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A slowing-down problem

/. Carlvik and B. Pershagen

Summary:

An infinitely long circular cylinder of radius a is surrounded by

an infinite moderator. Both media are non-capturing. The cylinder

emits neutrons of age zero with a constant source density of S. We

assume that the ratios of the slowing-down powers

£ 2 D
•e—ŷ— and of the diffusion constants -mr- are independent of
52 s2 U2

the neutron energy.

The slowing-down density is calculated for two cases, a) when

the slowing-down power of the cylinder medium is very small, and b)

when the cylinder medium is identical with the moderator. The ratios

of the slowing-down density at the age T and the source density in the

two cases are called JJ,, and V|J W respectively, vli andvb_r are functions
V M M V

2
of y = | ^ . We find that

u2

du

1 1 - e

These two functions are tabulated for y = 0 (0o 01) 0. 25O

\\i v and \\t M are used for calculating the resonance escape probability

in report AEF-71.
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A slowing-down problem

1. Introduction

In order to calculate p as described in AEF-71 (1) it is necessary

to know the slowing-down density at the surface of a fuel element solely

for neutrons that have been emitted by the same element. We therefore

consider the following two-medium problem.

A long circular cylinder with radius a, diffusion coefficient D., and

slowing-down power i , S is situated in an infinite homogeneous medium

for which the diffusion coefficient is D_ and slowing-down power £ ? ^ o*

It is assumed that the ratio of the diffusion coefficients, D, :D_, i s constant

at all relevant energies, and likewise for £. 2 , : £2 2 though the two

constants of proportionality are different. The cylinder emitting neutrons

has a constant source density S. It is required to find the slowing-down

density, especially at the surface of the cylinder. Two special cases are

considered: that where £, £ . <^ — and that where ^ . S . = £~ S
1 si ^ v a 1 si L sc

D i = D r
The problem is first treated by Laplace transformation of the age

equations, whereupon the special conditions are introduced into the solution.

The second special case, that with the same medium throughout, is then

treated in two further ways: by Hankel transformation, and by applying the

slowing-down kernel for a line source.



2. Two-medium problem treated by Laplace transformation

q 2
The slowing-down equations are:

t 29 q

Medium 2

Fig. 1

The boundary condition at r = a is

, q i , , q2

"1 si
)

'2 s2'

D.

s i 7 ^ ~^U

The ages T. and T_ are defined by

u
i

D i ( u ) i

T j = \ _i _ du

0

2 . 2

2 . 3

2 . 4

2 . 5

u

T 2 = du

0 51 si

2 . 6



where
E.

u = In -w- 2. 7

It is now assumed that

D2(u) Dt(u)
T>—rrr = a • r—r—rr\ 2.8

from which we get

To = at. 2.10

Eliminating T. , and replacing T_ by T in eqs0 2.1, 2.2,

and 2.4,

9 q = v 2 q l + S ö ( l) ZAZ

2
\ 2 - 1 3

2 * 1 4

Laplace transformation of 2.12 and 2. 13 gives

oo

f
J q(r, T

2 ' 1 5

) e dT = q (r, p) 2.16



oo oo

= I q e -** ' + p • \ q e ~p T dT = p . q 2. 17

0

oo

So (I) e " p T dT = aS 2.18
0

2.12 and 2.13 become

V 2 q4 - orpq^ = - aS 2.19

- pq2 = 0 2.20

with boundary conditions analogous to 2.14 and 2.15. The physically

possible solutions of 2.19 and 2. 20 are

= A . I 0 (V^p • r) + | 2.21

q = B -KQ{\fp-r) 2.22

The constants A and B may be determined from 2.14 and 2. 15:

A - - -

2.24

where

N = a) IQ (y/^p a) + ^ KQ ( ^ ? a) I^y /5? a) 2 .25



The inverse transformation yields

c+i oo

sr ^^AVj/^w^)^ z
c-ioo

c+i oo

S I PT h ( ̂ ? a ) K 0 ̂  r> dpf 2.27
IN p

c-ioo

where c is to be chosen so that all the zeros of N lie to the left

of x = c in the complex plane.

3. Case I. £. s , << l/a; Laplace transformation

In this special case

3.1

3.2

At the same time

D 1

( \/Qfp' a) and I. (\/Qrp' a) in 2. 25 may be expanded in series:

L ^ ^ D^ 2 KjTTpa) J

• O ( V P a ) J + . . . [ 3 . 4

Ko(\/?
3.5



For small a and j3 the fraction in the integrand of eq. 2. 26 may be

written

K

2 2, a D l ~
1 " r ) -7TJJ- ^ a

f/p'a)

c+ioo

c-ioo

•

c+ioo
2 2 D. . c

a -r x / ^ \ , a 1 1 \
J 1T2 T5TT J

c-ioo

6 (T)

c+ioo

aS
q2 " T~

1 f K
P T KQ< ^ r ) dp

a) 7f
C-IOO

a)

D

3 . 6

d p i
3 . 7

3 . 8

arg z

Let us now confine our attention to q_, with r = a.

