρrδr + 3c2
bρbδb + 3c2

νρνδν . (23)

Here δT µ
ν denotes the perturbed stress energy tensor and the subscripts m and r collect

neutrinos, radiation, CDM and baryons (with sound speed cb) as well as (relativistic)

neutrinos and radiation, respectively.

The evolution equation for the neutrino velocity perturbation θν ≡ ikiv
i
ν with

vi
ν ≡ dxi/dτ reads [65],

θ̇ν = − H(1 − 3wν)θν −
ẇν

1 + wν
θν +

c2
ν

1 + wν
k2δν

+ β
1 − 3wν

1 + wν
k2δφ − β(1 − 3wν) φ̇ θν − k2σν , (24)

where σν denotes the neutrino shear as defined in [73].

Finally, the perturbed Klein-Gordon equation for the coupled scalar field is given

by [65]

δ̈φ + 2H ˙δφ +
[

k2 + a2
{

V ′′

φ + β ′(ρν − 3Pν)
}]

δφ +
1

2
ḣφ̇ = (25)

− a2βδνρν(1 − 3c2
ν).

We note that instead of proceeding via the fluid equations, Eqs. (20) and (24),

the evolution of the neutrino density contrast can be calculated from the Boltzmann

equation [73]. We have verified analytically and numerically that the two methods

yield identical results provided that the scalar-neutrino coupling is appropriately taken

account of in the Boltzmann hierarchy [74].

As discussed in sec. 2 MaVaNs models can only possibly become unstable on sub-

Hubble scales m−1
φ < a/k < H−1 in the non-relativistic regime of the neutrinos, where

the perturbations evolve adiabatically. For our numerical results in the next section

we solve the coupled Eqs. (20-25) in the (quasi-)adiabatic regime by neglecting the

neutrino shear σν . This approximation is justified, since the scalar-neutrino coupling

becomes important in this regime and mν is much larger than the mean momentum of

the neutrino distribution.

For the purpose of gaining further analytical insight into the evolution of the

neutrino density contrast, it is instructive to apply additional approximations to

Eqs. (20-25) to be justified in the following.
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Since the minimum of the effective potential tracked by the scalar field evolves

only slowly due to changes in the neutrino energy density, we can safely ignore terms

proportional to φ̇. Moreover, in the non-relativistic regime of the neutrinos on scales

m−1
φ < a/k < H−1, as a consequence of Pν ∼ 0 it follows that σν ∼ 0 and wν ∼ 0 as

well as ρr ∼ c2
b ∼ 0. In addition, in the following we substitute δφ by its average value

corresponding to the forcing term on the right hand side of Eq. (25) in the above limits,

δφ̄ = − βρνδν(1 − 3c2
ν)

(V ′′

φ + ρνβ ′) + k2

a2

, (26)

which solves the perturbed Klein-Gordon equation reasonably well on all scales [23, 75].

Finally, by combining the derivative of Eq. (20) with Eq. (21) – Eq. (24) and Eq. (26)

in the non-relativistic limit, we arrive at the equation of motion for the neutrino density

contrast valid at late times on length scales m−1
φ < a/k < H−1,

δ̈ν + H(1 + 3c2
ν)δ̇ν +

(

c2
νk

2 − 3

2
H2

[

Ων(
Geff

G
+ 3c2

ν) − c2
ν

])

δν =
3

2
H2

[

ΩCDMδCDM + Ωbδb

]

(27)

where

Geff = G

(

1 +
2β2M2

pl(1 − 3c2
ν)

1 + a2{V ′′

φ + ρνβ ′}/k2

)

and (28)

Ωi =
a2ρi

3H2M2
pl

. (29)

Since neutrinos not only interact through gravity, but also through the force mediated

by the scalar field, they feel an effective Newton’s constant Geff as defined in Eq. (28).

The force depends upon the MaVaN model specific functions β and Vφ and takes values

between G and G(1+2β2M2
pl(1−3c2

ν)) on very large and small length scales, respectively.

