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Abstract

We study the azimuthal angle decorrelation of forward jets in Deep
Inelastic Scattering. We make predictions for this observable at HERA
describing the high energy limit of the relevant scattering amplitudes with
quasi–multi–Regge kinematics together with a collinearly improved evo-
lution kernel for multiparton emissions.

1 Introduction

In previous publications [1, 2, 3] we have studied the azimuthal angle decor-
relation between Mueller–Navelet jets at different hadron colliders within the
Balitsky–Fadin–Kuraev–Lipatov (BFKL) formalism [4] beyond leading order
accuracy [5]. In the present work we extend these studies to predict the decor-
relation in azimuthal angle between the electron and a forward jet associated
to the proton in Deep Inelastic Scattering (DIS). When the separation in ra-
pidity space, Y , between the scattered electron and the forward jet is large and
the transverse momentum of the jet is similar to the virtuality of the photon
resolving the hadron, then the dominant terms in the scattering amplitude are
of the form ∼ (αsY )n. These terms can be resummed to all orders by means of
the BFKL integral equation. The calculation for this process is very similar to
that of Mueller–Navelet jets, the only difference being the substitution of one
jet vertex by a vertex describing the coupling of the electron to the NLO BFKL
gluon Green’s function via a quark–antiquark pair.
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This observable was previously investigated in the leading logarithmic ap-
proximation (LO) in Ref. [6]. In the following we build on that work while still
using the LO approximation for the jet vertex and the virtual photon impact
factor. However, we improve the calculation by considering the BFKL kernel
to next–to–leading (NLO) accuracy, i.e. we also keep ∼ αs(αsY )n terms in
the gluon Green’s function, a process–independent quantity which governs the
dependence on Y of the cross section, previous analysis in this direction can
be found in Ref. [7]. The NLO terms in the impact factors should be relevant
only in the regions of moderate Y , to include them in our analysis one could
use Ref. [8] for the leptonic part and Ref. [9] for the forward jet vertex. We will
leave this task for future work.

2 Forward jet cross section

For the production of a forward jet in DIS it is necessary to extract a parton
with a large longitudinal momentum fraction xFJ from the proton. When the
jet is characterized by a hard scale it is possible to use conventional collinear
factorization to describe the process. Consequently, the jet production rate may
be written as

σ(s) =

∫

dxFJ feff(xFJ, µ
2
F )σ̂(ŝ), (1)

with σ̂(ŝ) denoting the partonic cross section, and the effective parton den-
sity [10] being

feff(x, µ2
F ) = G(x, µ2

F ) +
4

9

∑

f

[

Qf (x, µ2
F ) + Q̄f(x, µ2

F )
]

, (2)

where the sum runs over all quark flavors, and µF stands for the factorization
scale.

At partonic level we show a typical configuration contributing to σ̂(ŝ) in
Fig. 1. At the leptonic vertex, we treat the quark–antiquark pair inclusively,
while we focus on the outgoing electron, which carries momentum k1, and the
gluon, which couples to the Green’s function with momentum q1. In our notation
the azimuthal angle of k1 is α1 and that of q1 is θ1.

We also work with commonly used DIS variables such as the proton mo-
mentum P , the photon’s momentum qγ , its virtuality Q2 = −q2γ , the Bjorken

scaling variable xBj = Q2

2Pqγ
and the inelasticity y =

Pqγ

P (qγ+k1)
. Making use of

the relation k
2
1 = (1− y)Q2 and the specific structure of the leptonic vertex, we

can write the partonic cross section in the form

σ̂(ŝ) =
π2ᾱ2

s

2

∫

d2k1

∫

d2k2

∫

dω

2πi
eωY 〈k1|Φ̂leptonicf̂ωΦ̂jet|k2〉 (3)

where the rapidity is defined as Y = lnxFJ/xBj. In bold we denote the transverse

2



Φ̂jet

f̂

k2 →

k1 →

Φ̂lept

q2 ↓

q1 ↓

Figure 1: Kinematics of the partonic cross section.

