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Abstract

We analyze in detail the size of next-to-leading order corrections to hard exclusive meson
production within the collinear factorization approach. Corrections to the cross section
are found to be huge at small xB and substantial in typical fixed-target kinematics. With
the models we take for nucleon helicity-flip distributions, the transverse target polarization
asymmetry in vector meson production is strongly affected by radiative corrections, except
at large xB . Its overall size is very small for ρ production but can be large in the ω channel.
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1 Introduction

Generalized parton distributions (GPDs) have developed into a versatile tool to quantify important
aspects of hadron structure in QCD. In particular they contain unique information on the transverse
spatial distribution of partons [1] and on spin-orbit effects and orbital angular momentum inside
the nucleon [2, 3]. Deeply virtual Compton scattering is widely recognized as the process providing
the theoretically cleanest access to GPDs, with a wealth of observables calculable in the large Q2

limit [4] and with the calculation of the hard-scattering subprocess now pushed to next-to-next-to-
leading order (NNLO) accuracy in αs [5]. A quantitative theoretical description of exclusive meson
production remains a challenge. It would offer the possibility to obtain important complementary
information, difficult to obtain from Compton scattering alone. Perhaps most importantly, vector
meson production is directly sensitive to gluon distributions, which in the Compton process are αs

suppressed relative to quark distributions and only accessible through scaling violation (just as in
the well-known case of inclusive deep inelastic scattering). Given in addition the large number of
channels that can be studied and the wealth of high-quality data in a wide range of kinematics from
collider to fixed-target energies [6, 7], it should be worthwhile to try and push the theory description
of exclusive meson production as far as possible.

In this work we study the exclusive production of light mesons at large photon virtuality Q2

within the framework of collinear factorization [8]. In Bjorken kinematics, the process amplitude can
be approximated by the convolution of hard-scattering kernels with generalized parton distributions
and the quark-antiquark distribution amplitude of the produced meson. The hard-scattering kernels
have been calculated to O(α2

s), i.e. to next-to-leading order (NLO) accuracy [9, 10, 11]. The aim of
the present paper is to investigate in some detail the size of the NLO corrections compared with the
leading-order (LO) results, on which phenomenological studies have so far relied.

The collinear factorization approach provides an approximation of the leading helicity amplitudes
for meson production in the Bjorken limit, up to relative corrections of order 1/Q2. These power
corrections cannot be calculated systematically (and in fact the derivation [8] of the factorization
theorem suggests that these corrections do not all factorize into hard-scattering kernels and nonper-
turbative quantities pertaining to either the nucleon or the produced meson). One particular source
of power corrections can however readily be identified, namely the effect of the transverse momentum
of partons entering the hard-scattering subprocess, which in the collinear approximation is neglected
in the calculation of the hard-scattering kernel. A number of approaches include these kT effects,
in particular the studies in [12, 13] based on the modified hard-scattering formalism of Sterman et
al. [14], and calculations like [15] which are based on the color dipole formulation. In the work by
Martin, Ryskin and Teubner [16], parton-hadron duality is used to model the meson formation and
thus the transverse momentum of the hadronizing quarks is included in the calculation, whereas the
transverse momentum of gluons in the proton is treated within high-energy kT factorization. The
studies just quoted agree in that transverse momentum effects result in substantial power corrections
to the collinear approximation for Q2 up to several GeV2. Unfortunately, the calculation of full
NLO corrections in αs remains not only a practical but also a conceptual challenge in all of these
approaches, so that the perturbative stability of their results cannot be investigated at present. (The
approach of Sterman et al. takes partial account of radiative corrections, resumming a certain class
of them into Sudakov form factors.)

A consistent simultaneous treatment of radiative and power corrections being out of reach at
this time, a possible strategy is to study the NLO corrections in the collinear approximation and in
particular to identify kinematical regions where these corrections are moderate or small. There one
can then use with greater confidence formulations incorporating power corrections. In this spirit the
present investigation should be understood. We will study both the cross section for meson production

3



from an unpolarized target and the transverse target polarization asymmetry. This asymmetry is one
of the few observables sensitive to the nucleon helicity-flip distributions (in particular for gluons) and
hence to the spin-orbit and orbital angular momentum effects mentioned above. We will in particular
see whether corrections tend to cancel in this polarization asymmetry, as is often assumed.

In the bulk of this paper we concentrate on the production of vector mesons. In Sect. 2 we set up
our notation and recall important properties of the hard-scattering kernels at NLO, as well as giving
a one-variable representation of these kernels after Gegenbauer expansion of the meson distribution
amplitude. In Sect. 3 we specify the model of the generalized parton distributions H and E we use for
our numerical studies. The size of radiative corrections involving convolutions with distributions H
is then studied in Sects. 4 and 5 for small and large xB , respectively, and the convolutions involving
distributions E are quantified in Sect. 6. In Sect. 7 we then look at the NLO corrections at the level of
the observable cross section and polarization asymmetry. A brief study of exclusive pion production
in Sect. 8 complements our work, and in Sect. 9 we summarize our main findings. A number of more
lengthy formulae is collected in appendices.

2 Hard-scattering kernels

In the main part of this paper we are concerned with exclusive production of a vector meson

γ∗(q) + p(p) → V (q′) + p(p′) (1)

in the limit of large Q2 = −q2 at fixed Bjorken variable xB = Q2/(2p · q) and fixed t = (p − p′)2. To
leading order in 1/Q, the amplitude for longitudinal polarization of photon and meson can be written
as

M =
2π

√
4πα

ξQNc
QV fV

∫ 1

0
dz φV (z)

∫ 1

−1
dx

{
Tg(z, x, ξ)F g(x, ξ, t)

+
1

nf

[
Ta(z̄, x, ξ) − Ta(z,−x, ξ)

]
FS(x, ξ, t) + Tb(z, x, ξ)FS(x, ξ, t)

+ e
(3)
V

[
Ta(z̄, x, ξ) − Ta(z,−x, ξ)

] [
F u(+)(x, ξ, t) − F d(+)(x, ξ, t)

]

+ e
(8)
V

[
Ta(z̄, x, ξ) − Ta(z,−x, ξ)

] [
F u(+)(x, ξ, t) + F d(+)(x, ξ, t) − 2F s(+)(x, ξ, t)

]}
(2)

with z̄ = 1 − z, Nc = 3, and the electromagnetic fine structure constant α. Throughout this paper
we work with nf = 3 active quark flavors. The proton matrix elements F are parameterized by
generalized parton distributions,

F q,g(x, ξ, t) =
1

(p + p′) · n

[
Hq,g(x, ξ, t) ū(p′)/nu(p) + Eq,g(x, ξ, t) ū(p′)

iσαβnα(p′ − p)β
2mp

u(p)

]
(3)

for quarks and gluons, where we use the conventions of [17]. Here n is a light-like auxiliary vector,
ξ = xB/(2 − xB) is the skewness variable, and mp denotes the nucleon mass. We have further
introduced the combination

F q(+)(x, ξ, t) = F q(x, ξ, t) − F q(−x, ξ, t) (4)

with positive charge conjugation parity. In (2) we have arranged the terms containing quark distri-
butions into the flavor singlet

FS = F u(+) + F d(+) + F s(+) (5)

4



Tb TgTa

γ

p

V

∗

p

Figure 1: Example graphs for the hard-scattering kernels Ta, Tb and Tg at order α2
s.

and the flavor triplet and octet combinations, F u(+) −F d(+) and F u(+) +F d(+) − 2F s(+). The factors

Qρ = 1√
2

, Qω = 1
3
√

2
, Qφ = −1

3 (6)

and

e(3)
ρ = e(8)

ρ = e(8)
ω = 1

6 , e(3)
ω = 3

2 , e
(3)
φ = 0 , e

(8)
φ = −1

3 (7)

correspond to a respective flavor content

1√
2

(
|uū〉 − |dd̄〉

)
, 1√

2

(
|uū〉 + |dd̄〉

)
, |ss̄〉 (8)

of the ρ, ω and φ. The meson distribution amplitudes φV (z) are normalized as
∫ 1
0 dz φV (z) = 1, and

the decay constants have the values fρ = 209MeV, fω = 187MeV, fφ = 221MeV [18]. We finally
have hard-scattering kernels in (2), where Tg goes with gluon and Ta, Tb go with quark distributions
in the proton. In the graphs for Ta quark lines connect the proton and meson side, whereas in the
graphs for Tb the proton and meson side are only connected by gluon lines. Tb thus starts at order α2

s

and only goes with the quark singlet distribution FS . Example graphs for the three kernels at NLO
are shown in Fig. 1. We will refer to Tg, Ta, Tb as the gluon, the quark non-singlet, and the pure
quark singlet kernel, respectively.

For better legibility we have not displayed the dependence on the renormalization and factorization
scales in (2). The renormalization scale µR appears as argument of αs and through explicit logarithms
in the hard-scattering kernels T . The kernels further contain logarithms of the respective factorization
scales µDA and µGPD for the meson distribution amplitude and the generalized parton distributions.
The NLO kernels in [10, 11] are given for a common factorization scale µF = µDA = µGPD. We can
restore the individual logarithms of µDA and µGPD from the requirement that within the calculated
precision the process amplitude (2) must be independent of these scales. As an example consider the
term

d

d ln µ2
DA

∫ 1

0
dz φV (z;µDA)Ta(z̄, x, ξ; αs(µR), µR, µGPD, µDA, Q)

=

∫ 1

0
dz

[
d

d lnµ2
DA

φV (z;µDA)

]
Ta(z̄, x, ξ; αs(µR), µR, µGPD, µDA, Q)

+

∫ 1

0
dz φV (z;µDA)

[
d

d lnµ2
DA

Ta(z̄, x, ξ; αs(µR), µR, µGPD, µDA, Q)

]
, (9)

where the scale dependence of φV (z;µDA) is given by the ERBL evolution equation [19]. At lead-
ing order this gives a term d/d(lnµ2

DA )φV (z;µDA) of order αs, whose convolution with the O(αs)

5



part of Ta must cancel against the contribution from explicit logarithms of µDA in the O(α2
s) part

of Ta. An analogous argument holds for the dependence on µGPD, with the complication that
the gluon and quark singlet distributions mix under evolution. More precisely, the convolution of
d/d(lnµ2

GPD )FS(x, ξ, t;µGPD) with the O(αs) part of Ta cancels at O(α2
s) against the contributions

from logarithms of µGPD in Ta and in Tg. Likewise, the convolution of d/d(lnµ2
GPD )F g(x, ξ, t;µGPD)

with the Born term of Tg cancels at O(α2
s) against the contributions from logarithms of µGPD in Tg

and in the pure singlet kernel Tb. We have explicitly checked that the scale dependence of the hard-
scattering kernels given in [11] cancels in the process amplitude (2) as just described, using the LO
evolution equations for GPDs given in App. C.