MacDonald (2) has shown that K (z) has no zeros with

i i
Hence K, (\/p a) «\/p has no zeros. The path of integration may be

chosen as in fig. 2, since the integrand decreases sufficiently rapidly

as |p| becomes large. The integral may be divided into three parts as

shown in the figure.

Fig. 2



3.9

- oo

+ IT icp_
icp K_( \/e e a) -*-

- 2 _ i / i - 2 d ( p 3.10

- oo

Kn( \/j> a)

3
- e x

The integral I2 is of the order of magnitude of e. The following

substitutions may be made in I. and I, respectively:

2
p = •• u VP "• "• i u

3.12
2

p = - u \{$ = iu

y/i1 oo
2 K (- i au) 2 C Tu2 K 0 ( " i a u )

" T u U ^ d u = 2 i \ e - T u J U r T du 3.13K t(- i au) i " " " J_ K^(-i au|
oo

From reference (3) we have

3.14

= - J | J^au) + i Yt (au) I-i au) = - ^- H^1^ (au) = - J | J^au) + i Yt (au) I 3.15

. J 0 J l + Y 0 Y l - i J 0 Y l + i J l Y 0
1

oo

J^ (au) + Y^ (au)

- T u 2 J 0 J l + Y 0 Y i + i ( J l Y 0 - J 0 Y i >
du 3.17

where the argument for all the Bessel functions is au.



00 00

C -Tu2 V i a U > (-2) A , . f

v/e1 i •?

-Tu
d u 3 - 1 8

Thus, 3.19

where I. is the complex conjugate of I.

Therefore,

oo oo

8i C
= 7Ta J

-Tu
u(J2 + Y2)

1 1

3.20

Let 6 - • • 0. Then

oo / T 2X

eaq> ( - - y u )

V
3 - 2 1

4. Case II. One medium; Laplace transformation

Here,

from which

a = 1

0 = 1

Eq. 2. 25 becomes

4.1

4.2

4.3

and, in accordance with 2. 27

c+ioo

r J
C-100



The path of integration is treated as before.

T I^a Vp) KQ(r Vp) ̂  = £ e " ^ I^-iau) K0(-iru) £ du =

- oo oo

oo

= 2i £ e - T t t Z f Jt(au) ^i [jo(ru)+iYo(ru)] du 4.5

- oo oo
2

^ au> K o ^ ra> (-r> du =
- €

oo

= 2 i y e "*!ru (-1) Jj(au) (- *i)[jo(ru) - i YQ(ru) ] du 4.6
/é1

00

2 JA(au) Jo(

4 . TT

r icp 4
l2 = J e T 6 6 Ij(a \/e e 2 ) KQ(r V^e Z ) i \/i"e 2 dcp 4.8

For small S, I- is of the order of 6 log e. If e -*• 0, we get
oo

q2 = Sa J e " T U J^au) JQ(ru) du 4.9

Put r =

<l2<
a>

a.-,
00

= S a I e
0

00

0

-Tu 2

T u2

a

du =

^u) JQ(u) du 4.10



10

Here the integral function is known (4)

oo T 2
— 2 U

f z

j e a J4(u) JQ(u) du =
0

T 2 oo T 2
, oo 2 U _ , p I
1 , a / T 2 / » v i \ a

7 J (" J0 W > " 7

2
a

Finally, we get

2

5. Case II. Hankel transformation

The age equation for case II is

where S = const, for 0 < r < a, and S = 0 for r > a»

The Hankel transform, of q is

oo

Eq. 5.1 becomes

oo oo

0
Ö

a 2 1

^ J 4.12

5.1

q = J q r Jo (g r) dr 5.2

(T) § S(r) r JQ( g r) dr 5.3



i i

00 00

°° Q C Q
ft n . 1 . n n

dr =
i i ' " » nv " i i » " ' ri -»•

0

oo
oo r»

g I J. (gr) r q - g \ (J, (gr) + g J0(gr) r -. J (gr) ) q dr =
0 0

= - g2 q 5.4

oo

j S(r) r JQ(gr) dr = S J JQ(gr) r dr = S | J^ga) 5.5
vo o

The transformed age equation is thus

^1 = - g2
 q + å (T) S J Jj(ga) 50 6

from which

q = S | Ji (ga) e 5.7

and

oo oo

q= \ g Jn(rg) q dg = a S \ e Jn(r g) J. (ag) dg 5.8

O O

This equation is identical with 4. 9
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6. Case II. Slowing-down kernel for line source