The scale dependence of Geff is due to the finite range of the scalar field (V ′′

φ + ρνβ
′)−

1
2 ,

which according to Eq. (8) is equal to (m2
φ − β2ρν)

−
1
2 . For moderate coupling strength

it is essentially given by the inverse scalar field mass, whereas for β ≫ 1/Mpl it can

take larger values. Accordingly, in a MaVaN model both the scalar potential Vφ and

the coupling β influence the range of the scalar field force felt by neutrinos, whereas its

strength is determined by the coupling β.

The evolution of perturbations in cold dark matter (CDM) coupled to a light scalar

field in coupled quintessence [23] and chameleon cosmologies [53] is governed by an

equation similar to Eq. (27). However, we would like to point out that for the same

coupling functions the dynamics of the perturbations in neutrinos can be quite different

from those in coupled CDM. This is a consequence of the relative smallness of the

neutrino masses, due to which neutrinos provide a much smaller fraction to the total

energy density than CDM and baryons, Ων ≪ (ΩCDM + Ωb). Whereas ΩCDM ∼ 0.2

and Ωb ∼ 0.05 [4] at present, Ων depends on the so far not known absolute neutrino

mass scale realised in nature. Taking as a lower bound the mass splitting deduced from
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atmospheric neutrino flavour oscillation experiments and the upper bound derived from

the Mainz tritium beta-decay experiments [80], we get 10−4 ∼< Ων ∼< 0.15 today ‖. It is

important to note that since in the standard MaVaN scenario the neutrino mass is an

increasing function of time, at earlier times the ratio Ων/(ΩCDM + Ωb) was even more

suppressed than today. In general it follows that the smaller this ratio is, the larger the

relative influence of the forcing term on the RHS of Eq. (27) becomes. The forcing term

describes the effect of the perturbations in other cosmic components on the dynamics

of the neutrino density contrast and competes with the scalar field dependent term

∝ Geff

G
Ωνδν on the LHS. Correspondingly, apart from the scalar field mediated force the

neutrinos feel the gravitational drag exerted by the potential wells formed by CDM.

Consequently, as long as the coupling function β does not compensate for the relative

smallness of Ων and thus enlarge the influence of the term ∝ Geff

G
Ωνδν , the neutrinos will

follow CDM (like baryons) just as in the Standard Model.

In the following we classify the behaviour of the neutrino density contrast in models

of neutrino dark energy subject to all relevant kinds of coupling functions β. In the

small-scale limit we distinguish the following three cases:

a) For β <
√

ΩCDM−Ων

2M2
pl

Ων
until the present time, GeffΩνδν < GΩCDMδCDM, the neutrino

density contrast is stabilised by the CDM source term which dominates its

dynamics. In this case the influence of the scalar field on the perturbations

is subdominant and the density contrast in MaVaNs grows moderately just like

gravitational instabilities in uncoupled neutrinos.

b) For β ∼ const. and much larger than all other parameters at late times, Geff ≫ G,

the damping term Hδ̇ν in Eq. (27) as well as the the terms proportional to δCDM

and δb can be neglected, leading to exponentially growing solutions.

c) For β 6= const. and growing faster than all other parameters at late times, Geff ≫ G,

δν is growing faster than exponentially¶.

In contrast, on scales (V ′′

φ + ρνβ
′)−1/2 ≪ a/k < H−1 much larger than the range of the

φ-mediated force,

d) For β ∼ const. and of moderate strength, Geff ∼ G and the perturbations behave

effectively like perturbations for uncoupled fluids in General Relativity.

e) For β growing faster than all other quantities at late times, Geff ≫ G, instabilities

develop on all sub-Hubble scales a/k > (V ′′

φ + ρνβ
′)−1/2 according to c). However,

on large length scales their growth rate is suppressed due to the corresponding small

wave number k.

‖ Note that if the upper limit from the Mainz experiment is saturated the requirement Ων ≪ Ωm is

formally not satisfied. However, this case should be viewed as very extreme and is most likely excluded

based on structure formation arguments

¶ In the limit β(τ) → ∞ for τ → ∞, Eq. 27 takes the form δ̈ν − 3H2Ων
β2(τ)M2

pl

1+a2(V ′′

φ
+ρνβ′)/k2 δν = 0, and it

can be shown that | δ̇ν

δν
| → ∞ for τ → ∞ [78]. Since this ratio is constant and thus not large enough

for an exponentially growing δν , the solution is required to grow faster than exponentially.
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We note that for |c2
ν | ≪ 1 Eq. 27 can be recast into the simple form,

δ̈ν + Hδ̇ν +

[

c2
a

c2
a + 1

k2 − 3

2
H2Ων

]

δν =
3

2
H2

[

ΩCDMδCDM + Ωbδb

]

. (30)

Apparently, as a consequence, all the effects of the scalar-neutrino coupling on the

evolution of δν are encoded in the term governed by the total sound speed squared c2
a.