Separating the µDA and µGPD dependence, we can write the kernels as

Tg(z, x, ξ) = −αs
ξ

(ξ − x − iǫ)(ξ + x − iǫ)

1

zz̄

[
1 +

αs

4π
Ig

(
z,

ξ − x

2ξ

)]
,

Tb(z, x, ξ) = CF
α2

s

8π

1

zz̄
Ib

(
z,

ξ − x

2ξ

)
,

Ta(z̄, x, ξ) = −CF αs
ξ

ξ − x − iǫ

1

z̄

[
1 +

αs

4π
Ia

(
z̄,

ξ − x

2ξ

)]
(10)

with

Ig(z, y) =

[
2CA

(
ȳ

y
+

y

ȳ

)(
y ln y + ȳ ln ȳ

)
− CF

(
y

ȳ
ln y +

ȳ

y
ln ȳ

)]
ln

Q2

µ2
GPD

+ β0 ln
µ2

R

µ2
GPD

+ CF

(
3 + 2z ln z̄ + 2z̄ ln z

)
ln

Q2

µ2
DA

+ Kg(z, y) ,

Ib(z, y) = 2(ȳ − y)

(
ln y

ȳ
+

ln ȳ

y

)
ln

Q2

µ2
GPD

+ Kb(z, y) (11)

and

Ia(v, u) = β0

(
5

3
− ln(vu) − ln

Q2

µ2
R

)
+ CF

(
3 + 2 ln u

)
ln

Q2

µ2
GPD

+ CF

(
3 + 2 ln v

)
ln

Q2

µ2
DA

+ Ka(v, u) , (12)

where ȳ = 1 − y and we use the standard notation

CF =
N2

c − 1

2Nc
, CA = Nc , β0 =

11

3
Nc −

2

3
nf . (13)

The functions Kg, Kb and Ka are independent of Q2 and the renormalization and factorization scales.
They contain factors CF or CA but not β0. Their expressions can be found in [11], taking into account
that the kernels Tg and Tb here are denoted by Tg and T(+) there, and that

T (v, u)

∣∣∣∣
[11]

=
CF αs

4vu

[
1 +

αs

4π
Ia(v, u)

]

here

, y
∣∣
[11]

= −y
∣∣
here

. (14)

Note that the pure singlet kernel Tb does not contain logarithms of µDA and µR at O(α2
s), since there

is no Born level contribution against which they could cancel in the scale dependence of the process
amplitude. There is however a logarithm of µGPD, since the corresponding derivative of the Born level
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convolution of Tg with F g contains a term going with the quark singlet distribution FS , as already
mentioned after (9).

The kernels in (10) have singularities for real-valued arguments. One readily finds that x/ξ =
(ŝ− û)/Q2, where ŝ and û are the Mandelstam variables for the parton-level subprocess γ∗q → (qq̄)q
or γ∗g → (qq̄)g. The prescriptions ŝ + iǫ for the ŝ-channel and û + iǫ for the û-channel singularities
thus instruct us to take x + iǫ for x > 0 and x − iǫ for x < 0. Correspondingly, the second argument
(ξ − x)/(2ξ) of Ig, Ib and Ia must be taken with −iǫ for x > 0 and +iǫ for x < 0. In Ta(z,−x, ξ) the
second argument of Ia is (ξ + x)/(2ξ), which has to be taken with −iǫ for x < 0 and +iǫ for x > 0.
We remark that, as it is written, the iǫ prescription in [11] for the gluon and the pure singlet kernel
is correct for x > 0 but incorrect for x < 0. Likewise, the prescription given in [10, 11] for the quark
non-singlet kernel is correct for x > 0 if the corresponding argument is (ξ − x)/(2ξ) and for x < 0 if
the argument is (ξ + x)/(2ξ), but incorrect in the other cases.1

2.1 Gegenbauer expansion

Let us expand the meson distribution amplitude on Gegenbauer polynomials,

φV (z;µ) = 6z(1 − z)

∞∑

n=0

an(µ)C3/2
n (2z − 1) , (15)

where a0 = 1 according to the normalization condition
∫ 1
0 dz φV (z) = 1. To leading order, the

Gegenbauer coefficients evolve as

an(µ) = an(µ0)

(
αs(µ)

αs(µ0)

)γn/β0

(16)

with anomalous dimensions

γ0 = 0 , γ2 = 25
6 CF , γ4 = 91

15 CF , (17)

where αs(µ) is the running coupling at one-loop accuracy. One has γn ≈ 4CF ln(n+1) within at most
6% for all n. For V = ρ, ω, φ only coefficients an with even n are nonzero due to charge conjugation
invariance, and in all subsequent expressions of this paper we consider n to be even. Calculations of
the distribution amplitudes in models or on the lattice typically give values for the first or the first
two nonvanishing moments, see e.g. [20, 21, 22], so that a truncated version of the expansion (15) is
very often used in phenomenological studies. Convolution with individual terms in (15) also allows
us to reduce the hard-scattering kernels for meson production to functions of a single longitudinal
variable. More precisely, we can rewrite the process amplitude (2) as

M =
2π

√
4πα

ξQNc
QV fV

∞∑

n=0

an

[
Fg

n + FS(a)
n + FS(b)

n + e
(3)
V F (3)

n + e
(8)
V F (8)

n

]
(18)

with convolutions in x

Fg
n =

∫ 1

−1
dxTg,n(x, ξ)F g(x, ξ, t) , FS(b)

n =

∫ 1

−1
dxTb,n(x, ξ)FS(x, ξ, t) ,

FS(a)
n =

∫ 1

−1
dx
[
Ta,n(x, ξ) − Ta,n(−x, ξ)

] 1

nf
FS(x, ξ, t) ,

F (3)
n =

∫ 1

−1
dx
[
Ta,n(x, ξ) − Ta,n(−x, ξ)

] [
F u(+)(x, ξ, t) − F d(+)(x, ξ, t)

]
,

1We thank Dima Ivanov for discussions on this point. The numerical results in [11] were obtained with the correct
prescription.
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F (8)
n =

∫ 1

−1
dx
[
Ta,n(x, ξ) − Ta,n(−x, ξ)

] [
F u(+)(x, ξ, t) + F d(+)(x, ξ, t) − 2F s(+)(x, ξ, t)

]
, (19)

which depend on ξ and t, and logarithmically on Q2 and on the factorization and renormalization
scales. At order α2

s the dependence on µR and on µDA cancels in each separate convolution, while the
dependence on µGPD cancels in F (3)

n and F (8)
n and in the sum Fg

n + FS(a)
n + FS(b)

n as discussed after
(9). In analogy to (19) we define convolutions H and E for the individual distributions H and E in
(3). The kernels Tg,n, Ta,n, Tb,n are obtained from Tg, Ta, Tb by multiplying with 6z(1−z)C3/2

n (2z−1)
and integrating over z. For n = 0 we find

Tg,n(x, ξ) = −3αs
2ξ

(ξ − x − iǫ)(ξ + x − iǫ)

[
1 +

αs

4π
tg,n

(
ξ − x

2ξ

)]
,

Tb,n(x, ξ) = 3CF
α2

s

4π
tb,n

(
ξ − x

2ξ

)
,

Ta,n(x, ξ) = −3CF αs
ξ

ξ − x − iǫ

[
1 +

αs

4π
ta,n

(
ξ − x

2ξ

)]
(20)

with

tg,0(y) =

[
2CA (y2 + ȳ2) − CF y

]
ln y

ȳ
ln

Q2

µ2
GPD

+
β0

2
ln

µ2
R

µ2
GPD

+ CF

[
−5

2
+

(
1

ȳ
+ 1 − 4y

)
ln y − y

2

ln2 y

ȳ

− 2(ȳ − y) Li2 ȳ − 4yȳ

(
3Li3 ȳ − ln y Li2 y − π2

6
ln y

)]

+ CA

[
−
(

6

ȳ
− 8y

)
ln y +

(
1

ȳ
− 2y

)
ln2 y + 2(ȳ − y) Li2 ȳ

]
+ {y → ȳ} ,

tb,0(y) = 2(ȳ − y)
ln y

ȳ

[
ln

Q2

µ2
GPD

− 3

]
+ (ȳ − y)

ln2 y

ȳ
+ 4Li2 ȳ − {y → ȳ} ,

ta,0(y) = β0

[
19

6
− ln y − ln

Q2

µ2
R

]
+ CF

[
(3 + 2 ln y) ln

Q2

µ2
GPD

− 77

6
−
(

1

ȳ
− 3

)
ln y + ln2 y

]

+ (2CF − CA)

{
−1

3
− 4(2 − 3y) ln ȳ + 2(1 − 6y) ln y + 4(1 − 3y)

(
Li2 y − Li2 ȳ

)

+ 2(1 − 6yȳ)

[
3
(
Li3 ȳ + Li3 y

)
− ln y Li2 y − ln ȳ Li2 ȳ − π2

6

(
ln y + ln ȳ

)]}
. (21)

The corresponding kernels for n = 2 and n = 4 are given in App. B. The iǫ prescription to be used
in (20) is the same as specified at the end of the previous subsection. This implies that in tg,n(y),
tb,n(y), ta,n(y) and ta,n(ȳ) one has to take ln(y − iǫ), Li2(ȳ + iǫ) and Li3(ȳ + iǫ) for y < 0. For the
gluon and pure singlet kernel, which dominate in process amplitudes at small ξ, we have in particular

1

π
Im tg,0(y) = −

[
2CA (y2 + ȳ2) − CF y

]
1

ȳ
ln

Q2

µ2
GPD

− CF

[
1 − 4y +

1 − y ln(−y)

ȳ
+ 2(ȳ − y) ln ȳ + 2yȳ

(
ln2 ȳ + 2Li2 y +

π2

3

)]

+ 2CA

[
3

ȳ
− 4y −

(
1

ȳ
− 2y

)
ln(−y) + (ȳ − y) ln ȳ

]
,

8



1

π
Im tb,0(y) = 2

ȳ − y

ȳ

[
3 − ln(−y) − ln

Q2

µ2
GPD

]
+ 4 ln ȳ (22)

in the region y < 0. In the limit y → 0 all three expressions in (21) contain singular terms proportional
to ln y and ln2 y. For the convolution (19) we should however consider (yȳ)−1 tg,n(y), y−1 ta,n(y) and
ȳ−1 ta,n(ȳ) according to (20). With the appropriate iǫ prescription, these kernels contain terms which
for y → 0 go like (y − iǫ)−1 lnm(y − iǫ), where m = 0, 1, 2.

3 Model for the unpolarized GPDs

It is difficult to study the impact of NLO corrections at the level of the hard-scattering kernels given
in the previous subsection, especially since they are not smooth functions but distributions with
singularities at y = 0. We will therefore use model GPDs to investigate the radiative corrections at
the level of the convolution integrals (19). The aim of this work is not a systematic improvement of
existing models, nor a detailed exploration of model uncertainties on observables in exclusive meson
production. We do however require that the models we use are consistent with known theoretical
requirements and basic phenomenological constraints.

For Hq and Hg we adopt the widely used ansatz of [26, 27] based on double distributions, where
a ξ dependence is generated according to

Hq(+)(x, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x − β − ξα)h(2)(β, α)Hq(+)(β, 0, t) ,

Hg(x, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x − β − ξα)h(2)(β, α)Hg(β, 0, t) (23)

with

h(b)(β, α) =
Γ(2b + 2)

22b+1Γ2(b + 1)

[(1 − |β|)2 − α2]b

(1 − |β|)2b+1
. (24)

The distributions at zero skewness are taken as

Hq(+)(x, 0, t) = qv(x) exp
[
tfqv

(x)
]
+ 2 q̄(x) exp

[
tfq̄(x)

]
,

Hg(x, 0, t) = xg(x) exp
[
tfg(x)

]
(25)

for x > 0, with the values for x < 0 following from the symmetry properties of the distributions. Here
qv(x) = q(x) − q̄(x), q̄(x) and g(x) are the usual unpolarized densities for valence quarks, antiquarks
and gluons, for which we take the CTEQ6M parameterization [29]. This parameterization has an
identical strange and antistrange sea, so that sv(x) = 0. The ansatz (23) is taken at a starting scale
µ0 and then evolved with the LO evolution equations given in App. C. For the studies in Sects. 4
and 5 we take µ0 = 1.3GeV, which is the starting scale of evolution for the CTEQ6M densities. In
Sects. 6 and 7 we will instead take µ0 = 2GeV, since this will allow us to use the results for the t
dependence of valence distributions obtained in [28].

