СЕКЦИЯ З физика твердого тела

СТРУКТУРЫ И СВОЙСТВА КЛАСТЕРОВ АРСЕНИДА ГАЛЛИЯ Ga_mAs_n

<u>Н.Т.Сулаймонов</u>, П.Л.Терещук

Институт Ядерной Физики АН РУ, Ташкент

В отличие от кластеров элементарных полупроводников типа кремния кластеры гетероатомных полупроводников, в том числе и бинарных, могут иметь гораздо большее количество возможных структур вследствие вариации соотношения различающихся атомов в них. Очевидный интерес представляет исследование зависимости свойств этих кластеров как от их размера и зарядового состояния, так и от стехиометрии. Было обнаружено, что даже наночастицы хорошо известных материалов, таких как кремний, обладают уникальными свойствами, которые отсутствуют в массивных образцах и могут быть использованы. Эти свойства зависят от размера, формы и других параметров наноматериалов. При изменении числа и взаимного расположении атомов в кластерах свойства последних претерпевают существенные изменения и их структура очень отличается от фрагмента объемного материала с соответствующим числом атомов. Это благодаря факту, что в маленьких кластерах наибольшее число атомов находятся на поверхности и кластеры имеют пониженное координационное число (число. соседей). Это приводит к реконструкции фрагмента объемного материала, так что свободная энергия кластера становится минимальной.

Здесь приводятся результаты наших исследований свойств кластеров арсенида галлия Ga_mAs_n как в нейтральном, так и зарядовых состояниях (катионов и анионов). Представляемые результаты получены с помощью самосогласованного метода сильной связи в комбинации с методом моле-кулярной динамики.

Согласно нашим расчетам, четырех- и пятиатомные кластеры могут иметь по четыре разные геометрии в зависимости от зарядового состояния и стехиометрии. Выявлено, что захват или эмиссия электрона существенно

изменяют структуру кластеров, изменяя ее от трехмерной к двумерной и наоборот, например, для Ga₅ и Ga₂As₂;

В табл. 1. приведены возможные каналы распада четырех- и пятиатомных кластеров на два фрагмента меньших размеров и соответствующие энергии, необходимые для такой фрагментации:

 $E_{\phi paem} = E(A_n B_m) - [E(A_{n'} B_{m'}) + E(A_{n''} B_{m''})]; \quad n' + n'' = n; \quad m' + m'' = m.$ (1)

Отрицательные значения этой энергии (табл. 1.) указывают на нестабильность кластера относительно распада. В случае энергетической невыгодности такого распада (положительные значения энергии), он тем не менее может происходить с определенной вероятностью за счет внутренней энергии кластера. Эта энергия, очевидно, требуется и в случае энергетической выгодности распада, так как исходный и конечные кластеры обычно разделены энергетическим барьером.

Как видно из табл. 1, чистые кластеры галлия устойчивы относительно распада, в то время как чистые нейтральные кластеры мышьяка с большей вероятностью распадаются на меньшие фрагменты: на две нейтральные двухатомные молекулы в случае четырехатомного кластера, и на заряженные двухатомные и трехатомные кластеры – в случае пятиатомных кластеров. Катионы чистых кластеров в целом оказались более устойчивыми по сравнению как с нейтралами, так и анионами.

В случае гетероатомных кластеров, напротив, в целом более устойчивы относительно распада анионы. Здесь с наибольшей вероятностью фрагментируются как катионы, так и нейтралы кластеров GaAs₄, Ga₂As₃, Ga₃As₂, особенно Ga₂As₃, причем нейтралы с большей вероятностью распадаются на два противоположно заряженных фрагмента.

Таким образом, доля заряженных кластеров фактически может быть значительной из-за большей устойчивости их относительно распада по сравнению с нейтральными кластерами, а также из-за их появления в результате распада последних.