R

Fig. 3

Suppose r> a. The meaning of the symbols is indicated in fig. 3,

The slowing-down kernel is

R

Iff

where Sg is the source strength per unit length.

r+a
2S

ITT

R

R 6.1

r - a



A new variabla of integration 9 may be introduced:

13

R = r + a - 2 ar cos 6

RdR = ar sin 9 d9

6.2

6.3

2 J 2 7T
r + a _ ar

q = 2 ar S 4T
e

cos 9
e " ' CO sin 9 d9

2 ar S
« ar
T 2T I T

I _ e

0 a r

cos 9
(*} +

ir

J ar
0

ar
2T cos 9 d CO

d9

2 ^ 2r -f a a r
C O S 9 0)

d e 6.4

s i n c e CO = 0 when 9 = 0 and 9 = K

CO = a r c t a n
a s i n 9
r - a cos 9 6.5

9C0 _ a ( r c o s 9 - a )
~8TT ~T~~2 7

a + r - ar cos 9

1 a_ e
"Zr L -± é™ 1 - -

r

1 00 V

(3= S (±) cos v 9 6.6
v = l r

Substituting from 6.6 in 6. 4,
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2 2 TI
COS U 00 V

q = £ e * * \ e Ck • S ( i ) cos v 9 d9

o v=1 r

2 J 2
r + a oo

v =1

When r = a we have, either from fig. 3 or from eq. 6. 5,

. s i n 6 TT 9 ,
- a r c t a n -j n - •=- - -»• 6. 8

1 - cos 0 2 2

T h u s 00 / 0 w h e n 6 = 0 .

F r o m e q . 6 . 4 ,

2 , 2
a a

, v S
q(a) = ¥

-1 ['--""^ ̂  <») ] 6-'°

Alternatively, we may put r = a in 6. 7:

2
2

J 6.11
1J

An analogous treatment may be applied, when r < a, but will be

omitted here.
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Comparison of 6. 7 with the solution obtained with the aid of

the Laplace or the Hankel transformation shows that for r > a,

oo r 2 + a2

e "TU Ji (au) JQ (ru) du = I e " ~ ^ , S (±{ Iy ( « ) 6.12
V 1

A direct derivation of 6.12 is given in appendix 1. It is also

shown there that 6.12 is valid even when r < a.

7. Summary

In case i, where the slöwing-down power is very small inside

the cylinder, the slowing-down density in the outer medium has at

the surface of the cylinder the value

oo / T 2 x

exp (--j u )

%L J
Q J*(u) + Y*(u) U

7 .1

In case II, where the two media are identical, the slowing-

down density is

oo 2 . 2
7 r + a

q(r) = Sa f e - T U J^au) JQ(ru) du = Se ~~^ S ( f { Iy ( | J ) 7.2
v =1

0

and at the surface of the cylinder, in particular,

q(a) = S | 1 - e ^ I o ^ ) ] 7-3

If we now define

2
a

7 " 3T 7.4

oo 2

'M =7* I (u) + Tjf(u)
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"2y J 7 - 6

the slowing-down density at the surface of the cylinder in the two

cases may be written

Case I: q2(a) = S- i|iy(y) 7.7

Case II: q (a) = S.»|iM(y) 7.8

The functions ty v(y) and I|J M(y) have previously been used in

AEF-71 (eqs. 7.8 and 7.9). They are tabulated in table i . The

calculation of \\> v(y) *s described in appendix 2.
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Appendix 1. Direct derivation of eg. 6.12

A formula which, is as general as 6. 12 is

" U

oo
2

J^ou) J0(j3u) du =
0

2 , O 2or + 8
4 oo v

= — e ZJ

As shown in (4)

00

2
\ e " U J (au) J (J3u)udu = 4e i I (A A. 1. 2

Integration of the left-hand side by parts gives

00 2

1 e
0

00

i
-i

2
- u

1

Jn

oo

\ €

0

n

H Jr

^ i
- u 1

i O x
T o J

00

0

- a J n+l ( a u ) Jn(<3u> + S Jn(£

n(ou) Jn_10u) - ^ Jn0u) J du

00

° A . t . 3

where the following equations have been used:

A. 1.5
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A. 1. 3 and A. 1. 2 give

oo oo

C 2 C z

j e "u Jjau) Jn_i(i3u) du = £ je "U Jn+1(«u) Jjfiu) du

A . 1 . 6

Iteration yields

oo 2 , O2a + p

du = — ea; V = l

oo

n+1 d u ' J ' 7

The last integral is limited as n increases. Thus, when a < $ , the

last term approaches zero as n increases, which establishes A. i. 1. But

the last term also approaches zero when or > |3 , as may be shown in the

following way.