Clearly, as soon as c2
a turns negative (but > −1), this term will change its sign and thus

also its nature. Namely, it will amplify the effect of the gravitational term for neutrinos,

which tends to drive instabilities to grow. Accordingly, in case the stabilising effect of

CDM on the neutrino perturbations becomes negligible (cf. b), c)), it will cause the

neutrino density contrast to strongly grow.

3.1. Potentials and Couplings

In the following, we consider two combinations of scalar potentials Vφ(φ) and of scalar-

neutrino couplings β which define our MaVaN models. The potentials are chosen

(and fine-tuned) to accomplish the required cosmic late-time acceleration and for the

couplings we take meaningful limiting cases.

Firstly, we consider a MaVaN model suggested by [38] which we will refer to as

the log-linear model. The scalar field has a Coleman-Weinberg type [77] logarithmic

potential,

Vφ(φ) = V0 log(1 + κφ), (31)

where the constants V0 and κ are chosen appropriately to yield ΩDE ∼ 0.7 and mφ ≫ H

today. The choice of Vφ determines the evolution of φ according to Eq. (7) as plotted

in fig. 2. Apparently, the neutrino background has a stabilising effect on φ. It drives

the scalar field to larger values and stops it from rolling down its potential Vφ. This

competition of the two terms in Eq. (7) results in a minimum at an intermediate value

of φ (cf. Eq. 9), which slowly evolves due to changes in the neutrino energy density. As

the universe expands and ρν dilutes, both the minimum and the scalar field are driven

to smaller values towards zero.

Let us now turn to the neutrino mass and its evolution. The dependence of mν on

the scalar field is given by,

mν(φ) =
m0

φ
. (32)

Such a dependence naturally emerges in the framework of the seesaw mechanism. In

this case the light neutrino mass mν arises from integrating out a heavier sterile state,

whose mass varies linearly with the value of the scalar field (as e.g. in Ref. [38, 63, 71]).

According to Eq. (32) this model is characterised by a field dependent coupling,

β(φ) =
1

m

∂m

∂φ
= −1

φ
, (33)

which corresponds to a time evolution as plotted in fig. 3.
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Figure 2. The effective potential V (thick lines), composed of the scalar potential Vφ

(dashed) and the neutrino energy density ρν , plotted for three different redshifts, z = 5

(solid), z = 4 (dashed-dotted), z = 3 (dotted). The VEV of φ tracks the minimum of

V (marked by X) and evolves to smaller values for decreasing redshift. We have used

κ = 1 × 1020M−1
pl and V0 = 8.1 × 10−13eV4.

Figure 3. The evolution of the effective coupling, β (given by Eq. (33)), as a

function of redshift for the potential Eq. (31). We have used κ = 1 × 1020M−1
pl and

V0 = 8.1 × 10−13eV4.
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Figure 4. The effective potential V (thick lines), composed of the scalar potential Vφ

(dashed) and the neutrino energy density ρν , plotted for two different redshifts, z = 1

(solid), z = 0 (dotted). The VEV of φ tracks the minimum of V (marked by X) and

evolves to larger values for decreasing redshift. We have used M = 0.0023195 eV.

Since the value of φ decreases with time (cf. fig. 2) this means the rate of energy

transfer between the scalar field and the neutrinos and also the attraction felt between

neutrinos increases with time. Consequently, both the neutrino mass mν in Eq. (32)

and according to Eq. (2) also the neutrino energy density blow up when φ approaches

zero. Thus, from these qualitative considerations it can already be expected that the

model will run into stability problems in the non-relativistic neutrino regime.