For the t dependence in the ansatz (23) we follow the modeling strategy of [27] and take an
exponential behavior in t with an x dependent slope. For valence quarks we take the slope functions

fqv
(x) = α′

v(1 − x)3 ln
1

x
+ Bqv

(1 − x)3 + Aqv
x(1 − x)2 (26)

with parameters α′
v = 0.9GeV−2 and
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Auv
= 1.26GeV−2 , Buv

= 0.59GeV−2 ,

Adv
= 3.82GeV−2 , Bdv

= 0.32GeV−2 , (27)

from [28]. We recall the sum rule

F q
1 (t) =

∫ 1

−1
dxHq(x, 0, t) =

∫ 1

0
dx qv(x) exp

[
tfqv

(x)
]
, (28)

from which one obtains the electromagnetic Dirac form factors of proton and neutron by appropriate
quark flavor combinations. Together with the CTEQ6M distributions at µ0 = 2GeV, the ansatz in
(26) and (27) gives a good description of the data for these form factors. For gluons we take a slightly
simpler form than (26) and set

fg(x) = α′
g(1 − x)2 ln

1

x
+ Bg(1 − x)2 . (29)

For the parameters we take

α′
g = 0.164GeV−2 , Bg = 1.2GeV−2 (30)

so as to match recent H1 data on J/Ψ photoproduction, whose t dependence is well fitted by [30]

dσ

dt
∝ exp

[(
b0 + 4α′

g ln
Wγp

W0

)
t

]
(31)

with central values b0 = 4.63GeV−2 and α′
g = 0.164GeV−2 for W0 = 90GeV. To connect (31)

with (29) we have used the approximate relation dσ/dt ∝ |Hg(ξ, ξ, t)|2, which is obtained when only
keeping the imaginary part of the tree-level amplitude, where 2ξ = (MJ/Ψ/Wγp)

2 in terms of the
γp c.m. energy. With the ansatz (23) one approximately has Hg(ξ, ξ, t) ∝ exp

[
tfg(2ξ)

]
for the t

dependence of the GPD [13].
Whereas information on valence quark GPDs can be obtained from the sum rules (28) and infor-

mation on gluon GPDs from J/Ψ production, almost nothing is so far known about the t dependence
of GPDs for antiquarks. As a simple ansatz we shall take their slope functions equal to those in the
valence sector,

fū = fuv
, fd̄ = fdv

, fs̄ = fdv
, (32)

bearing in mind that it remains an outstanding task to develop more realistic models.

3.1 Nucleon helicity-flip distributions

The nucleon helicity-flip distributions Eq and Eg are less-well known than their counterparts Hq and
Hg, because their values at ξ = 0 and t = 0 cannot be measured in inclusive processes and are thus
subject to considerable uncertainty.

The model described in this subsection refers to a scale of µ0 = 2GeV. We make a double
distribution based ansatz

Eq(+)(x, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x − β − ξα)h(2)(β, α)Eq(+)(β, 0, t) ,

Eg(x, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x − β − ξα)h(2)(β, α)Eg(β, 0, t) (33)

10



as in (23), and for x > 0 set

Eq(+)(x, 0, t) = eqv
(x) exp

[
tgqv

(x)
]
+ 2eq̄(x) exp

[
tgq̄(x)

]
,

Eg(x, 0, t) = xeg(x) exp
[
tgg(x)

]
, (34)

with the corresponding values for x < 0 determined by the symmetry properties of the distributions.
For the forward limit of the valence distribution we take

eqv
(x) = κq N(αv, βqv

)x−αv (1 − x)βqv , (35)

whose normalization factor

N(α, β) =
Γ(2 − α + β)

Γ(1 − α) Γ(1 + β)
(36)

ensures the sum rules

κq =

∫ 1

−1
dxEq(x, 0, 0) =

∫ 1

0
dx eqv

(x) , (37)

where κu ≈ 1.67 and κd ≈ −2.03 are the contributions of u and d quarks to the anomalous magnetic
moment of the proton. For the functions controlling the t dependence we take the same form as
in (26),

gqv
(x) = α′

v(1 − x)3 ln
1

x
+ Dqv

(1 − x)3 + Cqv
x(1 − x)2 . (38)

With the parameters αv = 0.55, α′
v = 0.9GeV−2 and

βu = 3.99 , Cuv
= 1.22GeV−2 , Duv

= 0.38GeV−2 ,

βd = 5.59 , Cdv
= 2.59GeV−2 , Ddv

= −0.75GeV−2 , (39)

from [28] one obtains a good fit to the electromagnetic Pauli form factors of proton and neutron via
the generalization of the sum rule (37) to finite t.

For the forward limit of the distributions of antiquarks and gluons we make the same simple ansatz
as in (35),

eq̄(x) = kq̄ x−αq̄ (1 − x)βq̄ , eg(x) = kg x−αg (1 − x)βg , (40)

and for the t dependence in the gluon sector we set

gg(x) = α′
g(1 − x)2 ln

1

x
+ Dg(1 − x)2 , (41)

in analogy to the form (29) we used for Hg. We presently have not no phenomenological information
on these distributions, but two theoretical constraints. There is a condition that ensures positive
semidefinite densities of partons in the transverse plane [31], which with our ansatz for the GPDs
reads [28]

[
eq̄(x)

q̄(x)

]2

≤ 8em2
p

[
gq̄(x)

fq̄(x)

]3 [
fq̄(x) − gq̄(x)

]
,

[
eg(x)

g(x)

]2

≤ 8em2
p

[
gg(x)

fg(x)

]3 [
fg(x) − gg(x)

]
(42)
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if we neglect for simplicity the polarized antiquark and gluon distributions compared with the unpo-
larized ones. On the other hand we have the sum rule

0 =

∫ 1

0
dxEg(x, 0, 0) +

∑

q

∫ 1

−1
dxxEq(x, 0, 0)

=

∫ 1

0
dxxeg(x) +

∑

q

∫ 1

0
dxx

[
eqv

(x) + 2eq̄(x)
]

(43)

following from the conservation of the energy-momentum tensor. For the parameters in (41) we take

α′
g = 0.164GeV−2 , Dg = 1.08GeV−2 , (44)

with α′
g as in (30) and Dg slightly smaller than its counterpart Bg for Hg, so that the positivity

condition (42) can be fulfilled. Assuming a similar small-x behavior of the distributions for proton
helicity-flip and non-flip, we take in (40) the values αq̄ = 1.25 and αg = 1.10, which we obtain when
fitting the CTEQ6M distributions to a power law in the x range from 10−4 to 10−3.

Since it turns out that the transverse target polarization asymmetry in ρ production is very
sensitive to the details of the helicity-flip distributions, we will explore two model scenarios in our
numerical studies:

1. a scenario where the sea quark distributions eq̄ behave similarly to the valence distributions eqv
.

For the t dependence we then take gū(x) = guv
(x) and gd̄(x) = gdv

(x). The parameters kq̄ in
(40) are taken such that second moments at t = 0 fulfill

∫ 1
0 dxxeq̄(x)
∫ 1
0 dxxeqv

(x)
=

∫ 1
0 dxxq̄(x)
∫ 1
0 dxxqv(x)

(45)

for q = u, d, where the ratio on the r.h.s. is taken from the CTEQ6M parameterization at µ =
2GeV. Its value is 0.095 for u and 0.30 for d quarks. This fixes the values of kq̄ N−1(αq̄ − 1, βq̄)
with N given in (36). For the strange distribution we set es = es̄ = 0, and kg N−1(αg − 1, βg)
is then fixed by the sum rule (43).

The powers βq̄ and βg controlling the large-x behavior are finally taken to have the smallest
values for which the positivity condition (42) holds in the range x < 0.9 (for higher x even the
unpolarized densities are so uncertain that we do not insist on the positivity conditions to be
fulfilled).

2. a scenario where eq̄ behaves similarly to the gluon distribution eg . The t dependence is now
modeled by taking gq̄(x) = gg(x) for q = u, d, s. For the second moments we impose

∫ 1
0 dxxeq̄(x)
∫ 1
0 dxxeg(x)

=

∫ 1
0 dxxq̄(x)
∫ 1
0 dxxg(x)

(46)

for the three light quark flavors, where with the CTEQ6M distributions the r.h.s. is equal to
0.064, 0.083, 0.036 for u, d, s, respectively. We now have a nonzero es = es̄. The values of
kq̄ N−1(αq̄ −1, βq̄) and kg N−1(αg −1, βg) are taken to fulfill both (46) and (43), and the powers
βq̄, βg are set to the minimal values for which positivity holds in the range x < 0.9.

The parameters resulting from this modeling procedure are collected in Table 1, and the distributions
at ξ = 0 and t = 0 for model 1 are shown in Fig. 2.
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Table 1: Parameters in the ansatz (40) for different parton species a in the two models described in
the text. The values for valence quarks apply to both models, with normalization parameters given
by kqv

= κq N(αv, βqv
) according to (35). The last line gives the second Mellin moment at µ = 2GeV

in the forward limit.

model 1 model 2

uv dv ū d̄ g ū d̄ s̄ g

αa 0.55 0.55 1.25 1.25 1.10 1.25 1.25 1.25 1.10

βa 3.99 5.59 9.6 9.2 6.7 7.6 6.5 5.5 2.5

ka 1.71 −2.36 0.06 −0.18 0.26 −0.0016 −0.0018 −0.0007 −0.017
∫ 1
0 dxxea(x) 0.138 −0.130 0.013 −0.039 0.044 −0.0004 −0.0005 −0.0002 −0.0059
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ū + d̄

ea(x)

x

Figure 2: The forward limits ea(x) of the nucleon helicity-flip distributions at µ = 2GeV for different
parton species a in model 1.

We find that in model 2, both sea quark and gluon distributions are nearly zero (so that we do
not attach importance to the unrealistically small value of βg obtained with our above procedure).
Their smallness can be traced back to the small value of the flavor singlet integral

∫ 1

0
dxx

[
euv

(x) + edv
(x)
]

= 0.008 (47)

in the valence sector of our ansatz. In model 2, the distributions eq̄ and eg have the same sign as a
consequence of (46) and due to the sum rule (43) can only be tiny. Somewhat larger distributions for
sea quarks and gluons are obtained in model 1, where they have opposite sign because of (45).

We note that the parameters (39) we have taken for the valence part of Eq are by no means
precisely determined by a fit to the Pauli form factors: alternative fits in [28] gave a similarly good
description of the form factor data, with some variation of the resulting value of the integral in (47).
Nevertheless, any model where euv

and edv
have similar shapes and no zeroes in x will yield rather

small values of this integral, given the strong cancellation between u and d quark contributions in the
moment

∫ 1
0 dx

[
euv

(x) + edv
(x)
]

= κu + κd ≈ −0.36. It would be interesting to explore how much the
integral (47) and as a consequence the sea quark and gluon distributions can vary in realistic models,
but such an investigation is beyond the scope of this work.
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We end this section by quoting the values for the total angular momentum carried by quarks and
antiquarks of a given flavor in our model, given by

Jq =
1

2

∫ 1

−1
dxx

[
Hq(x, 0, 0) + Eq(x, 0, 0)

]
(48)

according to Ji’s sum rule [2]. With the parameters in Table 1 and the CTEQ6M distributions we
find

Ju = 0.25 , Jd = −0.01 , (model 1)

Ju = 0.24 , Jd = 0.03 (model 2) (49)

at the scale µ = 2GeV of our model. We note that this is in rather good agreement with the
results of recent lattice calculations, with Ju = 0.214(16) and Jd = −0.001(16) reported in [32], and
Ju = 0.33(2) and Jd = −0.02(2) in [33]. Let us reiterate that with just two sets of model parameters
we cannot exhaust the range of possible scenarios but only provide two representatives that are
consistent with presently known constraints. As just discussed, the relative smallness of sea quark
and gluon distributions compared with the nucleon helicity conserving case should however be typical
of a rather wide class of models.