Euclidean momenta. We can further decompose the integration and write

σ̂(ŝ) =
π2ᾱ2

s

2

∞
∑

n,n′=−∞

∫

dα1

∫

dy

∫

d2k2

∫

dω

2πi

∫

d2q1

∫

d2q2

∫

dν

∫

dν′

×〈y, α1|Φ̂leptonic|q1〉〈q1|ν, n〉〈n, ν|f̂ω|ν′, n′〉〈n′, ν′|q2〉〈q2|Φ̂jet|k2〉eωY . (4)

We have introduced a Fourier expansion on conformal spins n, to be defined
below. The integrals in transverse momenta are taken over the whole two di-
mensional space while the ν integrations go from −∞ to ∞. The contour in the
ω–plane is to be taken to the right of all possible singularities.

In Eq. (4) we have used the transverse momentum representation defined by

q̂1|q1〉 =q1|q1〉 〈q1|q2〉 =δ(2) (q1 − q2) , (5)

where the kernel in operator form K̂,

K(q1,q2) = 〈q1|K̂|q2〉, (6)

defines the BFKL integral equation at NLO, i.e.,

ω f̂ω =1̂ + K̂f̂ω. (7)

To change representation we introduce the basis

〈q1|ν, n〉 =
1

π
√

2

(

q2
1

)iν− 1
2 einθ1 , (8)
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where θ1 is the azimuthal angle of q1. The normalization in this new basis reads

〈n′, ν′|ν, n〉 =

∫

d2q1
1

2π2

(

q2
1

)i(ν−ν′)−1
ei(n−n′)θ = δ(ν − ν′)δnn′ . (9)

In this |n, ν〉 representation the eigenstates of the LO kernel are

K̂0|ν, n〉 = ᾱsχ0

(

|n|, 1
2

+ iν

)

|ν, n〉, (10)

with ᾱs = αsNc/π and

χ0(n, γ) = 2ψ(1) − ψ
(

γ +
n

2

)

− ψ
(

1 − γ +
n

2

)

, (11)

where ψ(x) = Γ′(x)/Γ(x), with Γ being the Euler gamma function.
Unfortunately, to the best of our knowledge, the azimuthal angle correlation

between the electron and a forward jet has not been extracted from the HERA
data so far. For a future comparison with the experimental results in this work
we implement the same kinematical cuts and constraints as those used at HERA.
The ZEUS [11] and H1 [12] collaborations have imposed upper and lower cuts
in the transverse momentum of the forward jet taking into account the photon
virtuality Q2. They performed these cuts in order to ensure that both ends of
the gluon ladder have a similar characteristic transverse scale. More in detail,
they imposed

ZEUS :
1

2
<

k2
2

Q2
< 2, (12a)

H1 :
1

2
<

k2
2

Q2
< 5. (12b)

These requirements are intended to suppress DGLAP evolution without affect-
ing the BFKL dynamics. The implementation in our jet vertex of these con-
straints is straightforward. For the ZEUS condition we have

1

2

∫

dk2
2

∫

d2q2 〈n′, ν′|q2〉〈q2|Φ̂jet|k2〉

=: c2(ν
′)
e−in′α2

2π
=

1√
2

1
1
2 + iν′

(

Q2

2

)−iν′− 1
2

[

1 −
(

1

4

)iν′− 1
2

]

e−in′α2

2π
. (13)

In the case of the H1 condition the 1/4 should be replaced for a 1/10. For
simplicity, in the following, we follow the ZEUS cut.
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In Ref. [6] it was shown that the leptonic vertex, in our notation, reads

〈y, α1|Φ̂leptonic|q1〉

=

∫

dQ2 4α2

π2Nc y Q2

∑

q

e2q

∫ 1

0

∫ 1

0

dξ dζ

ξ(1 − ξ)Q2 + ζ(1 − ζ)q2
1

×
{

(

1

2
− ξ(1 − ξ) − ζ(1 − ζ) + 2ξ(1 − ξ)ζ(1 − ζ)