Secondly, we consider a model proposed in the context of chameleon cosmologies [52,

53, 79], which we will refer to as the power-model. The scalar field has an exponential

potential which at late times reduces to an inverse power-law potential,

Vφ = M4 exp
Mn

φn
∼ M4

(

1 +
Mn

φn

)

, (34)

since then φ ≫ M . Furthermore, the mass parameter M is fixed by the requirements

ΩDE ∼ 0.7 and mφ ≫ H . In fig. 4 the evolution of φ is plotted according to Eq. (1).

In contrast to the first model, the expectation value of φ is increasing with time. Note

that the scalar potential Vφ thus at late times very weakly depends on changes in the

VEV of φ, since Vφ ∼ M4 = const. for φ ≫ M .

In this model the dependence of the neutrino mass on the scalar field is taken to

be,

mν = m0e
βφ, (35)

which is of a form expected in a special type of scalar-tensor theory, in which the scalar

degree of freedom only couples to neutrinos in a conformal way (as eg. in [65]). It is
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important to note that for this model the coupling is constant,

β =
1

mν

∂mν

∂φ
= const. (36)

Since according to fig. 4 the value of φ is very small until the present time, even for

β ≫ 1
Mpl

the exponential function in Eq. (36) takes values close to 1. Accordingly, the

neutrino mass in Eq. (35) depends only weakly on changes in the scalar field VEV and

thus hardly evolves with time. In contrast to the log-linear model the effective potential

V in fig. 4 only evolves due to the dilution of the neutrino energy density and not

additionally due to the mass variation. Furthermore, unlike the log-linear model, the

attractive force between neutrinos is essentially time independent. This in turn makes

the model much more stable.

4. Results

In this section we present the numerical results of our stability analysis for the two

MaVaN models of the last section. They are obtained from modifying the CMBFAST

code [81] to include a light scalar field coupled to neutrinos and were checked by altering

the CAMB code [82] accordingly. We assume a neutrino energy density of Ων ∼ 0.02,

which corresponds roughly to the current conservative upper limit on the sum of neutrino

masses from CMB and LSS data [3, 4, 40] +, where we take the present day normalised

Hubble expansion rate to be h = 0.7. Ων corresponds to the energy density of three

neutrino species with degenerate mass mνi
(z = 0) ∼ 0.312 eV ≫ Tν0

, which are highly

non-relativistic today.

4.1. Log-linear Model

The log-linear model is defined by Eq. (31) and Eq. (32). By fine-tuning the parameter

V0 for a fixed value of κ = 1020M−1
pl in Eq. (31), standard cosmology with ΩDE = 0.7,

ΩCDM = 0.25, and Ωb = 0.05 at present can be accomplished, where ΩDE = Ων + Ωφ.

The mass of φ at present determined from Eq. (8) is mφ = 5.74 Mpc−1≫ H .

Consequently, the Compton wavelength of the scalar field, m−1
φ , sets the scales on which

the perturbations in (non-relativistic) MaVaNs are adiabatic, H ≪ 0.1 Mpc−1 ∼<k (cf.

the discussion in sec. 2.2). In fig. 5 we present our results for the evolution of the

neutrino mass, the sound speed squared and the density contrast to be discussed in the

following.

a) The evolution of the neutrino mass mν(z) and the neutrino temperature Tν(z) =

Tν0
(1 + z) is plotted as a function of redshift. As long as mν(z) ≪ Tν(z),

the neutrinos are relativistic, whereas for mν(z) ≫ Tν(z) they have turned

non-relativistic. The transition takes place at roughly z + 1 ∼ 7, i.e. when

+ Note those constraints were obtained assuming non-interacting neutrino models. Hence this

assumption could be relaxed.
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Figure 5. a) Neutrino mass mν (solid) and temperature Tν (dotted) as a function

of redshift. b) Total dark energy sound speed squared c2
a as a function of redshift.

c) Density contrast in neutrinos (solid) δ̃ν and density contrast in CDM δ̃CDM

(dash-dotted) as a function of redshift on a scale k = 0.1 Mpc−1. We have used

κ = 1 × 1020M−1
pl and V0 = 8.1 × 10−13eV4.

mν(z) ≃ Tν(z)/3. One interesting feature is that for z → 0 the neutrino mass

grows as mν(z) ∝ a3 so that ρν → Constant.

b) A plot of the total adiabatic sound speed squared of the coupled fluid c2
a. It decreases

when the neutrinos approach the non-relativistic regime mν(z) ≫ Tν(z)(cf. a)).