4 Vector meson production at small xB

We now study numerically the importance of NLO corrections in vector meson production. Here
and in the following sections we use the two-loop strong coupling for nf = 3 flavors with a QCD
scale parameter Λ(3) = 226MeV. This value corresponds to Λ(4) = 326MeV, Λ(5) = 372MeV and
to α(5)

s (MZ) = 0.118 when matching at mc = 1.3GeV and mb = 4.5GeV, which are the values
used in the CTEQ6M parton analysis [29]. We also take nf = 3 fixed in the evolution and the
hard-scattering kernels. Taking nf = 4 with massless charm or nf = 5 with massless charm and
bottom would not be a good approximation for the rather moderate values of Q2 we will discuss
for fixed-target kinematics. On the other hand, taking nf = 3 and neglecting charm altogether is
admittedly not a good approximation for the larger Q2 relevant in collider kinematics. However, with
α(3)

s = 0.164 compared to α(5)
s = 0.178 at µ = 10GeV we expect that this inaccuracy will not affect

the conclusions at high Q2 we shall draw from our studies.
We have performed the evolution of the GPDs at LO using the momentum-space evolution code

of [34]. As explained in Sect. 2, taking LO evolution together with the NLO hard-scattering kernels
is sufficient to obtain scale independence of the process amplitude up to uncalculated corrections of
order α3

s. With the input scale of evolution not taken too small, NLO evolution effects should be
rather moderate at the Q2 values relevant in fixed-target kinematics, whereas our general conclusions
for high Q2 and small xB will again not depend on this level of detail. We note that the NLO kernels in
momentum space are available in the literature [35], but their considerable length makes it difficult to
implement them in a fast numerical evaluation. For including NLO effects in the evolution it should
be more efficient to use the Mellin space approach recently followed for deeply virtual Compton
scattering in [5].

Here and in the following section we consider the convolutions of hard-scattering kernels with
GPDs at t = 0. For nonzero ξ = xB/(2 − xB) this should be understood in the sense of an analytic
continuation, since the physical region for meson production is −t ≥ 4m2

pξ2/(1 − ξ2) in Bjorken
kinematics. To explore the importance of NLO corrections we do not see this as a shortcoming.

Let us start our discussion with the gluon and quark singlet sector. Here and in following we shall
always present the convolutions (19) for Gegenbauer index n = 0 unless indicated otherwise. In Fig. 3
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Figure 3: LO and NLO terms of the convolutions in the gluon and quark singlet sector at Q = 4GeV.
The scales are set to µR = µGPD = µDA = Q. The NLO terms are for Gegenbauer index n = 0 unless
specified explicitly. Here and in the following plots the label “NLO” denotes the O(α2

s) part of the
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Figure 6: Cross section for γ∗p → ρp with longitudinal photon polarization. Bands correspond to
the range Q/2 < µ < 2Q and solid lines to µ = Q. We also show the power-law behavior σ ∝ W 0.88

(with arbitrary normalization) obtained from a fit to data in the range 0.001<∼ xB <∼ 0.005 [36].

we show the LO and NLO pieces of the convolutions for the scale choice µR = µGPD = µDA = Q. The
size of corrections at small xB is dramatic: we have large NLO corrections with opposite sign compared
to the LO term for Hg, and a similarly large NLO contribution from HS(b) with sign opposite to the
LO result for HS(a). In the sum of gluon and quark singlet terms, the NLO corrections drastically
reduce the LO result or even lead to a change of sign between LO and the sum of LO and NLO
results. We also observe that for higher Gegenbauer index the NLO corrections tend to be even more
important. Note that the LO term of the convolutions is the same for all n as can be seen from
(19) and (20). The size of NLO corrections in HS(a) is comparatively moderate, at least for lower
Gegenbauer moments. The same is seen for the quark non-singlet convolutions in Fig. 4. Of course,
the gluon and quark singlet terms will dominate meson production at small xB in those channels
where it is allowed by the meson quantum numbers.

In Fig. 5 we explore the influence of the scale choice by varying µR = µGPD simultaneously. For
xB = 2× 10−3 we find an indication for the onset of perturbative stability at Q = 7GeV but not yet
at Q = 4GeV. For xB = 2 × 10−2 the situation is less severe, with moderate corrections in a wide
µ range already at Q = 4GeV. In contrast, when going down to xB = 2 × 10−4 we find very large
corrections even at Q = 7GeV. We have checked that the conclusions in the respective kinematics
do not change when we vary µGPD while keeping µR = Q fixed.

Figure 6 shows how the perturbative instability we observed in the convolutions affects the longitu-
dinal cross section for ρ production. Here we have taken the asymptotic form of the meson distribution
amplitude, i.e. set an = 0 for n ≥ 2. In the NLO result for the cross section we have squared the co-
herent sum of LO and NLO terms in the process amplitude,2 i.e. we have taken |MLO +MNLO|2. We
see that the NLO corrections severely decrease the LO result. As a consequence of the cancellations
between LO and NLO contributions, the scale dependence of the cross section does not decrease. We
also show in the figure the power-law behavior σ ∝ W 0.88 obtained from a fit to data in the range
0.001<∼ xB <∼ 0.005 [36]. As observed in [13], a double distribution model with the CTEQ6M distri-
butions as input lead to a rather good description of this experimentally observed energy dependence

2We thus keep terms of O(α3
s) in the cross section, although the accuracy of the NLO calculation is only up to O(α2

s).
This should not be seen as a problem, as it will not make a considerable difference in situations where perturbative
corrections are moderate, whereas in situations where NLO corrections are huge we would neither trust the cross section
with or without the partially included O(α3

s) terms.
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Figure 7: The factorization scale dependent and independent terms of Im tg,n and Im tb,n as specified
in (54), shown for n = 0 and y < 0.

if the cross section is evaluated at LO. With the strong cancellations from the O(α2
s) corrections, one

obtains an NLO result whose energy behavior is much too weak.
Let us discuss how the huge size of corrections can be understood at an analytical level, following

the line of argument given in [11, 37]. Using (81) and (82) we can approximate the hard-scattering
kernels for large negative y as

1

π
Im Ig(z, y) = 4CA

[
ln(zz̄) + ln

Q2

µ2
GPD

]
y + O(1) , ReIg(z, y) = O(1) ,

1

π
ImIb(z, y) = 4

[
1 − ln(zz̄) − ln

Q2

µ2
GPD

]
+ O

(
y−1
)
, ReIb(z, y) = O

(
y−1
)
, (50)

where here and in the following the order of corrections is given up to powers of ln ȳ. The quark
non-singlet kernel is subleading compared with the pure singlet one,

Ia(z̄, y)

y
∼ Ia(z, ȳ)

ȳ
∼ O

(
y−1
)
, (51)

where we have divided Ia(z̄, y) by y corresponding to the prefactor in the complete kernel (10). From
(50) we readily obtain

1

π
Im tg,n(y) = −4CA

[
cn − ln

Q2

µ2
GPD

]
y + O(1) ,

1

π
Im tb,n(y) = 4

[
cn + 1 − ln

Q2

µ2
GPD

]
+ O

(
y−1
)

(52)

with constants

c0 = 2 , c2 =
11

3
≈ 3.7 , c4 =

137

30
≈ 4.6 , cn = −

∫ 1

0
dz ln(zz̄)C3/2

n (2z − 1) (53)

that increase with the Gegenbauer index n. In Fig. 7 we show for the case n = 0 that these approxi-
mations become very good for increasing |y|, where we have decomposed the exact kernels as

Im tg,n(y) = Im tCg,n(y) + Im tGg,n(y) ln
Q2

µ2
GPD

,
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Im tb,n(y) = Im tCb,n(y) + Im tGb,n(y) ln
Q2

µ2
GPD

. (54)

Let us now rewrite the convolutions of kernels and GPDs in terms of the variable ω = x/ξ,

Im
[
Hg

n + HS(b)
n

]
= −6αs

[
πHg(ξ, ξ, t) +

αs

4π
Im

∫ 1/ξ

0
dω

×
{

2

1 − ω − iǫ
tg,n

(
1 − ω − iǫ

2

)
Hg(ωξ, ξ, t)

1 + ω
− CF tb,n

(
1 − ω − iǫ

2

)
ξHS(ωξ, ξ, t)

}]
. (55)

For ω ≥ ω0 with some ω0 ≫ 1 we can use the approximation (52) of the hard-scattering kernels, and
further approximate 1 + ω ≈ ω in the first term on the second line. This gives

− 1

6παs
Im
[
Hg

n + HS(b)
n

]
≈ Hg(ξ, ξ, t) +

αs

π

∫ ω0

0
dω . . .

− αs

π

∫ 1/ξ

ω0

dω

{
CA

[
cn − ln

Q2

µ2
GPD

]
Hg(ωξ, ξ, t)

ω
+ CF

[
cn + 1 − ln

Q2

µ2
GPD

]
ξHS(ωξ, ξ, t)

}
, (56)

where the integral over ω on the first line is to be taken with the unapproximated integrand from
(55). It grows with ξ like Hg(ωξ, ξ, t) or ξHS(ωξ, ξ, t) but lacks the enhancement due to the upper
limit 1/ξ of the integral on the second line. Restricting our discussion to t = 0 for simplicity, we can
for sufficiently large ω neglect the effect of skewness in the GPDs and then have

Hg(ωξ, ξ, 0) ≈ ωξg(ωξ) , HS(ωξ, ξ, 0) ≈ S(ωξ) =
∑

q

[
q(ωξ) + q̄(ωξ)

]
, (57)

where S(x) is the usual quark singlet distribution. In a very rough approximation one may treat
xg(x) and xS(x) as constant at small x. In (56) one then has loop integrals

∫
dω/ω for both the

gluon and the quark term, which generate large logarithms ln(ω0ξ) for 1/ξ ≫ ω0. These logarithms
are of BFKL type and correspond to graphs with t-channel gluon exchange in the hard-scattering
kernel, such as those for Tb and Tg in Fig. 1.

In a phenomenologically more realistic approximation one has xg(x) ≈ ax−λ at small x and a
similar behavior with different values of a and λ for xS(x). This gives

∫ 1/ξ

ω0

dω
Hg(ωξ, ξ, 0)

ω
≈ aξ−λ

∫ 1/ξ

ω0

dω ω−λ−1 ≈ a

λ

(
ω0ξ

)−λ
(58)

for 1/ξ ≫ ω0, when the bulk of the integral comes from the region where the small-x approximation
of the gluon density is valid. With λ being rather small for the gluon distribution in a wide range of
the factorization scale, the term (58) has the same power behavior ξ−λ as the Born term Hg(ξ, ξ, 0)
in (56) but is numerically enhanced by 1/λ. A contribution analogous to (58) is obtained from the
quark singlet term in (56) and comes with a similar enhancement.

Concerning the choice of factorization scale, it is clear that the size of the corrections in (56) is
decreased if µGPD is taken smaller than Q. It is also clear that no scale choice can eliminate both
the gluon and quark singlet contribution in this expression. To make at least the gluon term for
n = 0 disappear one needs µ2

GPD = e−2Q2 ≈ 0.14Q2. For a wide range of Q2 this is outside the
perturbative region or at least so low that the quark singlet distribution has a rather small power λ
and can thus give important corrections. We note that previous analyses of vector meson production
at small xB have argued for a factorization scale well below Q2, based on different estimates of the
typical virtualities in the leading-order graphs [15, 38]. We also note that the µR dependent term
β0 ln(µ2

R/µ2
GPD) in the gluon kernel (11) does not appear in the approximation (50) which dominates

the convolutions at small xB . The choice of µR can thus not cure the huge NLO corrections we have
discussed.
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5 Vector meson production at moderate to large xB

Let us now investigate the NLO corrections in typical fixed-target kinematics, as it is accessible
at HERMES, JLab and COMPASS. We take again t = 0 and for definiteness present estimates at
Q2 = 4GeV2. For larger Q2, which will in particular be accessible with the JLab energy upgrade to
12GeV, the corrections are in general smaller.

In Fig. 8 we compare the LO and NLO parts of the convolution integrals. In the gluon sector
we find no simple picture, with relative corrections that are typically moderate but become large
for ReHg at smaller xB and for ImHg at larger xB . For the quark singlet the situation is similar
to the one in the small-xB region, i.e. we have rather large NLO corrections from HS(b) with sign
opposite to the LO part of HS(a), whereas the NLO corrections in HS(a) are smaller. Adding gluon
and quark singlet contributions, we find that for n = 0 the NLO corrections are of reasonable size for
the imaginary part. For the real part at lower xB , the corrections are however large and of opposite
sign compared to the Born term. We note that the convolutions H satisfy a dispersion relation in
1/xB for fixed Q2 and t [39]. In this representation their real parts at a given xB are sensitive to the
imaginary part at smaller values of xB, where the NLO corrections rapidly increase as we have seen
in the previous section. Turning to the quark non-singlet convolutions, we see in Fig. 9 that for n = 0
the NLO corrections are comparatively moderate for the imaginary part and larger for the real part.