)

y2

+
(

1 − 2ξ(1 − ξ) − 2ζ(1 − ζ) + 12ξ(1 − ξ)ζ(1 − ζ)
)

(1 − y)

− 4ξ(1 − ξ)ζ(1 − ζ)(1 − y) cos
(

2(θ1 − α1)
)

}

=:

∫

dQ2
[

2a
(0)
1 (q2

1, y,Q
2) + 2a

(2)
1 (q2

1, y,Q
2) cos

(

2(θ1 − α1)
)

]

, (14)

where α denotes the electromagnetic fine structure constant and
∑

q e
2
q is the

sum over the electric charges of the produced quark–antiquark pairs.
To construct our cross sections we need to find the projection of this leptonic

impact factor onto the |ν, n〉 basis. We obtained

∫

d2q1〈y, α1|Φ̂leptonic|q1〉〈q1|ν, n〉

=

∫

dQ2
[

2A
(0)
1

(

ν, y,Q2
)

+A
(2)
1

(

ν, y,Q2
) (

δn,−2e
−2iα1 + δn,2e

2iα1
)

]

, (15)

with

A
(n)
1

(

ν, y,Q2
)

=
1√
2

∫

dq2
1 a

(n)
1 (q2

1, y,Q
2)
(

q2
1

)iν− 1
2 . (16)

To calculate these coefficients we need integrals of the type

∫ 1

0

dξ (ξ(1 − ξ))tξ

∫ 1

0

dζ (ζ(1 − ζ))tζ

∫ ∞

0

dq2
1

(

q2
1

)iν− 1
2

ξ(1 − ξ)Q2 + ζ(1 − ζ)q2
1

=

π
(

Q2
)iν− 1

2

cosh(πν)
B

(

1

2
+ tξ + iν,

1

2
+ tξ + iν

)

B

(

1

2
+ tζ − iν,

1

2
+ tζ − iν

)

, (17)

with B representing the Euler beta function. Using this formula for tξ/ζ ∈ {0, 1}
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we obtained

A
(0)
1

(

ν, y,Q2
)

=
α2

√
2

y Nc

(

Q2
)iν− 1

2
∑

q

e2q
1

16ν(ν2 + 1)

tanh(πν)

cosh(πν)

×
(

4ν2 + 9

2
y2 + (12ν2 + 11)(1 − y)

)

, (18a)

A
(2)
1

(

ν, y,Q2
)

=
α2

√
2

y Nc

(

Q2
)iν− 1

2
∑

q

e2q
1

16ν(ν2 + 1)

tanh(πν)

cosh(πν)

×
(

−(4ν2 + 1)(1 − y)
)

. (18b)

The last piece needed to complete Eq. (4) is the gluon Green’s function,
which can be written as

〈n, ν|f̂ |ν′, n′〉 =

∫

dω

2πi
〈n, ν|f̂ω|ν′, n′〉eωY = eχ(|n|, 12+iν,ᾱs)Y δ(ν−ν′)δnn′ , (19)

with the eigenvalue of the BFKL kernel being

χ
(

n,
1

2
+ iν, ᾱs

)

= ᾱsχ0

(

n,
1

2
+ iν

)

+ ᾱ2
s

(

χ1

(

n,
1

2
+ iν

)

− β0

8Nc
χ0

(

n,
1

2
+ iν

)

h(n)
rc

(

ν, y,Q2
)

)

. (20)

The action of the scale invariant sector of the NLO correction, given by the
function χ1(n, γ), was calculated in Ref. [13]. The last term in this equation
stems from the scale dependent part of the NLO kernel, i.e. from the running
of the coupling. Its explicit form, in our representation, depends on the impact
factors as given below and is discussed in more detail in Refs. [1, 3].

h(0)
rc

(

ν, y,Q2
)

= − 1

2ν2 + 1
2

+
3 ln(2)

5 − 4 cos(ν ln 4)

− i

[

π
cosh(2πν) − 3

sinh(2πν)
+

4 sin(ν ln 4) ln(2)

5 − 4 cos(ν ln 4)

− 8ν
y2 + 6(1 − y)