This is due to the drop in the neutrino pressure from initially Pν ∼ 1/3 to Pν ∼ 0

well after the transition of regimes.

c) A plot of the density contrast in neutrinos δ̃ν = δρν/ρν , and cold dark matter

(CDM) δ̃CDM = δρCDM/ρCDM on a scale of k = 0.1 Mpc−1. As long as the

neutrinos are still relativistic (mν(z) ≪ Tν(z) cf. a)), the perturbations in the

strongly coupled scalar-neutrino fluid oscillate like sound waves. However, after

pressure cannot offset the attractive force anymore (mν(z) > Tν(z)/3), the neutrino

density contrast blows up and thus grows at a much faster rate than the density

contrast in CDM (the fast growth sets in after the effective sound speed squared

has turned negative). This can be understood by considering the evolution of the

scalar neutrino coupling β (cf. fig. 3) for this model, since β2 according to Eq. (27)

governs the evolution of the density contrast in non-relativistic neutrinos. Since

the choice of a large κ corresponds to φ ≪ Mpl at late times, β2 is driven to larger
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and large values, while the VEV of φ approaches zero (cf. the discussion in the

last section). Accordingly, δ̃ν is subject to an effective Newton’s constant Geff ≫ G

(cf. the discussion in sec. 3). However, δ̃CDM behaves essentially as in General

Relativity, as long as the modification to the gravitational effect on CDM caused

by the scalar-field induced change in the neutrino density contrast is not prominent.

Since the coupling and thus Geff rapidly increase with time, the scalar field transfers

more and more energy to the neutrinos causing mν to increase (cf. a)). Therefore,

both β as well the energy density in neutrinos increase such that the stabilising

effect of the CDM becomes less and less important and finally becomes entirely

negligible.

As a further consequence, the attraction between neutrinos also rises steadily,

while the neutrino pressure drops and ceases to stabilise the perturbations. As

demonstrated in b) the total sound speed squared is thus quickly driven to negative

values, causing δ̃ν to grow faster than exponentially (cf. also the discussion in

sec. 3). In the following, we will argue that as a result the neutrino density

contrast has already turned non-linear in the past. Therefore, we take into

account the normalisation of the CDM density contrast which gives us a rough

estimate for the normalisation of δ̃ν . As long as the dimensionless power spectrum

∆2(k) = k3P (k)/(2π2) ∝ δ2
CDM < 1, CDM perturbations on a scale k are linear,

where P (k) denotes the power spectrum of CDM. Since on the considered scale

of k = 0.1 Mpc−1 we have ∆2(k) ∼ 0.3 − 0.4 [83] for CDM, we can infer that for

neutrinos ∆2(k) ∝ δ2
ν > 1, when δ̃ν exceeds δ̃CDM by more than a factor of

√
2. This

is the case at roughly 1+ z ∼ 5, while afterwards linear perturbation theory breaks

down. It is thus likely that neutrinos in this model are subject to the formation of

non-linear structure in the neutrino energy density [63] before the present time.

Our numerical results presented in fig. 5 demonstrate that the total sound speed

squared in the log-linear model is negative at late times, corresponding to a fast growth

of perturbations. Thus, inevitably, the neutrino density contrast at some point in time

will go non-linear and the model becomes unstable with the possible outcome of the

formation of neutrino bound states [63]. Note that this result is not in strict accordance

with the analytical considerations of Ref. [63], since the non-linear collapse does not

happen as soon as the neutrinos become non-relativistic, as baryons and especially CDM,

are able to attract the neutrinos in their potential wells formed through conventional

gravitational collapse. It should be noted that in case the neutrino mass scale realised

in nature is much lower than assumed in our analysis, the stabilising effect of CDM

might prevent a clumping of neutrinos until the present time.

We thus add a remark previously unnoticed in the MaVaN literature: it is crucial

to consider the magnitude and the growth rate of the scalar field-neutrino coupling

and to compare its importance relative to other sources of gravitational attraction. As

indicated in the previous section, the comparison can be made quantitatively through

Eq. (27).
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4.2. Power-law Potential

The power-law potential is defined by Eq. (34) and Eq. (35). We have chosen n = 0.3 in

Eq. (34) and tuned the mass parameter M to accomplish the right cosmology at present.