Going from n = 0 to higher Gegenbauer indices n = 2 and n = 4, the NLO corrections become
larger, as we see in Figs. 8 and 9 and already observed at small xB. Generically this is not unexpected,
since the z dependent kernels (10) contain logarithms ln z and ln z̄ which enhance the endpoint
regions of the z integration, and those endpoint regions are more prominent for higher Gegenbauer
polynomials in the expansion (15). Note that according to phenomenological estimates or lattice
calculations the coefficients an of these polynomials are clearly smaller than a0, so that increasing
corrections to Hn for higher n do not affect the sum

∑
n anHn as much. We note that in the modified

hard-scattering approach of Sterman et al. [14], which goes beyond the collinear approximation used in
the present work, the endpoint regions in z are suppressed by radiative corrections that are resummed
into Sudakov form factors. As just discussed, we do not observe such a suppression in the fixed-order
results analyzed here, where various positive and negative corrections compete with each other—only
some of them related to the Sudakov factor. How the situation will be at higher orders is an important
question, which goes beyond the scope of the present work.

Let us now take a closer look at the µR dependence of the corrections. As we explained in Sect. 2,
the pure quark singlet kernel Tb is independent of this scale at O(α2

s). According to (11) the gluon
kernel Tg depends on µ2

R only through β0 ln(µ2
R/µ2

GPD), which originates from graphs with gluon
propagator corrections such as the one shown in Fig. 10. The µGPD dependence of this term is
connected with the contribution proportional to β0 in the evolution kernel V gg for the gluon GPD,
given in (92). As already pointed out in Sect. 4, the term β0 ln(µ2

R/µ2
GPD) does not contribute to the

large-|y| behavior of Im tg,n(y) and is hence not relevant for the huge NLO corrections at small xB.
For the kernel Ta the situation is more involved. The general structure of its convolution with the

quark singlet distribution HS can be written as

HS(a)
n = β0

(
HS(a)

n,β + HS(a)
n,R ln

Q2

µ2
R

)
+ HS(a)

n,C + HS(a)
n,G ln

Q2

µ2
GPD

+ HS(a)
n,D ln

Q2

µ2
DA

(59)

with an analogous decomposition for the convolutions H(3)
n and H(8)

n . The terms proportional to β0

originate from graphs with gluon propagator corrections such as in Fig. 10, whereas the terms with
subscripts C,G,D do not contain β0. In Fig. 11 we show the corresponding contributions for n = 0.
We see that terms multiplying ln(Q2/µ2

GPD) are rather small, whereas those going with ln(Q2/µ2
DA)

are of course absent for n = 0. The term H0,R is clearly smaller than H0,β and has opposite sign.
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Figure 8: LO and NLO terms of the convolutions in the gluon and quark singlet sector at Q = 2GeV,
with µR = µGPD = µDA = Q.
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Figure 10: Example graphs giving rise to terms proportional to β0 in the hard-scattering kernels Ta

and Tg.
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Figure 11: Individual terms (59) in the convolutions of the quark non-singlet kernel for n = 0.
The quark distributions are evaluated at µGPD = 2GeV and the running coupling in the kernels at
µR = 2GeV.

H0,C has also the opposite sign compared to H0,β but is similar in magnitude. We note that |Hn,β|
increases with n, as can be seen from (86) and (88).

Let us briefly comment on the BLM scale setting prescription [23], which has been discussed in the
context of exclusive meson production in [10, 24]. This prescription aims at including the corrections
from graphs like those of Fig. 10 in the argument of the running coupling, and for the case at hand takes
µR such that the contribution from Hn,β cancels against the one from Hn,R ln(Q2/µ2

R) in (59). As is
evident from Fig. 11, this requires µ2

R to be substantially lower than Q2. For most of experimentally
accessible kinematics, the resulting µR is in fact far below the region where perturbation theory
can be applied. In such a situation, the perturbative running of αs is often modified such that the
coupling saturates for decreasing µR. We note that in the context of our NLO analysis, the logarithm
β0 ln(Q2/µ2

R) in the hard-scattering kernel is intimately related with the perturbative running of
αs(µR), so that keeping one while modifying the other is not obviously consistent.

We also remark that if Hn,β and Hn,R ln(Q2/µ2
R) are made to cancel by the BLM scale choice,

one is left with a relatively large correction from Hn,C . For scale choices where µ2
R is closer to Q2, one

instead has a partial cancellation between Hn,C and Hn,β. A more detailed analysis for the similar
case of the electromagnetic form factor is given in [25], which also discusses the issue of Sudakov-type
corrections we raised above.

Figure 12 shows the dependence of the convolutions on µR at fixed µGPD = Q. Within the µR

range shown we generally find a moderate scale dependence, both at LO and at NLO. An exception
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Figure 12: Dependence of the convolutions on µR. The factorization scale is held fixed at µGPD = Q.

25



−20

−15

−10

−5

0

5

10

1 2 3 4 5 6 7 8 9 10

LO+NLO

LO

Re
(
Hg + HS(a) + HS(b)

)
at xB = 0.18, Q = 2 GeV

µGPD [GeV]

−30

−25

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10

LO+NLO

LO

Im
(
Hg + HS(a) + HS(b)

)
at xB = 0.18, Q = 2 GeV

µGPD [GeV]

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5 6 7 8 9 10

LO+NLO

LO

ReH(3) at xB = 0.18, Q = 2 GeV

µGPD [GeV]

−1.8

−1.6

−1.4

−1.2

−1

1 2 3 4 5 6 7 8 9 10

LO
LO+NLO

ImH(3) at xB = 0.18, Q = 2 GeV

µGPD [GeV]

−1

0

1

2

3

1 2 3 4 5 6 7 8 9 10

LO
LO+NLO

ReH(8) at xB = 0.18, Q = 2 GeV

µGPD [GeV]

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10

LO
LO+NLO

ImH(8) at xB = 0.18, Q = 2 GeV

µGPD [GeV]

Figure 13: Dependence of the convolutions on µGPD. The renormalization scale is held fixed at
µR = Q.

26



−20

−10

0

10

20

30

40

1 2 3 4 5 6 7 8 9 10

LO+NLO, n = 4
LO+NLO, n = 2

LO+NLO

LO

Re
(
Hg + HS(a) + HS(b)

)
at xB = 0.18, Q = 2 GeV

µ [GeV]

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10

LO+NLO, n = 4
LO+NLO, n = 2

LO+NLO

LO

Im
(
Hg + HS(a) + HS(b)

)
at xB = 0.18, Q = 2 GeV

µ [GeV]

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

LO+NLO, n = 4
LO+NLO, n = 2

LO+NLO

LO

ReH(3) at xB = 0.18, Q = 2 GeV

µ [GeV]

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

1 2 3 4 5 6 7 8 9 10

LO
LO+NLO
LO+NLO, n = 2
LO+NLO, n = 4

ImH(3) at xB = 0.18, Q = 2 GeV

µ [GeV]

−1

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

LO+NLO, n = 4
LO+NLO, n = 2

LO+NLO

LO

ReH(8) at xB = 0.18, Q = 2 GeV

µ [GeV]

−40

−35

−30

−25

−20

−15

−10

−5

0

1 2 3 4 5 6 7 8 9 10

LO
LO+NLO
LO+NLO, n = 2
LO+NLO, n = 4

ImH(8) at xB = 0.18, Q = 2 GeV

µ [GeV]
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Figure 15: Dependence on the factorization scale µDA of the convolutions in the gluon and quark
singlet sector multiplied by the scale dependence a2(µDA)/a2(µ0) of the corresponding Gegenbauer
coefficient. The reference scale for a2 is taken as µ0 = 2GeV, and the other scales are set to
µGPD = µR = Q = 2GeV.

is the region µR <∼ 2GeV, where the growth of the LO results simply reflects the growth of αs(µR).

Note that with the parameters specified at beginning of Sect. 4 we have α(3)
s (2GeV) = 0.30 and

α(3)
s (1GeV) = 0.51. The NLO results further contain explicit logarithms ln(Q2/µ2

R), which in some
cases can cause corrections to grow out of control, especially for the real parts of convolutions. We
note that for ReH(8) the NLO correction is is unusually large compared with the LO term. This is
because of a nearby zero in xB , as is seen in Fig. 9, and should not be a reason of particular concern.

The variation of the convolutions with µGPD at fixed µR = Q is shown in Fig. 13. We again
find a rather moderate scale dependence, except when µGPD becomes small. The dependence on a
single scale µ = µR = µGPD is shown in Fig. 14. Note that in many cases the individual variation
of µR decreases the amplitude in absolute size whereas the variation of µGPD increases it, with both
tendencies partially canceling when the scales are set equal. Again we find that the scale dependence
becomes quite drastic below 2GeV.

We finally discuss the dependence on µDA for Gegenbauer indices n > 0. According to (18)
the convolutions Hn(µDA) appear multiplied by an(µDA) in the process amplitude, where the scale
dependence of both factors partially cancels. In Fig. 15 we therefore plot convolutions multiplied
with a2(µDA)/a2(µ0) =

[
αs(µDA)/αs(µ0)

]
γ2/β0 following the relation (16). The corresponding plots

for n = 4 and for convolutions in the quark non-singlet sector look very similar. We find that the
dependence on µDA is slightly decreased when going to NLO.

6 Proton helicity flip amplitudes

We now turn to the convolutions of the hard-scattering kernels with the GPDs describing proton
helicity flip. In this section we take t = −0.4GeV2, which is the value for which will present estimates
for observables in the next section.

In Figs. 16 and 17 we compare the LO and NLO terms of the convolutions in the gluon and quark
singlet sector for the two models described in Sect. 3.1. For model 1 the individual corrections for
gluon and quark convolutions look quite similar to those we saw for H in the previous section. The
sum of gluon and quark singlet contributions at LO is however very small in this model because
of cancellations, so that the NLO term dominates in a wide kinematical region. In model 2 the
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Figure 16: LO and NLO terms of the convolutions in the gluon and quark singlet sector for model 1
at Q = 2GeV and t = −0.4GeV2. The scales are set to µR = µGPD = Q.
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Figure 17: As Fig. 16 but for model 2.
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Figure 18: LO and NLO terms of the convolutions in the quark non-singlet sector for model 1 at
Q = 2GeV and t = −0.4GeV2, with µR = µGPD = Q.
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Figure 19: As Fig. 18 but for model 2.
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gluon contributions are nearly absent, so that the quark singlet contribution dominates in this sector.
We note that, contrary to the individual terms, the sum of gluon and quark singlet contributions
comes out to be rather similar in the two models and is small compared with the flavor non-singlet
contributions shown in Figs. 18 and 19. According to our discussion at the end of Sect. 3.1 this has
its origin in the sum rule (43) for the second moment of E at t = 0, so that we expect a small net
contribution from gluons and the quark singlet in large class of models for E.

As shown in Figs. 18 and 19, the NLO corrections to the quark non-singlet convolutions are
relatively moderate but not small, similarly to the case of H. The size of the convolutions is quite
different in the two models, indicating the important role played at intermediate xB by sea quarks in
model 1. Let us recall that with the double distribution ansatz (33) the GPDs at x ∼ ξ are sensitive
to forward parton distributions with momentum fractions well below ξ, as discussed in Sect. 4.3.3
of [17].