Таблица 1

Кластер	(+)	(0)	(-)
Ga₄	Ga ₂ (+)+Ga ₂ (0); 5.122	$Ga_2(+)+Ga_2(-)$; 3.539 $Ga_2(0)+Ga_2(0)$; 3.816	Ga ₂ (0)+Ga ₂ (-); 3.734
Gas	$Ga_3(+)+Ga_2(0)$; 7.751 $Ga_3(0)+Ga_2(+)$; 9.035	$Ga_3(+)+Ga_2(-); 2.168$ $Ga_3(-)+Ga_2(+); 3.019$ $Ga_3(0)+Ga_2(0); 3.729$	$Ga_3(-)+Ga_2(0)$; 4.315 $Ga_3(0)+Ga_2(-)$; 4.748

Возможные каналы и энергии фрагментации кластеров

As ₄	As ₂ (+)+As ₂ (0); 2.186	As ₂ (0)+As ₂ (0); -0.259	As ₂ (0)+As ₂ (-); 2.040
		As ₂ (+)+As ₂ (-); 0.846	
As ₅	As ₃ (+)+As ₂ (0); 1.546 As ₃ (0)+As ₂ (+); 3.766	$As_3(+)+As_2(-)$, -0.325 $As_3(-)+As_2(+)$; 0.498 $As_3(0)+As_2(0)$; 0.790	As ₃ (-)+As ₂ (0); 2.095 As ₃ (0)+As ₂ (-); 3.441
GaAs3	GaAs(0)+As ₂ (+); 1.048 GaAs(+)+As ₂ (0); 1.972	GaAs(-)+As ₂ (+); 0.147 GaAs(0)+As ₂ (0); 1.310 GaAs(+)+As ₂ (-); 3.339	GaAs(-)+As ₂ (0); 1.267 GaAs(0)+As ₂ (-); 3.535
Ga2As2	Ga ₂ (0)+As ₂ (+); 1.204 Ga ₂ (+)+As ₂ (0); 1.256 GaAs(0)+ GaAs(+); 3.526	$Ga_{2}(-)+As_{2}(+); 2.021$ $Ga_{2}(0)+As_{2}(0); 2.350$ $Ga_{2}(+)+As_{2}(-); 3.507$ $GaAs(+)+GaAs(-); 3.509$ $GaAs(0)+GaAs(0); 3.748$	Ga ₂ (-)+As ₂ (0); 2.693 GaAs(0)+ GaAs(-); 3.257 Ga ₂ (0)+As ₂ (-); 4.127
Ga3As	GaAs(0)+Ga2(+); 3.785 GaAs(+)+Ga2(0); 4.657	GaAs(-)+Ga ₂ (+); 2.089 GaAs(0)+Ga ₂ (0); 3.200 GaAs(+)+Ga ₂ (-); 3.995	GaAs(-)+Ga ₂ (0); 3.057 GaAs(0)+Ga ₂ (-); 3.891
GaAs ₄	GaAs ₂ (+)+As ₂ (0); -0.458 GaAs ₂ (0)+As ₂ (+); -0.609 GaAs(0)+As ₃ (+); -0.984 GaAs(+)+As ₃ (0); 2.166	GaAs ₂ (0)+As ₂ (0); -0.292 GaAs ₂ (+)+As ₂ (-); 0.964 GaAs(0)+As ₃ (0); 1.559 GaAs(+)+As ₃ (-); 2.242	$GaAs_{2}(-)+As_{2}(0); 1.247$ $GaAs(-)+As_{3}(0); 2.890$ $GaAs_{2}(0)+As_{2}(-); 4.307$ $GaAs(0)+As_{3}(-); 5.812$
Ga2A53	$Ga_2(0)+As_3(+); -1.178$ $Ga_2As(0)+As_2(+); -0.265$ $GaAs(0)+GaAs_2(+); 0.840$ $Ga_2As(+)+As_2(0); 0.860$ $GaAs(+)+GaAs_2(0); 1.613$ $Ga_2(+)+As_3(0); 1.194$	$Ga_2As(-)+As_2(+); -1.594$ $GaAs(-)+GaAs_2(+); 0.015$ $Ga_2As(0)+As_2(0); 0.075$ $GaAs(0)+GaAs_2(0); 1.029$ $GaAs(+)+GaAs_2(-); 1.098$ $Ga_2(+)+As_3(-); 1.293$ $Ga_2(0)+As_3(0); 1.482$ $Ga_2As(+)+As_2(-); 1.605$	$Ga_2As(-)+As_2(0); 1.233$ $GaAs(-)+GaAs_2(0); 2.693$ $GaAs(0)+GaAs_2(-); 3.001$ $Ga_2(-)+As_3(0); 3.980$ $Ga_2As(0)+As_2(-); 4.007$ $Ga_2(0)+As_3(-); 4.068$
Ga3Às2	$Ga_{3}(+)+As_{2}(0); -0.698$ $Ga_{3}(0)+As_{2}(+); 0.534$ $GaAs_{2}(0)+Ga_{2}(+); 2.134$ $GaAs_{2}(+)+Ga_{2}(0); 2.233$ $GaAs(0)+Ga_{2}As(+); 2.951$ $GaAs(+)+Ga_{2}As(0); 3.450$	$\begin{array}{c} Ga_3(+)+As_2(-); \ -0.085\\ Ga_3(0)+As_2(0); \ 0.042\\ Ga_2As(-)+Ga_2(+); \ 1.028\\ GaAs(-)+Ga_2As \ (-); \ 1.289\\ GaAs(-)+Ga_2As \ (-); \ 1.296\\ GaAs(0)+Ga_2As \ (0); \ 2.034\\ Ga_2As(0)+Ga_2(0); \ 2.645\\ Ga_2As(+)+Ga_2(-); \ 2.741\\ \end{array}$	$Ga_{1}(-)+As_{2}(0); 0.838$ $GaAs(0)+Ga_{2}As(-); 1.923$ $GaAs(-)+Ga_{2}As(0); 2.429$ $Ga_{2}As(-)+Ga_{2}(0); 2.534$ $Ga_{3}(0)+As_{2}(-); 2.705$ $Ga_{2}As(0)+Ga_{2}(-); 3.874$
Ga₁As	$GaAs_2(0)+Ga_2(+); 0.302$ $GaAs_2(+)+Ga_2(0); 0.401$ $GaAs(0)+Ga_3(+); 1.479$ $GaAs(+)+Ga_3(0); 1.635$	$GaAs_{2}(+)+Ga_{2}(-); 0.487$ $GaAs_{2}(0)+Ga_{2}(0); 0.665$ $GaAs(0)+Ga_{3}(0); 1.126$ $GaAs(+)+Ga_{3}(-); 1.288$	$GaAs_{2}(-)+Ga_{2}(0); 2.276$ $GaAs(-)+Ga_{3}(0); 2.429$ $GaAs_{2}(0)+Ga_{2}(-); 2.802$ $GaAs(0)+Ga_{3}(-); 2.830$

