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Summary;

The mutual shadowing of fuel lumps in a moderator is studied

assuming that the source density of resonance neutrons is constant

in the moderator, that one collision with a moderator atom removes

a resonance neutron from the resonance interval and that the fuel is

black to resonance neutrons.

Formulae for the shadowing factor are given for square or

circular tubes, parallel plates of finite or infinite width and parallel

circular cylinders, and some numerical results are presented.
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The Dancoff correction in various geometries

Introduction.

The resonance escape probability in a reactor lattice is generally

calculated by means of an effective resonance integral, which is com-

posed of a volume and a surface term. In close-packed lattices, i. e.

when the distance between neighbouring lumps is not sufficiently large

compared to the mean free path in the moderator, the surface effect

is reduced because of shadowing by adjacent lumps.

The calculation of the shadowing in different geometries can

be quite laborious. Dancoff and Ginsburg have given a few curves for

the case of parallel circular rods* However, the values of the para-

meters are such as to restrict the applicability to close packed light

water lattices. Since we are interested in other types of lattices,

especially rod cluster elements in heavy water reactors, we have

extended the calculations for parallel circular cylinders. We have

also treated other geometries, namely tubes and parallel plates.

We consider only the geometrical aspects, and it is outside the

scope of this paper to discuss such points as for example the validity

of the physical model used, or what formula to use for the resonance

integral and what value to use for the mean free path in different

moderators. Neither do we consider the effect of the lumps being

partially transparent to resonance neutrons.

1. Assumptions and formulation of the problem.

We consider an infinite moderator in which fuel lumps are inserted.

The following assumptions are made:

a) The fuel is black for neutrons of a particular resoaance energy

or small energy interval.

b) The source density of resonance neutrons is constant in the

moderator.

c) A single collision with a moderator atom removes a neutron

from the resonance interval, so that the neutron escapes

absorption in the particular resonance.

For points on the surface of a lump, from which it is possible to see

other lumps, part of the sources are shadowed. The problem is to



calculate for any surface element of one lump the reduction of the

inward neutron current due to the presence of a second lump, and

then to calculate the average reduction for the total surface of the

first lump.

2. Reduction of the problem to two dimensions.

Since only general cylindrical systems will be considered here,

the axial coordinate can be eliminated from the beginning,, This was

also done by Dancoff and Ginsburg. We give the calculation here since

we derive a general formula, which we need for all cylindrical

geometries.

Consider a surface element dS of the first lump and a cylindrical

volume source of source density q and small cross section dA (fig. 1).

The current of neutrons through

dS coming directly from a source

element of height dz can be

written

dS dj = q dA dz dS r
-SR

(i)

where j = current per unit area

2 = y- = the moderator

macroscopic cross section and

the geometrical lengths and the

angle |3 are explained by fig. 1.

Figure 1



Equation (1) is divided by dS and integrated over z

+ 00
, A o f> - £ R

q dA r cos p i e , i7\j = -2 ^ * \ j— dz (2)
4 J R-3

- oo

With the substitution R = r cosh u and z = r sinh u we get

c o s

2
The functions Ki (x) are generally called Bickley functions „

They are defined as

oo

e/» _ -x cosh u
Ki (x) = \ du (4)nv ' J , n x '

jT cosh u

and some properties are

4- Ki (x) = - Ki . (x)
dx nv ' n - 1 v '

oo

dx = Ki n + 1 (x) (5)in + 1

Ki (x) = K (x)
ov ' ov '

(
ov

where K (x) is the modified Bes sel function.

By integrating equation (3) over some area in the plane perpendi

cular to the z-axis, we obtain the current from the corresponding

cylindrical volume source, J

O Ki ( S r)
J = "zV J —% cos P

In the special case of no shadowing the surface element is exposed to

a half-space and the integration is easily carried out. The current



per unit area in this case is called J . With dA = r dr d]3

4
J o=TS I Ki2(z: r)dr J c o s (3 dg = ̂  (7)

It
Here we have used Kî (O) = -j and Ki.,(oo) = 0.