If a and £ are interchanged in A. 1. 7

oo

u) JQ(au) du = £ e
v = l

A.i.8

If A. 1. 7 is multiplied by a and A. 1. 8 by |3 , and the products added,

we get

oo

"U [or J j M J0(j3u) + ̂  J ftv) JQ(au) ] du =

2 l O 2
a + p

= e
n

v =-oo
oo

+ a (j*) J e "u Jn+1(au) J j H du
0

n
A. 1.9



19

Integration of the left-hand side gives

VM = le "U [ - JQ(an) JQ(|3u) ] - 2 £ e "U JQ(cm) JQOu) u du =
0 0

2 . O2a + |3

-e Z V l T

Eq. A. 1. 9 is then transformed to

00 2 n 2

2 " ^(f ) n ^ e - u 2 Jn+1(«u) Jn0u) du = 1 - e ^ v _„

A . I . 1 1

Let n now approach oo. The right-hand side of A. 1.11 then

approaches

v?-oo P" v ~^" = " 6 ' 6

A. 1.12

Thus, for all values of a/fi

oo

J
n+1 M Jn^> d u = ° A'' ' ' 3
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Appendix 2. Calculation of 41
 v(y)

According to eq. 7.5

00 U

e du
u

A. 2.1

The function l/u J. (u) + Y.(u) varies as shown in fig. 4.

Fig. 4

Thus for small and large values of y respectively, we may write

y << 1

- $

oo 2
u

ttdu =

7T
A.2.2

«ljv(y) = y ( y « 1) A. 2.3



y» i
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oo 2
u

oo

v (y) = du -Hi- u

du =

- lim - R - 7 (ar ctg

11 \fff ffJ.*J TT TT

A.2.4

A. 2.5

For intermediate values of y we have to resort to a numerical

method. The following simple method has been used.

The function

1_
u A. 2. 6

u

has the following properties:

u << 1 g(u) ~
•n

u

u»

00

8 u

i [£• - g(«) ] du = ^r-

A. 2.7
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g(u) is approximated by a function f(u) -

f(u) = i gU + ^U A. 2.8
L L v/ 2 . 2' ./. 2 x 2" J

V a + u Vb + u

We want f(u) also to have the p roper t i es A. 2. 7. Thus we get

a + j3 = 1

A. 2 . 9

Solution of these equations yields values of the constants :

= 0.425 773

^ = £ - J " ^ 1U = 0. 574 227

A. 2.10

a = _ l _ t i i = 1.209 161
2 T T ^ - 1 6

b = ^ > R = 0.471 190
2 7T ^ _ 16

R = V 27T4 - 39?T 2 + 192 = 1.379 714

Lei

g(u) = f(u) + 6 (u) A. 2.11

oo 2 oo 2 oo 2
u -> u r> u

\ e "*? g(u) du = \ e ^ f(u) du + J e ^ 6 (u) du A. 2.12
0 0 0
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The integral of f(u) may be expressed in terms of tabulated

functions. Put

Then

oo 2
u

A(y) = - ^ \ e **y 6 (u) du

0

A. 2.13

oo 2
u

7T
\ f(u) du + A(y)

where H(x) is defined by

00

H(x) =
-u

du

+

A. 2.14

A. 2.15

ö (u) has been calculated with the help of a table for H, * ' (x) |

in Watson (2). Some values of A(y) have been obtained by numerical

integration, whereupon other values were obtained by graphical

interpolation. Since A(y) | is small, 1 % accuracy in A(y) is

sufficient when ij* v is to be determined correct to five decimal

figures. A(y) is shown in diagram 1. Note that A(y) < 0 for all y

except 0.

Finally, 4*v(y) has been calculated from eq. A. 2.14, with H(x)

taken from (5).

For small y the following formula may be used:

4» y(y) = y + 2y2 (C + In y) + y 3 + I n y ) 2 + 4 ( C + I n y ) - 4 - K 2 J + . . .

where C = 0,577216,
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Table 1

25

0,00000 0,00000

0,01
0,02
0,03
0,04

0,05

0,06
0,07
0,08
0,09

0,10

0,11
0,12
0,13
0,14

0,15

0,16
0,17
0,18
0,19

0,20

0,21
0,22
0,23
0,24

00926
01763
02545
03283

03987

04661
05309
05938
06546

07137

07711
08272
08819
09355

09879

10392
10895
11390
11876

12353

12823
13285
13740
14189

00985
01941
02869
03770

04645

05494
06319
07120
07898

08653

09387
10100
10793
11467

12121

12757
13376
13977
14561

15130

15683
16221
16744
17253

0,25 14632 17748



aooio

-0,0005

o 0.1 0,2 0,3

Fig. i . The function A(y). Note that A(y) < 0 for all y.
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