Если в твердом растворе TiN_xH_y при условии у>х наблюдается распад твердого раствора на две гексагональные фазы, то на примере твердого раствора $TiN_{0,32}D_{0,37}$ показано, что область гомогенности упорядоченного гексагонального твердого раствора в системе Ti-N-D гораздо шире, чем в системе Ti-N-H.

Естественно предположить, вышеперечисленные отличия в структурных особенностях и фазовых соотношениях твердых растворов систем Ti-N-D и Ti-N-H обусловлены изотопическими особенностями атомов водорода и дейтерия.

ОПРЕДЕЛЕНИЕ СРЕДНЕКВАДРАТИЧНЫХ СМЕЩЕНИЙ АТОМОВ В МЕТАЛЛАХ Ni И AI, И В СОЕДИНЕНИИ NIAI МЕТОДОМ ДИФРАКЦИИ НЕЙТРОНОВ

Орлова Т.

Ташкентский Государственный Педагогический Университет им. Низами, Ташкент

Одними из важных термодинамических величин, характеризующих тугоплавкие сплавы, являются среднеквадратичные смещения атомов $\sqrt{u^2}$. Это вызвано тем что, такие свойства как твердость, хрупкость и тугоплавкость, особенно при высоких температурах, в основном определяются, прочностью межатомных связей в кристалле. Мерой этой прочности может служить характеристическая температура Дебая, так как величина силы межатомной связи f пропорциональна квадрату температуры Дебая.

О прочности межатомной связи можно судить по величине среднеквадратичных смещений атомов, вызванных тепловыми колебаниями, поскольку они однозначно связаны определенным соотношением с характеристической температурой. Знание об этих величинах необходимо для прогнозирования и регулирования прочностных и других физических свойств кристаллов и являются актуальной задачей физики твердого тела.

Значение $\sqrt{u^2}$ может быть определено различными методами – из измерений теплоемкости, электрического сопротивления, модуля упругости, молекулярных спектров, рентгенографических данных. Однако, данные по $\sqrt{u^2}$, полученные различными методами плохо согласуются между собой. Среди этих методик сравнительно прецизионной является рентгенографическая методика, так как по этой методике $\sqrt{u^2}$ определяется непосредственно из эксперимента без применения сложных расчетов и приближений.