In the case of shadowing we calculate the shadowed part of the

total current. This current is called J , and is obtained by evaluating
s

the integral in eq. (6) over the hatched area of fig. 2.

Figure 2

Putting as before dA = r dr d/3 and integrating over r from r to

infinity we get
oo

= TTJ s ="2% ^ c o s 3 ^ ^ m2(TlT) d r = TTT ^ K i 3 ( 2 r ) COS

In the resulting integral over /3 , r is a function of /3 , and the integration

shall be performed over the angles under which the second lump can be

seen from the surface element of the first one.

The relative reduction in current through the surface element is

called C, in accordance with the notation of Dancoff and Ginsburg.



C = T L . = 1 j Ki3 (2 r) cos J3 d/3 (9)
o

C refers to a certain point on the surface of the first lump. It has to

be averaged over the total surface of the lump except for cases of high

symmetry "where all points on the surface are equivalent.

C can be considered as a reduction in effective surface, and a

shadowed surface should be multiplied by 1 - C before being used in

any formula for the calculation of the effective resonance integral.

Now we proceed to calculate C for certain geometries. Although

some of these calculations are •well-known, we include them for

completeness. We start in most cases from equation (9). But to make

the equations shorter from now on we use the mean free path in the

moderator as unit length, and therefore the basic equation is

C = ~ ^Ki3(r) cosj3 d£ (10)

3. Calculations for different geometries.

3. 1. Holes inside the fuel.

For moderator regions inside the fuel the effectiveness of the

surface can be related to the escape probability defined by Case,

de Hoffman and Plazcek . The hole is assumed to be convex and

filled with moderator. Let the cross section of the cylindrical hole

be A and the surface per unit length be S. The escape probability is

called P as in Case et al. Then the average current into the fuel
QA

per unit area is -^— P . This shall be divided by the current through

an unshadowed surface, which is q/4 from equation (7) with 2 = 1.

Thus

A A

l - c = 2* p (li)
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3. i. t. Circular hole.
2

With the radius of the hole equal to a, A = ^ a and S = 2 v a

so that

1 - C = 2 a PQ (a) (12)

The function P (a) 1 - P (a) has been tabulated by Case et al.

Using equation (10) we

get for this case
(see fig. 3)

C = I \ Ki3(2a cosj3 )cosj3 dj3

ir

7 (13)

This equation can easily

be integrated to give

the same expression

as is obtained from

the function P given

by Case et al.

(see appendix 1).

Figure 3

3. 1. 2. Square hole.

For a square hole with side d the following expression is obtained

after some algebra

C = l + 2 K i " K i K i d F ( d '

where the function

F (x, y) = j Ki2 (u) V \

x

du (15)

has to be evaluated numerically (see table 1).



3. Z. Shadowing lumps.

Here we treat two types of geometries, parallel plates of infinite

or finite width and parallel circular cylinders.

3. Z. i. Parallel infinite plates.

Equation (10) gives immediately, if the distance between the

plates is d

IT

1

C = 2 \ \ Ki_ ( - A r ) COSP d£ (16)

Integrating by parts and substituting •& - u we obtain
cos/3

oo

C = | J Ki2(u) V u2
u -

 d 2 du = | F(d, oc) (17)

d

It is well known that in this case

C = 2E3(d) (18)

where
oo

d t

Comparing equations (17) and (18) we find

oo

f z u | 3 (20)
d

This equation is shown in a more direct way in appendix Z.
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3. Z. 2. Parallel plates of finite width.

\ e

b

a

b

r \ d

\

X

a

Figure 4

The case when the centers of the two plates are situated on the same

perpendicular is considered (see fig. 4). Using equation (10) C is

obtained as the double integral

+a
. b-x

a rctg-g-

C = 2 1 _L \ dx \
7r 2a J J

cos (21)

- a

After some intermediate steps which are omitted here the result can

be expressed in the following form

C = F(d,f) - |b-a| F(d, e) + f Ki - e Ki3(e)

- Ko(f) + Ki2(f) - Ki2(e) (22)

where 2a is the width of the shadowed plate and 2b the width of the

shadowing plate, e is the "short diagonal" and f is the "long diagonal".