9y2 + 22(1 − y) + 4(y2 + 6(1 − y))ν2

+
3ν2 + 1

ν(ν2 + 1)
− ν

ν2 + 1
4

]

, (21a)

h(2)
rc

(

ν, y,Q2
)

= − 1

2ν2 + 1
2

+
3 ln(2)

5 − 4 cos(ν ln 4)

− i

[

π
cosh(2πν) − 3

sinh(2πν)
+

4 sin(ν ln 4) ln(2)

5 − 4 cos(ν ln 4)

+
3ν2 + 1

ν(ν2 + 1)
− 3ν

ν2 + 1
4

]

. (21b)
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Blending together the leptonic vertex of Eq. (15), the Green’s function of
Eq. (19) and the forward jet vertex given in Eq. (13), we obtain the cross section
of Eq. (4), which can be expressed in differential form as

dσ̂

dy dQ2 dφ
=
π2ᾱ2

s

2

∫

dν

∫

dν′

[

A
(0)
1

(

ν, y,Q2
)

〈0, ν|f̂ |ν′, 0〉c2(ν′)

+A
(2)
1

(

ν, y,Q2
)

〈2, ν|f̂ |ν′, 2〉c2(ν′) cos 2φ

]

, (22)

where we have introduced the azimuthal angle φ = α2−α1 between the electron
and the forward jet. We have also made use of the relation 〈n, ν|f̂ |ν′, n〉 =

〈−n, ν|f̂ |ν′,−n〉.
It is more convenient to write Eq. (22) as

dσ̂

dφ dy dQ2
=
π2ᾱ2

s

2

[

B(0)
(

y,Q2, Y
)

+B(2)
(

y,Q2, Y
)

cos 2φ
]

, (23)

where the coefficients B(n) at LO read

B
(n)
LO

(

y,Q2, Y
)

=

∫

dν A(n)
(

ν, y,Q2
)

c2(ν)e
Y ᾱsχ0(|n|,ν), (24)

and at NLO:

B
(n)
NLO

(

y,Q2, Y
)

=

∫

dν A(n)
(

ν, y,Q2
)

c2(ν)

× eᾱs(Q2)Y(χ0(|n|,ν)+ᾱs(Q2)(χ1(|n|,ν)−
β0

8Nc
χ0(n, 1

2+iν)h(n)
rc (ν,y,Q2))). (25)

The BFKL resummation presents an instability in transverse momentum
space when the NLO corrections are taken into account [14]. A prescription
to increase the convergence of the perturbative expansion is to improve the
original calculation by imposing compatibility of the scattering amplitudes with
the collinear limit dominated by renormalization group evolution [15, 16]. In
recent publications [2, 3] we have introduced these collinear improvements to
describe azimuthal angle dependences in the context of Mueller–Navelet jets.
Our results were later on reproduced in Ref. [17].

From a technical point of view, the collinearly–improved kernel of Ref. [2]
differs from the one needed in the DIS case only in the term due to the running
of the coupling in Eq. (20). This contribution changes the single and double
poles of the original kernel in the form

a0 → a0 −
β0

8Nc

(

7

6
+

1 − y

y
(

y
2 − 1

)

+ 1

)

, (26)

a2 → a2 −
β0

8Nc

(

107

30
+

5 ln 2

3

)

, (27)

bn → bn +
β0

4Nc
. (28)

These equations hence replace Eqs. (24, 25) of Ref. [2].
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3 Phenomenology

Besides the particular experimental cuts in the forward jet taken into account
when calculating the jet vertex of Eq. (13), we also used the following experi-
mentally motivated [18] constraints in the leptonic sector:

20 GeV2 < Q2 < 100 GeV2,

0.05 < y < 0.7,

5 · 10−3 > xBj > 4 · 10−4. (29)

The final expression for the cross section at hadronic level reads

dσ

dY dφ
=: C0(Y ) + C2(Y ) cos 2φ, (30)

with

Cn(Y ) =
π2ᾱ2

s

2

∫

cuts

dxFJ dQ
2 dy feff(xFJ, Q

2)B(n)(y,Q2, Y )δ

(

xFJ −
Q2eY

ys

)

,

(31)
where we performed the convolution with the effective parton distribution of
Eq. (2). The index in the integral sign refers to the particular cuts of Eq. (29).
The integration over the longitudinal momentum fraction xFJ of the forward jet
involves a delta function fixing the rapidity Y = lnxFJ/xBj. It is noteworthy
that any additional experimental upper cut on xFJ would modify the coefficients
Cn, with a negligible change in their ratios.