Furthermore, as suggested by naturalness we choose β = 1/Mpl in Eq. (35). With these

choices of parameters the mass of the scalar field at present is mφ ∼ 0.1 Mpc−1 ≫ H and

accordingly the MaVaN perturbations are adiabatic on sub-Hubble scales k∼<mφ. We

perform our perturbation analysis on a scale k = 0.1 Mpc−1 and illustrate our results in

fig. 6 to be described in the following:

a) The evolution of the neutrino mass mν(z) and the neutrino temperature Tν(z) in

the non-relativistic regime mν(z) ≫ Tν(z) is plotted as a function of redshift. Since

the neutrino mass depends only weakly on changes in the scalar field VEV, it hardly

evolves with time (cf. sec. 3.1).

b) The evolution of the total sound speed squared c2
a of the coupled dark energy fluid

is plotted as a function of redshift. We observe that, c2
a takes positive values even

in the highly non-relativistic regime of the neutrinos.

c) The density contrast in neutrinos δ̃ν , and cold dark matter δ̃CDM is plotted on a

scale of k = 0.1 Mpc−1 for β = 1/Mpl. It is found that the density contrast in

MaVaNs grows just as in uncoupled neutrinos in General Relativity. The reason is

that the effects of the scalar field on the neutrino perturbations are subdominant

with respect to the gravitational influence of CDM and baryons. It follows that they

considerably affect the growth of MaVaN perturbations. In contrast to the log-linear

model, the coupling between the scalar field and the neutrinos is constant and the

neutrino mass very weakly depends on changes in the scalar field VEV. Accordingly,

both the energy transfer of the scalar field to the neutrinos as well as the attraction

felt between neutrinos hardly increases with time but stays essentially constant. As

a result, the growth of δ̃ν (as well as of mν(z)) with time remains moderate and δν

turns out to be of comparable size as δ̃CDM today.

As argued in sec. 4.1, the CDM perturbations are known to be linear at the scale

considered and thus the neutrino perturbations also can be viewed as linear until

the present time. This result is in accordance with our finding of positive total

sound speed squared up to today (cf. fig. 6b).

We have checked that the behaviour of the neutrino density contrast is retained on

the same scale for an increased value of the coupling β = 100/Mpl. It should be

noted that in this case the range of the scalar field and thus the scales, where possible

instabilities grow fastest, have dropped below the physical scales accessible with

CMBFAST/CAMB. We thus ascribe the unaltered behavior of the perturbations

to the suppression of the effective Newton’s constant Geff felt by neutrinos with

increasing scale a/k in combination with the stabilising effect achieved by CDM

and baryons. This result demonstrates that a possible enhanced growth of MaVaN

perturbations can only take place on very small scales, i.e. it is a rather local

phenomenon.
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Figure 6. a) Neutrino mass mν (solid) and temperature Tν (dotted) as a function of

redshift. b) Neutrino sound speed squared c2
ν (dashed) and total dark energy sound

speed squared c2
a (solid) as a function of redshift. c) Density contrast in neutrinos

(solid) δ̃ν , and density contrast in CDM δ̃CDM (dash-dotted) as a function of redshift

on a scale k = 0.1 Mpc−1. We have used M = 0.0023195 eV.

In conclusion, fig. 6 demonstrates that the adiabatic power-law model is

characterised by a positive sound speed squared∗ and the neutrino density contrast

on small scales is still in the linear regime today. Accordingly, the model can be viewed

as stable until the present time. The slow growth of the neutrino perturbations was

found to trace back to the behaviour of the neutrino mass which hardly evolves with

time.

We would like to point out that in general according to Eq. 17 (cf. fig. 1) the

restriction on the mass variation in a MaVaN model is alleviated at earlier times when

finite temperature effects become more important. In other words, while the neutrino

mass is only required to asymptote to an essentially constant value at late times, in the

power-model (as a special case) it always stays nearly the same.