F(x,y) is defined by equation (15).



i i

3. 2. 3. Parallel cylinders of equal radius. Finite mean free path in

the moderator.

This is the case treated by Dancoff and Ginsburg . However, by

using another expression for C9 we have obtained a simpler integral»

which we think is better suited for numerical computation.

Figure 5

Consider two parallel cylinders of radii a and with a distance d

between the centers. Using equation (10) we get with the angles given

in figure 5

f~* __

TFT
d0f I K i 3 ( z ) c o s (23)

w

It can easily be seen in the figure that the distance z between the

points on the cylinder surfaces is given by

z = d cos {a+fi ) - a cos /3 - a cos -y (24)
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The limits for the integration over |3 depends upon a. It is, however,

more convenient to use a double integral with constant limits for both

variables. This can be achieved by using the angles |3 and y as

variables of integration, for in that case the limits for v are - -^ and

+ -j for any /3j and vice versa.

A relation between the three angles can be obtained by considering

the length of the perpendicular b (see fig. 5)

b = d sin(<*+/3 ) = a sin /3 + a sin y (25)

Keeping j3 constant we get

d cos(a+/3 ) da = a cos -y dv (26)

a cos v d\
da = - (27)

V/d - a (sin j3 + sin y)

Thus the following equation is obtained for C

+ 12 2* p Ki (z) cos jS cos v
3

2 2
, (* p Ki (z) cos jS cos v

= * \ dj3 \ dY 3 (28)
IT J J / ?

"• * \ / å \ r - a J. • \ 2

"2 "X \Aä/ " (S l n^ +smY)

With

u = sm

v = sin

another form is

+1 +1

C SJ^. \ du \ dv a 3 (30)
•n J J ^ Id r
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where

z = a (31)

When these formulae are applied to clusters of rods, the C for a

particular rod is the sum of the C: s originating from all other rods,

if the other rods do not shield each other. Otherwise for some rods

the domain of integration has to be reduced due to the fact that some

directions of incoming current are already shadowed by more closely

situated rods. As an example consider the situation in figure 6O We

want

"-C

1

^ *
)

'

i

\ 3

^—
j

\ 2

pa

Figure 6

to calculate C_ . , i. e. the shadowing of cylinder 1, exerted by 29 in

the presence of 3. The area to be excluded is situated around the

point u =-1, v = 1, and the boundary of this area is given by

2 2
v) +—j

P
(32)
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Area to be excluded

from the domain

of i n t e g r a t i o n

Figure 7

3. 2. 4. Parallel cylinders of equal radius. Infinite m_e_an_free path

in the moderator.

We shall also consider the case of parallel cylinders when the mean

free path in the moderator is infinite. Then all lengths are of course

zero when measured with the mean free path as a unit. However, the

ratio of lengths is not changed. Equation (30) becomes, since Ki (0) =

+1

C =

-1

+1

-1

dv

-) - (u + v)

(33)

This equation can easily be integrated to

r i I" . 2a . , 1 . 2 a
C = — arcsin -=— - tan ( -^ arcsin - , -

7T d v 2 d
(34)

. 4
Thie has also treated this case. He considers a ring of touching

cylinders equidistant from a central cylinder. The total shadowing

of the central cylinder is 1, and therefore the shadowing by each

cylinder in the ring should be C = — arcsin-r. This expression is

not quite correct, since no account is taken of the fact that the

cylinders in the ring partly shield each other.

In the case of infinite mean free path it is also possible to

perform the integration when there are other cylinders between the
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two cylinders considered. The integrations are elementary but tedious

and the results will not be reproduced here. In the special case of a

cluster of cylinders arranged in such a way that it is impossible to

draw a line between the cylinders without penetrating or touching them,

it is found that the total effective surface is equal to the so-called

rubber band surface. It should perhaps be pointed out that for finite

mean free path in the moderator the effective surface is of course

larger than the rubber band surface,

4. Numerical results.

The function F(x, y) defined in equation (15) was computed

numerically. The results are given in table 1.