7 Cross sections and asymmetries

Having studied in detail the building blocks of the scattering amplitude for vector meson production,
we now combine them to observables. We recall that to leading order in 1/Q there are just two of
these: the unpolarized γ∗p cross section and the asymmetry for a transversely polarized target, both
referring to longitudinal polarization of virtual photon and produced meson. The ep cross section in
the leading 1/Q approximation can be written as

dσ(ep → epV )

dt dQ2 dy dφ dφS
=

α

4π3

1 − xB

Q2

1 − y

y

dσL

dt

[
1 + ST sin(φ − φS)AUT

]
(60)

where y is the usual inelasticity variable for deep inelastic scattering and ST denotes the transverse
component of the target polarization. φ is the azimuthal angle between lepton plane and hadron plane,
and φS is the azimuthal angle between lepton plane and target spin vector, both defined according
to the Trento convention [40]. The γ∗p cross section dσL/dt and the polarization asymmetry AUT

depend on xB, Q2 and t. To leading order in 1/Q they are given by

dσL

dt
=

π2

9

α

Q6

(2 − xB)2

1 − xB
f2

V

[
(1 − ξ2) |HV |2 −

(
t/(4m2

p) + ξ2
)
|EV |2 − 2ξ2 Re

(
E∗

V HV

)]
(61)

and

AUT =

√
t0 − t

mp

√
1 − ξ2 Im

(
E∗

V HV

)

(1 − ξ2) |HV |2 −
(
t/(4m2

p) + ξ2
)
|EV |2 − 2ξ2 Re

(
E∗

V HV

) , (62)

where t0 = −4m2
pξ2/(1 − ξ2). Here we have combined the convolutions (19) into

FV = QV

∞∑

n=0

an

[
Fg

n + HS(a)
n + FS(b)

n + e
(3)
V F (3)

n + e
(8)
V F (8)

n

]
, (63)

with analogous combinations for HV and EV . In the remainder of this section we take the asymptotic
form of the meson distribution amplitude, i.e. we set an = 0 for n ≥ 2. As long as EV is not much
larger than HV , the cross section (61) is dominated by the term with |HV |2 in a wide range of
kinematics, where the prefactors ξ2 and t/(4m2

p) of the other terms are small. The asymmetry (62)
is then approximately given by

AUT ≈
√

t0 − t

mp

Im
(
E∗

V HV

)

|HV |2
=

√
t0 − t

mp

∣∣∣∣
EV

HV

∣∣∣∣ sin δV , (64)
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Figure 20: Real and imaginary parts of the convolutions (63) for ρ production at Q = 2GeV and
t = −0.4GeV2, with model 1 taken for the proton helicity-flip distributions. The scales are set to
µR = µGPD = Q.
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Figure 21: As Fig. 20 but for ω production.

where δV = arg(HV /EV ) is the relative phase between HV and EV .
Figure 20 shows the real and imaginary parts of the convolutions appearing in (61) and (62). Hρ

is dominated by the gluon and quark singlet part, and in line with our discussion in Sect. 5 we find
rather moderate corrections for the imaginary part but a very unstable real part in a wide range of xB .
As for Eρ, its real part is very small and subject to large relative corrections, whereas its imaginary
part is much larger and receives corrections of order 100% . As we see in Fig. 18, the individual flavor
non-singlet combinations E(3) and E(8) are less affected by corrections, but they have opposite sign
and partially cancel in the sum relevant for ρ production. The rather small but unstable contribution
from the gluon and quark singlet terms is hence important in this channel and largely responsible for
the NLO corrections seen in Fig. 20. As a further consequence of the cancellations just mentioned,
the size of Eρ is tiny compared with Hρ. The quark flavor combination relevant for ρ production is
2u + d, where in our model the flavor combinations add for H but largely cancel for E.

For ω production we see in Fig. 21 that at smaller xB the convolution Hω is about 1/3 of Hρ,
which follows from the dominance of the gluon contribution as seen in (6) and (7), whereas at larger
xB differences between the two channels appear. Eω is much bigger than Eρ since in the combination
2u− d the contributions of u and d quarks add for E, and the size of its radiative corrections reflects
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the one of E(3) in Fig. 18. We note that the dominance of the imaginary over the real part in Eω and
Eρ is less pronounced in model 2, as can be anticipated by comparing Figs. 18 and 19.

The cross section dσL/dt for ρ production is dominated by (ImHρ)
2, except for contributions

from (ReHρ)
2 at small xB for NLO and at large xB for LO. Given the size of corrections to ImHρ

in Fig. 20 we thus have quite substantial NLO effects in the cross section at Q2 = 4GeV2, as shown
in Fig. 22. For Q2 = 9GeV2 and xB > 0.1 the relative corrections decrease. The plot has been
calculated with model 1 for E, but since its contribution to dσL/dt is negligible the corresponding
curves for model 2 look very similar. To obtain an estimate of scale uncertainties, we show bands
corresponding to µ = µR = µGPD between 2GeV and 2Q. Given our discussion in the previous
section, we do not consider it meaningful to go to scales below 2GeV, so that the bands in the figure
are strongly asymmetric. For Q2 = 4GeV2 they go only in one direction, and the band of the LO
result does not provide an estimate for the size of the NLO corrections, which turn out to go in the
other direction.

We have a very peculiar situation for the polarization asymmetry AUT in ρ production, which
as shown in Figs. 23 and 24 is very small in both models 1 and 2 due to the cancellations in Eρ

discussed above. AUT changes quite dramatically from LO to NLO in a wide range of kinematics,
clearly because of the NLO corrections in the numerator. A closer look at Fig. 20 reveals that the
large perturbative corrections in Im

(
E∗

ρ Hρ

)
are mainly due to the large corrections to both ReHρ

and Re Eρ. These hardly affect the unpolarized cross section, which is strongly dominated by ImHρ.
At higher Q2 the instability of AUT is less pronounced, and in model 2 we even have quite small
corrections. We note that the bands from the scale variation at LO order are extremely narrow in
Figs. 23 and 24. This is because the scale variation of αs(µR) cancels in the ratio AUT at LO and
because in the kinematics we are looking at, the µGPD dependence of Hρ and Eρ is rather weak. In
this situation, the scale uncertainty of the LO result does obviously not provide a good estimate for
the size of higher-order corrections. Let us finally remark that at t = −0.4GeV2 the asymmetry AUT

must go to zero as xB tends to 0.484 because of the prefactor
√

t0 − t in (62).
The cross section for ω production is shown in Fig. 25 and shows a similar pattern of NLO

corrections to the one in ρ production, reflecting the similar pattern of corrections we have seen for
ImHρ and ImHω. As a result the ratio of cross sections dσL/dt in the two channels is quite stable
under radiative corrections, as seen in Fig. 26. The target polarization asymmetry, shown in Fig. 27
for model 1, changes however drastically between LO and NLO at small to intermediate xB . This is
because ImEω then dominates over Re Eω, so that its product with the unstable convolution ReHω

controls the numerator of the asymmetry. The absolute size of AUT can be large in this channel
since |Eω| ∼ |Hω| in our model. According to Fig. 21, the relative phase δω is close to zero at LO for
xB <∼ 0.3, so that the factor sin δω in (64) makes AUT small and prone to large radiative corrections.

Let us finally take a look at φ production. At LO this channel is strongly dominated by gluon
exchange, since in our models strange quark distributions are small for H and even more so for E.
At NLO we have further contributions from the pure singlet terms HS(b) and ES(b), which are not
negligible. We see in Fig. 28 that the NLO corrections to the cross section are large at small xB and
slowly decrease with xB. Except for the region of small xB , this pattern is quite different from the
one in ρ production, so that the cross section ratio for the two channels receives important corrections
at larger xB as we see in Fig. 29. The asymmetry AUT is essentially zero at LO, because in our model
the relative phase δφ between Hφ and Eφ is very close to zero. This changes at NLO, where in model 1
we obtain a small to moderate AUT , as shown in Fig. 30.
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Figure 22: Longitudinal cross section for γ∗p → ρp in model 1. Bands correspond to the range
2GeV < µ < 4GeV in the left and to 2GeV < µ < 6GeV in the right plot, and solid lines to µ = Q
in both cases.
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Figure 23: The transverse target spin asymmetry defined in (60), calculated for model 1. The meaning
of the bands and solid lines is as in Fig. 22.
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Figure 24: As Fig. 23 but for model 2.

36



0

20

40

60

80

100

0.1 0.2 0.3 0.4

dσL/dt [nb/GeV2] at Q2 = 4 GeV2, t = −0.4 GeV2

LO
LO+NLO

xB

0

1

2

3

4

5

0.1 0.2 0.3 0.4

dσL/dt [nb/GeV2] at Q2 = 9 GeV2, t = −0.4 GeV2

LO
LO+NLO

xB

Figure 25: As Fig. 22 but for γ∗p → ωp.
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Figure 26: Ratio of cross sections dσL/dt for ω and ρ production in model 1. The meaning of the
bands and solid lines is as in Fig. 22.
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Figure 27: As Fig. 23 but for γ∗p → ωp.
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Figure 28: As Fig. 22 but for γ∗p → φp.
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Figure 29: Ratio of cross sections dσL/dt for φ and ρ production in model 1. The meaning of the
bands and solid lines is as in Fig. 22.
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Figure 30: As Fig. 23 but for γ∗p → φp.
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8 Pseudoscalar meson production

Having studied in detail the production of vector mesons, let us finally take a look at pseudoscalar
production. We will only consider γ∗p → π+n, which was already studied at NLO in [10]. Gluon
distributions do not contribute in this channel.

In the collinear approximation the amplitude for this process can be written as

M =
4π

√
4πα

ξQNc
fπ

∫ 1

0
dz φπ(z)

∫ 1

−1
dx
[
euTa(z̄, x, ξ) − edTa(z,−x, ξ)

] [
F̃ u(x, ξ, t) − F̃ d(x, ξ, t)

]

=
4π

√
4πα

ξQNc
fπ

∞∑

n=0

an F̃ π
n (65)

with eu = 2/3, ed = −1/3 and fπ = 131MeV. φπ(z) is the twist-two distribution amplitude of the
pion and has a Gegenbauer decomposition as in (15). The convolutions F̃ π

n are defined as

F̃ π
n =

∫ 1

−1
dx
[
euTa,n(x, ξ) − edTa(−x, ξ)

] [
F̃ u(x, ξ, t) − F̃ d(x, ξ, t)

]
, (66)

and the kernels Ta(z̄, x, ξ) and Ta,n(x, ξ) are the same as in Sect. 2. The matrix elements F̃ q are the
counterparts of F q for polarized quarks and given by

F̃ q(x, ξ, t) =
1

(p + p′) · n

[
H̃q(x, ξ, t) ū(p′)/nγ5u(p) + Ẽq(x, ξ, t) ū(p′)

(p′ − p) · n
2mp

γ5u(p)

]
(67)

in terms of the generalized parton distributions H̃ and Ẽ, where as in the unpolarized case we use
the conventions of [17]. Since the hard-scattering kernel in (66) is neither even nor odd in x, the
convolution involves both the charge-conjugation even and odd combinations

F̃ q(+)(x, ξ, t) = F̃ q(x, ξ, t) + F̃ q(−x, ξ, t) , F̃ q(−)(x, ξ, t) = F̃ q(x, ξ, t) − F̃ q(−x, ξ, t) . (68)

We model the distributions H̃ in close analogy to the unpolarized case and set

H̃q(+)(x, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x − β − ξα)h(2)(β, α) H̃q(+)(β, 0, t) ,

H̃q(−)(x, ξ, t) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dα δ(x − β − ξα)h(2)(β, α) H̃q(−)(β, 0, t) , (69)

with h(2)(β, α) as in (24) and

H̃q(+)(x, 0, t) = ∆qv(x) exp
[
tfqv

(x)
]
+ 2∆q̄(x) exp

[
tfq̄(x)

]
,

H̃q(−)(x, 0, t) = ∆qv(x) exp
[
tfqv

(x)
]

(70)

for x > 0. The values for x < 0 are determined by the symmetry properties following from (68). For
the polarized valence and antiquark densities ∆qv and ∆q̄ we use the NLO parameterization from
[41] at µ = 2GeV, and for the t dependence we take the same functions fqv

(x) as in (26), (27) and
furthermore set fq̄(x) = fqv

(x). As was shown in [28], this gives a good description of the isovector
axial form factor via the sum rule

FA(t) =

∫ 1

0
dx
[
H̃u(+)(x, 0, t) − H̃d(+)(x, 0, t)

]
. (71)
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Figure 31: The convolution H̃π
0 defined as in (66), evaluated at Q = 2GeV and t = −0.4GeV2. The

scales are set to µR = µGPD = Q.