We conclude the subsection mentioning that the considered example constitutes

a viable MaVaN model that resides permanently in the effective minimum and is

characterised by a non-relativistic neutrino phase and a positive sound speed squared,

∗ We verified that models with larger values for n in Eq. (34) are also characterised by a positive total

sound speed squared, while reproducing the standard cosmology. Furthermore, mφ increases with n

rendering the model more adiabatic.
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a possibility that was not noticed in Ref. [63].

4.3. A no-go theorem for mass varying neutrinos?

In the following, we will comment on a no-go theorem in Ref. [63] which states that

any realistic adiabatic MaVaN model with m2
φ > 0 cannot be stable as soon as the non-

relativistic neutrino regime starts. For its deduction the authors of Ref. [63] proceeded

in the following way. They derived an expression for the total sound speed squared c2
a in

the kinetic theory picture for pν ≪ mν assuming the perturbations to be plane waves.

Independent of the choice of the scalar-neutrino coupling and the scalar potential which

characterise a MaVaN model, c2
a turned out to be negative.

In the present work we have presented examples of models which demonstrate that

a detailed analysis of the potential and coupling functions and an assessment of the

influence of other important cosmic components, like CDM and baryons, are necessary

in order to predict the growth of structure in neutrinos. In sec. 3 we found that the

density contrast in neutrinos in the small scale limit only grows exponentially if the

scalar-neutrino coupling is larger than all other relevant parameters, leading to negligible

growth-slowing effects as provided by cosmic expansion and CDM gravitational drag.

In this case we verified numerically for the log-linear model of the last section

that c2
a turns negative in agreement with the result of [63]. We would like to point

out that finite temperature effects which can play a crucial role for the stability of a

MaVaN model [70] were included in our calculation. However, as demonstrated by the

result for the power-model, for a constant coupling O(1) the evolution of the neutrino

density contrast is not modified with respect to the uncoupled case in ordinary General

Relativity. Accordingly, also on small scales ∼ m−1
φ the plane-wave solution did not

apply and perturbations were driven by a positive sound speed squared. We checked

numerically that the LHS of the stability criterion Eq. (17) derived in [70] gives a good

indication for the sign of the sound speed squared.

Based on our analysis we conclude that viable adiabatic MaVaN models can be

found which are stable until the present time. We indicate the relative smallness of the

neutrino energy density as the main cause, since it enhances the stabilising influence

exerted by CDM on the neutrino density contrast. Consequently, the dynamics in

stable models are governed by CDM, largely independent of the sign of the sound speed

squared, even in the highly non-relativistic regime.

However, for stable MaVaN models characterised by a positive sound speed squared

until the present time (cf. the power-model) the allowed neutrino mass evolution at late

times was found to be generically severely constrained. Note that in our stability analysis

we have tested the growth of perturbations in the framework of linear perturbation

theory valid on large length scales until the present time. Accordingly, we could get

a feeling for the relevant physical effects leading to the possible clumping in neutrinos

disentangled from any non-trivial non-linear effects inherent in small physical scales.

Furthermore, we have integrated the relevant equations using CMBFAST and
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CAMB which work in the linear regime. Consequently, the mass of the scalar field had

to be chosen small enough (however ≫ H) to push the scales where possible instabilities

could occur into the linear regime. As discussed in sec. 3 and verified by our numerical

results for the power-model and β = 100/Mpl, on scales larger than the range of the

scalar field the attraction felt by neutrinos becomes considerably suppressed. Thus,

the possible enhanced growth in neutrinos was found to be a rather local phenomenon.

By increasing the scalar field mass and thus reducing the range of the scalar field, we

would expect a local scalar field induced enhancement of the gravitational clustering

of neutrinos in the non-linear regime (on scales, where neutrino free-streaming cannot

inhibit the growth of perturbations) . Accordingly, resulting neutrino bound states

would be interpreted as a contribution to the CDM small scale structure, which however,

on average does not affect the equation of state of neutrino dark energy. Similarly, in

chameleon cosmologies such an enhanced small scale growth of the CDM density contrast

is predicted [84] due to the coupling to a scalar field with range a/k = 250 pc today. We

thus refer to another interesting class of possibly stable MaVaN models characterised by

a much larger scalar field mass. However, the detailed discussion of these models and

their phenomenological implications lies beyond the scope of this paper.