The shadowing C for a circular hole, a square hole and two

infinite parallel plates is given in fig. 8 as a function of d/K where

X. is the mean free path in the moderator, d is in each case a

characteristic length, namely the diameter of the circle, the side

of the square and the distance between the plates. C is obtained

from formulae (12), (14) and (18) respectively. To compute these

values we have used tables of P for a cylinder (P = 1 - P ) and
c ~ } v o c'

tables of E« given by Case et al. . The Ki-functions were obtained
5

from the Kj-functions tabulated by Muller .

C for two parallel cylinders was calculated from equation (30)

on the electronic digital computer BESK, The tables are too extensive

to be reproduced here, but the results are given in fig. 9.
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Appendix 1

The integral in equation (13) is to be solved. Since the integral is

an even function of |3 we can write

*

C = \ \ Ki3 (2a cos |3 ) cos |3 d/3 (A. 1. 1)

0

Integration by parts gives

2 "2

C = | | Ki3 (2a cos/3 ) sin j3 -2a J Ki£ (2a cos/3 ) sin2j3 d/3 Y (A. 1. 2)

0 0

Now we use the recurrence formula for the Bickley functions , and

also use Ki,(0) = -% to get

•R

1 - C = —• \ I K4(2a cosp) - Ki t(2a cos^ ) 2a cos/3 sin2/3 dp (A. 1. 3)

0

We integrate again by parts, in the first term of the integrand the

factor K, (2a cos]3 ) 2a sin/3 and in the second term the factor cosj3 sin /3 .
T,X , T , . fr,\ V j • 4 n 3 COSZB , COS4/3

We also use Ki, (0) = -=• and. s m |3 = -Ö- Ö—— + —s—— to get

is
1

1 - C = - ^ Y j KQ(2a cos^) (- cos 2)3 +
2 , 2a 2a

-5 5 COS

2 x
cos 4/3 J d^ - —^ I (A. 1. 4)—

A special case of a formula given by Watson p. 441 is

1

j KQ(2z cos 9) cos 2mG d6 = ( - l )m | ^ ( z ) Km(z) (A. 1. 5)

0
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Thus the integration can be carried out

J (A. 1.6)

Here the argument of all the modified Bessel functions is a. After

making use of the recurrence formulae for the modified functions and

rearranging the following expression is obtained

C = i - l0K0 + - 1 (A. 1.7)

The quantity 1 - C
is, as it should, identical with the expression

for PJa) given by Case et al. p. 33, except for some slight misprints

in their formula.
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The following equality is to be proved

oo

C \ / 2
) Kl2(u) V \ (A. 2. i)

We start with, the more general form

oo
r* / 2 2*m

I (z) = \ Ki (u) l U " f ' dun, irr ' J nv ' n-f

The definition of Ki (u) is introduced

I (z) = \ du \ dtn, mx ' J J

n
oo oo

f* -u cosh t / 2 2xie (u - z )
, n

cosh t n -1
u

z 0

With the new variables

(A. 2. 2)

v = — cosh t

dv

z

ds

u
cosh

=

u

u

t

sinh
z

sinh

t

t

cosh t

1

z cosh t z cosh t

du dt = - "V s(v - s)"du dt
2

we get

I (
n, mv

oo
r2m-n+2

2"
-zv " ( n " 2 ^ r '— ^ m

dv I (vs - i)3

ds

(A. 2. 3)

(A. 2. 4)

(A. 2. 5)

v
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A further substitution is used for s

2 2
vs - i r(v - 1 ) + 1 , v - 1 , / A - > A \

r = —x s = —^ - ds = dr (A. 2. 6)
2 . v v v '

v - i

Now the inner integral becomes

A i l i
\ (vs - i ) , y 2 . x 2 2 \ m,. x 2 ,
j v - s ds = (v - i) v j r (1 - r) dr =

i °
v

, | ) (A. 2. 7)

where B is the beta-function.