For the nucleon helicity-flip distribution Ẽ we take a pion exchange ansatz

Ẽu(x, ξ, t) = −Ẽd(x, ξ, t) =
θ
(
ξ − |x|

)

2ξ
φπ

(
x + ξ

2ξ

)
2m2

p gA

m2
π − t

Λ2 − m2
π

Λ2 − t
, (72)

with the nucleon axial charge gA ≈ 1.26 and a cutoff parameter Λ = 0.8GeV [42] to suppress large
off-shellness of the exchanged pion in the t channel.

8.1 Results

The convolution H̃π
n at LO and NLO is shown in Fig. 31 for n = 0. We find moderate corrections for

the imaginary part and larger ones for the real part. For Ẽ π
n we can easily give the analytic form of

the NLO result. The scale dependent terms admit a closed expression,

∑

n

an Ẽ π
n ∝

∑

m,n

aman

{
1 +

αs

4π

×
[

β0

(
14

3
+

γm + γn

2CF
− ln

Q2

µ2
R

)
− γm ln

Q2

µ2
GPD

− γn ln
Q2

µ2
DA

+ . . .

]}
, (73)

where the . . . denote contributions which depend neither on Q2 and the scales nor on β0. Including
these terms we can write

∑

n

an Ẽ π
n ∝ (1 + a2 + a4)

2 +
αs(µR)

π

[
79

12
+ 25.0a2 + 32.8a4 + 53.4a2a4 + 21.4a2

2 + 32.6a2
4

− 9

4
(1 + a2 + a4)

2 ln
Q2

µ2
R

− (1 + a2 + a4)

(
25

18
a2 +

91

45
a4

)(
ln

Q2

µ2
GPD

+ ln
Q2

µ2
DA

)]
+ . . . , (74)

where we have set nf = 3 in β0 and where we approximated numerically the coefficients written
with a decimal point. Here the . . . denote terms with higher Gegenbauer coefficients. Note that
these coefficients appear twice, once for the produced pion and once for the pion exchange ansatz
of the distribution Ẽ. Up to a global factor, the expression (74) also gives the NLO result for the
electromagnetic pion form factor Fπ(Q2) at large spacelike momentum transfer Q2, and it agrees with
the result in the detailed study [9]. Let us first discuss the case m = n = 0 relevant for the asymptotic
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form of the pion distribution amplitude, where the convolution has no dependence on µGPD and µDA.
We then have the rather large coefficient 79/12 ≈ 6.6 in square brackets, so that with the scale choice
µR = Q there are quite large NLO corrections. The corrections are zero for µ2

R = e−79/27Q2 ≈ 0.05Q2,
which is outside the perturbative region for most cases relevant in practice. The BLM scale for this
case is yet smaller: with (73) we reproduce the well-known result µ2

R = e−14/3Q2 ≈ 0.01Q2 [10]. The
coefficient of αs/π in (74) is then −47/12 ≈ −3.9 and thus again rather large, but of course the scale
µR is outside the perturbative region for all experimentally relevant kinematics. We finally see in (74)
that for higher Gegenbauer moments the correction terms are larger than for m = n = 0. The reason
for this is the same which we discussed in Sect. 5 for the convolutions H. In (73) we also see that the
BLM scale becomes smaller for higher m and n.

The observables for exclusive pion production at leading order in 1/Q are the same as for vector
meson production, and the ep cross section is given as in (60). The cross section for a longitudinal
photon and the transverse target asymmetry are now respectively given by

dσL

dt
=

π2

9

α

Q6

(2 − xB)2

1 − xB
(2fπ)2

[
(1 − ξ2) |H̃π|2 − ξ2 t/(4m2

p) |Ẽπ|2 − 2ξ2 Re
(
Ẽ∗

π H̃π

)]
(75)

and

AUT = −
√

t0 − t

mp

ξ
√

1 − ξ2 Im
(
Ẽ∗

π H̃π

)

(1 − ξ2) |H̃π|2 − ξ2 t/(4m2
p) | Ẽπ|2 − 2ξ2 Re

(
Ẽ∗

π H̃π

) , (76)

with

H̃π =
∞∑

n=0

an H̃π
n , Ẽπ =

∞∑

n=0

an Ẽ π
n . (77)

For numerical estimates we take the asymptotic pion distribution amplitude in the following, setting
an = 0 for n ≥ 2. We note that the recent lattice study [22] obtained a rather moderate value
a2(µ0) = 0.201(114) at µ0 = 2GeV.

In Fig. 32 we show the separate contributions from the terms with |H̃π|2 and with |Ẽπ|2 in (75),
as well as the full result. We see that at the value of t chosen here, the contribution from |H̃π|2 is
more important, mainly because of the suppression factor (Λ2 − m2

π)/(Λ2 − t) in our model (72) for
Ẽ. The square of this factor is 0.36 at t = −0.4GeV2.

We compare the LO and NLO results for the cross section in Fig. 33 and find that the NLO
corrections are quite large, even at Q2 = 9GeV2. In contrast, the corrections for the beam spin
asymmetry are very small as seen in Fig. 34, in line with the findings reported in [10]. Note that with
our model Ẽπ is purely real, so that at intermediate xB the large relative NLO corrections in Re H̃π

do not affect the numerator of AUT in (75). Approximating the asymmetry as

AUT ≈ −
√

t0 − t

mp

ξ Im
(
Ẽ∗

π H̃π

)

|H̃π|2
= −

√
t0 − t

mp

∣∣∣∣
ξ Ẽπ

H̃π

∣∣∣∣ sin δπ (78)

with δπ = arg(H̃π/Ẽπ), we can understand why only small corrections are seen in this case: the
relative phase δπ is well different from zero, and the NLO corrections increase both |H̃π| and |Ẽπ|.
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Figure 32: The longitudinal cross section for γ∗p → π+n, evaluated at NLO. Shown are the separate
contributions from the terms with |H̃π|2 and with |Ẽπ|2 in (75), as well as the complete expression.
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Figure 33: Longitudinal cross section for γ∗p → π+n. Bands correspond to the range 2GeV < µ <
4GeV in the left and to 2GeV < µ < 6GeV in the right plot, and solid lines to µ = Q in both cases.
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Figure 34: The transverse target spin asymmetry for π+ production, as defined in (60). The meaning
of the bands and solid lines is as in Fig. 33.
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9 Summary

In this work we have analyzed the NLO corrections for exclusive meson production at large Q2 in the
collinear factorization approach. Using the Gegenbauer expansion of meson distribution amplitudes,
we have rewritten the hard-scattering kernels of [11] into functions depending on only one variable,
and we have separated the explicit logarithms in the factorization scale for the meson distribution
amplitude and the generalized parton distributions.

For vector meson production at small xB we find huge NLO corrections even for Q2 well above
10GeV2, in agreement with the results obtained in [11]. The corrections have opposite sign compared
to the Born term and can be traced back to BFKL type logarithms in the hard-scattering kernels,
which appear with rather large numerical prefactors in this process. We conclude at this stage
that a quantitative control of radiative corrections at small xB will require resummation of these
logarithms. First steps in this direction have been reported in [43]. If successful, such a resummation
in combination with a dispersion relation [39] may also be useful for stabilizing the real part of the
amplitude, where we find very large NLO corrections even at xB ∼ 0.1.

At intermediate to large xB , typical of fixed-target experiments, we have investigated the pro-
duction of ρ0, ω, φ and of π+. We find NLO corrections to the longitudinal cross sections of up to
100%, which somewhat decrease in size when going from Q2 = 4GeV2 to 9GeV2. Note that the me-
son production cross section depends quadratically on generalized parton distributions—the increased
sensitivity to these basic quantities comes with an increased sensitivity to higher-order corrections.
We generally find that uncertainties on the cross section due to the choice of renormalization and
factorization scales are not too large at LO and do not significantly decrease when going to NLO. For
scales below 4GeV2, however, NLO corrections often grow out of control. The cross section ratio for
ω to ρ production turns out to be very stable under corrections, but less so the one for φ to ρ. For
the transverse target polarization asymmetry AUT in π+ production we find quite small NLO effects,
confirming the results in [10]. For vector meson production this is however not the case. With the
models we have used for the nucleon helicity-flip distributions E, the numerator of the asymmetry in
this channel is dominated by the product (Im EV )(ReHV ) in a wide range of kinematics and therefore
suffers from the perturbative instability we find for ReHV at small to intermediate xB , even if the
corrections to Im EV are not too large. It is often assumed that corrections tend to cancel in asym-
metries. The examples we have studied show that this may hold in specific cases but not in others,
and that special care is needed for observables like AUT that depend on the relative phase between
amplitudes.

We should recall that in the kinematics we studied, one must expect that our leading-twist results
receive power corrections that cannot be neglected when comparing with data. They will certainly
affect the cross sections and will not always cancel in cross section ratios. An example is the transverse
target polarization asymmetry in π+ production. The phenomenological estimates in [12] found that
the convolution H̃π is decreased by effects of transverse parton momentum in the hard scattering,
whereas Ẽπ is increased by the soft overlap mechanism that has been extensively studied in the context
of the pion form factor. Together, these corrections may significantly increase leading-twist estimates
for AUT .

From our numerical studies we must conclude that a precise quantitative interpretation of exclu-
sive meson production requires large Q2, say above 10GeV2. In addition it would be highly valuable
to have a consistent scheme for combining radiative with power corrections, at least in parts. Nev-
ertheless, we find that valuable information on generalized parton distributions can be obtained also
from data at lower Q2. In particular, a large measured asymmetry AUT in vector meson production
would give valuable constraints on the size of the proton helicity-flip distribution Eg for gluons, which
are most difficult to obtain in deeply virtual Compton scattering or from lattice QCD calculations.
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A Polylogarithms

We collect here some properties of the polylogarithms that appear in the hard-scattering kernels for
meson production. Their definitions are

Li2 z = −
∫ 1

0

dt

t
ln(1 − zt) , Li3 z =

∫ 1

0

dt

t
Li2(zt) , (79)

from which one readily obtains for the imaginary parts

Im
[
Li2(ȳ + iǫ)

]
= πθ(−y) ln ȳ , Im

[
Li3(ȳ + iǫ)

]
=

π

2
θ(−y) ln2 ȳ . (80)

The limiting behavior for y → −∞ can be obtained from the expansions

Li2 y = −π2

6
− 1

2
ln2(−y) −

∞∑

n=1

y−n

n2
, Li3 y = −π2

6
ln(−y) − 1

6
ln3(−y) +

∞∑

n=1

y−n

n3
, (81)

which are valid for y < −1, and from

Re
[
Li2 ȳ

]
=

π2

3
− 1

2
ln2 ȳ −

∞∑

n=1

ȳ−n

n2
, Re

[
Li3 ȳ

]
=

π2

3
ln ȳ − 1

6
ln3 ȳ +

∞∑

n=1

ȳ−n

n3
, (82)

which holds for y < 0. A useful relation finally is

Li2 y + Li2 ȳ =
π2

6
− (ln y) (ln ȳ) . (83)

A wealth of further information can be found in [44].