Since the structure of the electron vertex singles out the components with
conformal spin 0 and 2, the number of observables related to the azimuthal
angle dependence is limited when compared to the Mueller–Navelet case. The
most relevant observable is the dependence of the average < cos 2φ >= C2/C0

with the rapidity difference between the forward jet and outgoing lepton. It is
natural to expect that the forward jet will be more decorrelated from the leptonic
system as the rapidity difference is larger since the phase space for further gluon
emission opens up. This is indeed what we observe in our numerical results
shown in Fig. 2. We find similar results to the Mueller–Navelet jets case where
the most reliable calculation is that with a collinearly–improved kernel. The
main effect of the higher order corrections is to increase the azimuthal angle
correlation for a given rapidity difference, while keeping the decrease of the
correlation as Y grows. It is interesting to point out that, even for very small Y ,
the inclusive quark–antiquark pair (produced to couple the electron to the gluon
evolution) generates in the case of no gluon emission some angular decorrelation
between the forward jet and the electron.

Finally, we estimate the theoretical uncertainties derived from not including
the NLO impact factors by varying the scale s0, and those related to the running
of the coupling by doing the same with the renormalization scale µ. The range
of variation in both parameters is between 1/2 and 2 and the result is shown in
Fig. 3.
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Y

C2

C0

.02

.04

.06

.08

2 3 4 5 61

.1

Figure 2: < cos 2φ > at the ep collider HERA at leading (solid), next to leading
order (dashed), and for resummed kernel (dash-dotted).

YY

C2

C0

C2

C0

.02.02

.04.04

.06.06

.08.08

.12.12

.14.14

22 33 44 55 6611

.1.1

Figure 3: < cos 2φ > at the ep collider HERA for resummed kernel (dash-
dotted). The gray band reflects the uncertainty in s0 and in the renormalization
scale µ.
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At present, the data taken at the HERA collider provide the only possibility
to experimentally test our prediction. Nevertheless there are proposals to up-
grade the Large Hadron Collider (LHC) at CERN to a Large Electron Hadron
Collider [19]. The projected center of mass energy

√
s = 1.4 TeV is more than

four times bigger than at HERA and would allow for a larger rapidity separation
between the electron and the forward jet. We use the same cuts as for HERA
(Eq. (29)) apart from an adjusted lower bound for xBj of 2 · 10−5. Fig. 4 is a
plot of our results, which are very similar to those presented in Fig. 3.

YY

C2

C0

C2

C0

.02.02

.04.04

.06.06

.08.08

.1.1

.12.12

22 44 66 88 1010

Figure 4: < cos 2φ > at a possible ep collider LHeC with a gray band reflecting
the uncertainty in s0 and in the renormalization scale µ.

4 Conclusions

We have studied the effect of higher order corrections to the BFKL equation on
the angular decorrelation of forward jets in Deep Inelastic Scattering. The effect
of these additional terms is similar to the previously studied case of Mueller–
Navelet jets at hadron colliders. As the rapidity difference between the outgoing
lepton and the forward jet increases, the two systems decorrelate in azimuthal
angle due to the extra emission of soft gluons and higher order terms largely
increase the amount of correlation when compared to the leading order calcula-
tions. It would be very interesting to extract this dependence from the HERA
data with forward jets and study how important BFKL effects are for this ob-
servable. If the experience at the Tevatron is valid in this case, the BFKL
prediction will probably lie below the data, with a gradual improvement of the
fits as the rapidity difference increases.
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