In the special case n=2, m=̂ - the original integral is, since

1 (*) = ^ \
"7

oo

-zv
" 4) d v =

V



Table 1

The function

F(x,y)= \Ki.(u)\/l - £ du

y ̂ ^ \

u
0,1
0,2
0,3
0,4
0,5
0, 6
0,7
0,8
0,9

1,0

1,1
1,2
1,3

1,5-

1,6
1,7
1,8
1,9

2,0

2,5

3,0

3,5

4,0

4,5

5,0

00

0

0
0,0929
0,1733
0,2435
0,3050
0,3590
0,4066
0,4486
0,4857
0,5185

0,5476

0,5733
0,5962
0,6166
0,6347

0,6508

0,6651
0,6779
0,6892
0,6994

0,7084

0,7411

0,7598

0,7705

0,7767

0,7803

0,7824

0,7854

0,1

0
0,0546
0,1186
0,1775
0,2301
0,2769
0,3183
0,3551
0,3877

0,4166

0,4422
0,4651
0,4853
0,5034

0,5194

0,5337
0,5465
0,5578
0,5680

0,5770

0,6096

0,6283

0,6390

0,6452

0,6488

0,6509

0,6539

0,2

0
0,0385
0,0885
0,1368
0,1811
0,2210
0,2567
0,2886

0,3170

0,3424
0,3649
0,3850
0,4029

0,4188

0,4330
0,4457
0,4570
0,4671

0,4761

0,5086

0,5272

0,5379

0,5441

0,5477

0,5498

0,5528

0,3

0
0,0290
0,0690
0,1087
0,1459
0,1799
•0,2105

0,2381

0,2628
0,2849
0,3047
0,3223

0,3381

0,3521
0,3647
0,3759
0,3859

0,3948

0,4272

0,4457

0,4564

0,4626

0,4662

0,4683

0,4713

0,4

0
0,0227
0,0551
0,0881
0,1194
0,1483

0,1747

0,1985
0,2200
0,2393
0,2565

0,2720

0,2858
0,2982
0,3093
0,3192

0,3281

0,3602

0,3786

0,3893

0,3955

0,3991

0,4012

0,4041

0,5

0
0,0183
0,0448
0,0724
0,0989

0,1236

0,1462
0,1668
0,1855
0,2023

0,2174

0,2309
0,2431
0,2540
0,2638

0,2725

0,3043

0,3227

0,3333

0,3394

0,3430

0,3451

0,3481

0,6

0
0,0149
0,0369
0,0601

0,0826

0,1037
0,1233
0,1411
0,1573

0,1719

0,1852
0,1970
0,2077
0,2173

0,2259

0,2574

0,2756

0,2861

0,2923

0,2958

0,2979

0,3009

0,7

0
0,0123
0,0307

0,0503

0,0695
0,0877
0,1045
0,1200

0,1340

0,1468
0,1584
0,1688
0,1782

0,1866

0,2176

0,2357

0,2461

0,2522

0,2558

0,2579

0,2608

0,8

0
0,0103

0,0258

0, 0424
0,0589
0,0745
0,0890

0,1024

0,1147
0,1259
0,1360
0,1451

0,1534

0,1838

0,2017

0,2121

0,2181

0,2217

0,2237

0,2267

0,9

0

0,0086

0,0218
0,0360
0,0501
0,0635

0,0761

0,0878
0,0985
0,1082
0,1171

0,1251

0,1550

0,1726

0,1829

0,1889

0,1924

0,1945

0,1975

1,0

0

0,0073
0,0185
0,0306
0,0428

0,0544

0,0653
0,0755
0,0848
0,0934

0,1011

0, 1303

0, 1476

0, 1578

0, 1638

0,1673

0,1694

0,1723





The shadowing in the case of a circular hole (1), a square hole (2) and

two infinite parallel plates (3)

1 0

0.5

0

0 0.5

2
1

Figure 8



The shadowing in the case of two parallel cylinders

0.15

0.05 -

Mean f r e e path = A

Figure 9
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