B Hard-scattering kernels for higher Gegenbauer moments

In this appendix we give the analogs of the hard-scattering kernels in (21) for Gegenbauer index n = 2
and n = 4. For the gluon kernel we find

tg,2(y) =

[
2CA (y2 + ȳ2) − CF y

]
ln y

ȳ
ln

Q2

µ2
GPD

+
β0

2
ln

µ2
R

µ2
GPD

− 25

12
CF ln

Q2

µ2
DA

+ CF

[
35

36
(5 − 54yȳ) − y

2

ln2 y

ȳ
− 7(ȳ − y)(1 − 30yȳ) Li2 ȳ

+

(
1

ȳ
− 3

2
− 392

3
y + 525y2 − 420y3

)
ln y

]

+ CA

[
−15

4
(1 − 4yȳ) +

(
1

ȳ
− 2y

)
ln2 y + (ȳ − y)(7 − 60yȳ) Li2 ȳ

−
(

23

3ȳ
+

5

6
− 58y + 150y2 − 120y3

)
ln y

]
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+ 6yȳ
[
5(1 − 4yȳ)CA − 14(1 − 5yȳ)CF

](
3Li3 ȳ − ln y Li2 y − π2

6
ln y

)
+ {y → ȳ} ,

tg,4(y) =

[
2CA (y2 + ȳ2) − CF y

]
ln y

ȳ
ln

Q2

µ2
GPD

+
β0

2
ln

µ2
R

µ2
GPD

− 91

30
CF ln

Q2

µ2
DA

+ CF

[
27287

1800
− 595yȳ + 2520(yȳ)2 − y

2

ln2 y

ȳ
+ 16(ȳ − y)

(
1 − 105yȳ + 630(yȳ)2

)
Li2 ȳ

+

(
1

ȳ
− 5

2
− 11596

15
y + 9660y2 − 34160y3 + 45360y4 − 20160y5

)
ln y

]

+ CA

[
−35

16
(1 − 4yȳ)(5 − 72yȳ) +

(
1

ȳ
− 2y

)
ln2 y + 2(ȳ − y)

(
8 − 315yȳ + 1260(yȳ)2

)
Li2 ȳ

−
(

257

30ȳ
+

77

60
− 1741

5
y + 2940y2 − 8960y3 + 11340y4 − 5040y5

)
ln y

]

+ 30yȳ
[
7(1 − 4yȳ)(1 − 6yȳ)CA

− 16
(
1 − 14yȳ + 42(yȳ)2

)
CF

](
3Li3 ȳ − ln y Li2 y − π2

6
ln y

)
+ {y → ȳ} , (84)

and for the pure singlet kernel

tb,2(y) = 2(ȳ − y)
ln y

ȳ

[
ln

Q2

µ2
GPD

− 23

6

]
+ (ȳ − y)

ln2 y

ȳ
− 15

2
(ȳ − y)

+ 2(7 − 60yȳ) Li2 ȳ −
(

5

3
− 90y + 120y2

)
ln y

+ 60(ȳ − y)yȳ

[
3Li3 ȳ +

(
Li2 ȳ + ln2 ȳ − π2

3

)
ln y

]
− {y → ȳ} ,

tb,4(y) = 2(ȳ − y)
ln y

ȳ

[
ln

Q2

µ2
GPD

− 257

60

]
+ (ȳ − y)

ln2 y

ȳ
− 35

8
(ȳ − y)(5 − 72yȳ)

+ 4
(
8 − 315yȳ + 1260(yȳ)2

)
Li2 ȳ −

(
77

30
− 665y + 4550y2 − 8820y3 + 5040y4

)
ln y

+ 420(ȳ − y)yȳ(1 − 6yȳ)

[
3Li3 ȳ +

(
Li2 ȳ + ln2 ȳ − π2

3

)
ln y

]
− {y → ȳ} . (85)

The quark non-singlet kernel reads

ta,2(y) = β0

[
21

4
− ln y − ln

Q2

µ2
R

]

+ CF

[
(3 + 2 ln y) ln

Q2

µ2
GPD

− 25

6
ln

Q2

µ2
DA

− 1019

72
−
(

1

ȳ
+

7

6

)
ln y + ln2 y

]

+ (2CF − CA)

{
401

12
− 255y + 270y2 −

(
299

3
− 867y + 1830y2 − 1080y3

)
ln ȳ

+

(
56

3
− 357y + 1290y2 − 1080y3

)
ln y + 2

(
22 − 291y + 780y2 − 540y3

) (
Li2 y − Li2 ȳ

)

+ 12(1 − 21y + 106y2 − 175y3 + 90y4)

×
[
3
(
Li3 ȳ + Li3 y

)
− ln y Li2 y − ln ȳ Li2 ȳ − π2

6

(
ln y + ln ȳ

)]}
,
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ta,4(y) = β0

[
31

5
− ln y − ln

Q2

µ2
R

]

+ CF

[
(3 + 2 ln y) ln

Q2

µ2
GPD

− 91

15
ln

Q2

µ2
DA

− 10213

900
−
(

1

ȳ
+

46

15

)
ln y + ln2 y

]

+ (2CF − CA)

{
4903

40
− 5775

2
y +

57085

4
y2 − 23310y3 + 11970y4

−
(

21109

60
− 41451

5
y +

103285

2
y2 − 125020y3 + 129150y4 − 47880y5

)
ln ȳ

+

(
2899

60
− 11001

5
y +

45535

2
y2 − 78400y3 + 105210y4 − 47880y5

)
ln y

+
(
137 − 4506y + 35280y2 − 100380y3 + 117180y4 − 47880y5

) (
Li2 y − Li2 ȳ

)

+ 30
(
1 − 48y + 580y2 − 2590y3 + 5166y4 − 4704y5 + 1596y6

)

×
[
3
(
Li3 ȳ + Li3 y

)
− ln y Li2 y − ln ȳ Li2 ȳ − π2

6

(
ln y + ln ȳ

)]}
. (86)

Using (11), (12) and the representation

γn = (−1)n+1 2CF

∫ 1

0
dz (1 − z)(3 + 2 ln z)C3/2

n (2z − 1) (87)

of the anomalous dimensions, we can give a closed form for the scale dependent terms for all even n,

tg,n(y) =

[
2CA (y2 + ȳ2) − CF y

]
ln y

ȳ
ln

Q2

µ2
GPD

+
β0

2
ln

µ2
R

µ2
GPD

− γn

2
ln

Q2

µ2
DA

+ {y → ȳ} + . . . ,

tb,n(y) = 2(ȳ − y)
ln y

ȳ
ln

Q2

µ2
GPD

− {y → ȳ} + . . . ,

ta,n(y) = β0

[
19

6
+

γn

2CF
− ln y − ln

Q2

µ2
R

]
+ CF (3 + 2 ln y) ln

Q2

µ2
GPD

− γn ln
Q2

µ2
DA

+ . . . , (88)

where the terms denoted by . . . are independent of Q2 and the scales and do not involve β0. From
the scale dependence (16) of the Gegenbauer coefficients of the meson distribution amplitude we can
readily reconstruct their evolution equation

µ2 d

dµ2
an(µ) = −αs(µ)

4π
γnan(µ) + O(α2

s) . (89)

With (20) and (88) we see that the µDA dependence of the process amplitude (18) cancels up to terms
of order α3

s, as it must be.

C Evolution kernels

For definiteness we give here the LO evolution kernels for GPDs, which we have used to check the
scale invariance of the NLO amplitude for meson production as explained in Sect. 2. The non-singlet
evolution equation reads

µ2 d

dµ2
FNS(x, ξ, t) =

∫ 1

−1

dy

|ξ| V NS

(
x

ξ
,
y

ξ

)
FNS(y, ξ, t) , (90)
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where FNS can be a flavor non-singlet combination such as F u(+) −F d(+), or the charge-conjugation
odd combination F q(−)(x, ξ, t) = F q(x, ξ, t) + F q(−x, ξ, t) for a single quark flavor. In the gluon and
quark singlet sector we have a matrix equation

µ2 d

dµ2

(
FS(x, ξ, t)

F g(x, ξ, t)

)
=

∫ 1

−1

dy

|ξ|




V qq
(

x
ξ , y

ξ

)
ξ−1V qg

(
x
ξ , y

ξ

)

ξV gq
(

x
ξ , y

ξ

)
V gg

(
x
ξ , y

ξ

)



(

FS(y, ξ, t)

F g(y, ξ, t)

)
(91)

with FS defined in (5). At O(αs) one has V NS(x, y) = V qq(x, y) and

V qq(x, y) =
αs

4π
CF

[
ρ(x, y)

1 + x

1 + y

(
1 +

2

y − x

)
+ {x → −x, y → −y}

]

+

,

V qg(x, y) = −αs

4π
2TF nf

[
ρ(x, y)

1 + x

(1 + y)2
(1 − 2x + y − xy) − {x → −x, y → −y}

]
,

V gq(x, y) =
αs

4π
CF

[
ρ(x, y)

(
(2 − x)(1 + x)2 − (1 + x)2

1 + y

)
− {x → −x, y → −y}

]
,

V gg(x, y) =
αs

4π
CA

[
ρ(x, y)

(1 + x)2

(1 + y)2

(
2 +

2

y − x

)
+ {x → −x, y → −y}

]

+

+
αs

4π
CA

[
ρ(x, y)

(1 + x)2

(1 + y)2
(1 − 2x + 2y − xy) + {x → −x, y → −y}

]

+
αs

4π

(
β0 −

14

3
CA

)
δ(x − y) (92)

with TF = 1/2 and the remaining constants as given in (13). The plus-prescription appearing in V qq

and V gg is defined by
[
f(x, y)

]
+

= f(x, y) − δ(x − y)

∫
dz f(z, y) , (93)

and the function ρ(x, y) specifies the support as

ρ(x, y) = θ

(
1 + x

1 + y

)
θ

(
1 − 1 + x

1 + y

)
sgn(1 + y) = θ(y − x) θ(x + 1) − θ(x − y) θ(−x − 1) . (94)

The evolution equations for polarized GPDs read as in (90) and (91), with the unpolarized matrix
elements F and kernels V replaced by their polarized counterparts F̃ and Ṽ . With F̃ q(+) and F̃ q(−)

defined in (68) above, F̃NS can be either a flavor non-singlet combination like F̃ u(+) − F̃ d(+) or a
charge-conjugation odd combination F̃ q(−), whereas the flavor singlet combination is given by

F̃S = F̃ u(+) + F̃ d(+) + F̃ s(+) . (95)

To O(αs) the polarized evolution kernels are

Ṽ NS(x, y) = Ṽ qq(x, y) = V qq(x, y) (96)

and

Ṽ qg(x, y) = −αs

4π
2Tf nf

[
ρ(x, y)

1 + x

(1 + y)2
− {x → −x, y → −y}

]
,

Ṽ gq(x, y) =
αs

4π
CF

[
ρ(x, y)

(1 + x)2

1 + y
− {x → −x, y → −y}

]
,
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Ṽ gg(x, y) =
αs

4π
CA

[
ρ(x, y)

(1 + x)2

(1 + y)2

(
2 +

2

y − x

)
+ {x → −x, y → −y}

]

+

+
αs

4π

(
β0 −

14

3
CA

)
δ(x − y) . (97)

The kernels given here agree with those in [45] if one takes into account that any contribution to
V gq(x, y) which is even in y at fixed x will drop out in the convolution (91). Taking the limit ξ → 0
as

lim
ξ→0+

1

ξ




V qq
(

z
ξ , 1

ξ

)
1
ξ V qg

(
z
ξ , 1

ξ

)

ξ
z V gq

(
z
ξ , 1

ξ

)
1
z V gg

(
z
ξ , 1

ξ

)


 =

(
P qq(z) P qg(z)

P gq(z) P gg(z)

)
(98)

one obtains the usual DGLAP evolution kernels from (92), and in analogy one recovers the polarized
DGLAP kernels from (97). The factors 1

z in front of V gq and V gg reflect the different forward limits
of the quark and gluon GPDs.
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[6] A. Levy [ZEUS Collaboration], arXiv:0706.1867 [hep-ex];
X. Janssen [H1 Collaboration], Acta Phys. Polon. B 33 (2002) 3529 [hep-ex/0207011].

[7] C. Hadjidakis, D. Hasch and E. Thomas [HERMES Collaboration], Int. J. Mod. Phys. A 20

(2005) 593 [hep-ex/0405078];
C. Hadjidakis et al. [CLAS Collaboration], Phys. Lett. B 605 (2005) 256 [hep-ex/0408005];
A. Sandacz [COMPASS Collaboration], AIP Conf. Proc. 842 (2006) 345;
A. Rostomyan and J. Dreschler [HERMES Collaboration], arXiv:0707.2486 [hep-ex].

[8] J. C. Collins, L. Frankfurt and M. Strikman, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433].
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