5. Discussion

Models of neutrinos coupled to a light scalar field have been invoked to naturally

explain the observed cosmic acceleration as well as the origin of dynamical neutrino

masses. However, the class of MaVaN models characterised by an adiabatic evolution of

perturbations in the non-relativistic regime may suffer from instabilities and as a result

cease to act as dark energy. In this paper we analysed the stability issue in the framework

of linear perturbation theory. For this purpose we derived the equation of motion of

the density contrast in non-relativistic neutrinos in terms of the characteristic MaVaN

model dependent functions, namely the scalar potential, the scalar-neutrino coupling,

and the source terms provided by CDM and baryons. Furthermore, we modified both the

CMBFAST [81] and CAMB [82] code to include a light scalar field coupled to neutrinos

and numerically focused on two significant MaVaN models.

We found that the instabilities in the neutrino density contrast only occur if the

influence of the scalar-neutrino coupling on the dynamics of the perturbations dominates

over the growth-slowing effects (dragging) provided by CDM. More precisely, as long

as the coupling β <
√

ΩCDM−Ων

2M2
pl

Ων
the gravitational drag felt by neutrinos towards the

potential wells formed by CDM leads to a stabilisation of the perturbations until

today, largely independent of the sign of the sound speed squared. As a result, the

density contrast in MaVaNs grows moderately just as for uncoupled neutrinos in General

Relativity, without any effects of the scalar field becoming apparent. We indicate the

small contribution of the neutrinos to the total energy density as the reason for this

behavior.

However, if the coupling is strong enough to render any growth-slowing effects
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negligible, the stability requires the model to exhibit a positive sound speed squared.

This condition was found to strongly restrict the allowed neutrino mass variation at late

times [70].

These results were obtained from considering representative limiting cases for the

time dependence of the coupling. At first, we investigated MaVaN models characterised

by a strong growth of the coupling and thus of the neutrino masses with time. In

this case, at late times any growth-slowing effects on the perturbations provided by

the expansion or the gravitational drag of CDM can be neglected. Consequently,

independent of the choice of the scalar potential, the analytic equation for the evolution

of the neutrino density contrast at late times involved a faster than exponentially

growing solution. Our numerical results for such a model with logarithmic scalar

potential illustrated that the onset of the instability is around the time when the

neutrinos turn non-relativistic. This can be seen as the effect of the total sound speed

squared becoming negative. Since the attraction between neutrinos increases rapidly, the

sound speed changes sign as soon as the counterbalancing pressure forces in neutrinos

have dropped sufficiently. As a result, the non-relativistic neutrino density contrast

is inevitably driven into the non-linear regime and leads to the formation of neutrino

nuggets [63].

This is in contrast to MaVaN models involving a constant coupling of moderate

strength. In this case, the evolution of the neutrino density contrast at late times is

described by a power law just as in the uncoupled case. We demonstrated numerically

that the choice of a constant coupling and an inverse power law scalar potential leads

to an adiabatic MaVaN model characterised by a positive sound speed squared. In

addition, we found the neutrino density contrast to be still in the linear regime on scales

where possible instabilities would grow fastest. Accordingly, the MaVaN model can be

viewed as stable until the present time. However, the neutrino masses depend very

weakly on changes in the scalar field and they hardly evolve at late times. This turns

out to be a generic feature of stable MaVaN models characterised by a positive sound

speed squared.

We would like to allude to another interesting class of possibly stable MaVaN

models, whose quantitative discussion lies, however, beyond the scope of this paper.

Due to the finite range of the scalar field, the enhanced growth of neutrino perturbations

caused by the scalar-neutrino interaction was found to be a rather local phenomenon.

Consequently, for MaVaN models characterised by a much smaller range of the scalar

field, the possibly unstable regime of (non-relativistic) MaVaN perturbations can be

shifted to much smaller length scales, where non-linear effects become important. In

this case we expect a local contribution of the scalar-field induced clustering of neutrinos

to the small scale structure of CDM (on scales where neutrino free-streaming does

not inhibit the growth of perturbations). On average, however, it does not affect the

equation of state of neutrino dark energy, which in this kind of models can thus still

explain the apparent late time acceleration. This possibility was so far not noticed in the

MaVaN literature. However, a similar reasoning can be found in models of chameleon
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cosmologies [84].
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