

Excitation Functions for Charged Particle Induced Reactions in Light Elements at Low Projectile Energies

J. Lorenzen and D. Brune

This report is intended for publication in a periodical. References may not be published prior to such publication without the consent of the author.

AKTIEBOLAGET ATOMENERGI

STUDSVIK, NYKÖPING, SWEDEN 1973

ERRATA

to report AE-476

EXCITATION FUNCTIONS FOR CHARGED PARTICLE INDUCED REACTIONS IN LIGHT ELEMENTS AT LOW PROJECTILE ENERGIES

J Lorenzen and D Brune

Page 4: Line 22: Börnstein instead of Bernstein

-

In the following reactions the residual nucleus is left in an excited state and should be marked with (*)

Page	23	lower fig
17	30	lower fig
11	31	upper fig
11	36	
11	37	
11	38	
11	43	
11	48	b, c, d
11	50	both
11	51	both
11	53	the dashed lowest line corresponds to $E_d = 5.74 \text{ MeV}$
11	54	ŭ
11	55	
†1	58	
11	59	
11	63	upper fig
11	72	lower line
11	76	
11	77	lower fig
11	80	
н :	105	lower fig
11	106	

AKTIEBOLAGET ATOMENERGI, Sweden 1973.

EXCITATION FUNCTIONS FOR CHARGED PARTICLE INDUCED REACTIONS IN LIGHT ELEMENTS AT LOW PROJECTILE ENERGIES^{X)}

J Lorenzen and D Brune AB Atomenergi, Studsvik, Sweden

SUMMARY

The present chapter has been formulated with the aim of making it useful in various fields of nuclear applications with emphasis on charged particle activation analysis.

Activation analysis of light elements using charged particles has proved to be an important tool in solving various problems in analytical chemistry, e g those associated with metal surfaces. Scientists desiring to evaluate the distribution of light elements in the surface of various matrices using charged particle reactions require accurate data on cross sections in the MeV-region.

A knowledge of cross section data and yield-functions is of great interest in many applied fields involving work with charged particles, such as radiological protection and health physics, material research, semiconductor material investigations and corrosion chemistry. The authors therefore decided to collect a limited number of data which find use in these fields. Although the compilation is far from being complete, it is expected to be of assistance in devising measurements of charged particle reactions in Van de Graaff or other low energy accelerators.

x) To be included in a handbook of cross section data for activation analysis purposes published by I.A.E.A.

LIST OF CONTENTS

Introduction	3
Excitation functions	5
Conventions and symbols	5
Proton	6
Deuteron	7
Alpha	8
Helium-3	9
Yield curves	10
Figures	i 1
Reference list	117
Appendix I	
Appendix II	
Appendix III	

INTRODUCTION

Nuclear reactions with charged particles are, as is well-known, hindered by the repulsive Coulomb interaction with the nucleus. Thus charged particle reactions with acceptable yields occur only where low- or medium-weight nuclei are involved. Elements heavier than Z > 12 have therefore been omitted from this compilation. The central problem in activation analysis is the identification of a given nuclide, and a quantitative determination of its concentration in a more or less complex matrix. In this connection it is necessary to search for special reactions which exclude competitive processes. This can be done, for example, by using selected bombarding energies which lead to as few competitive reactions as possible: Use is thus made of resonances in the excitation function in order to obtain a dominant yield from the selected nuclide, or of coincidence measurements with reactions products. Consequently, inclusion has been made of differential cross sections wherever they are available as well as integral curves. Furthermore, the compilation contains various yield curves.

In some cases the emerging particle is specified with an index i. This denotes whether the light product is produced in the ground state (o) or in the i:th excited state of the product nucleus. The excited states and the corresponding gamma ray energies can be obtained for instance in:

Nuclear Data Sheets, National Academy of Science, National Research Council, Washington D C, 1962

Where the values for angular distribution are related to the centreof-mass-system this is denoted by the index c.m. for the units of the cross section in the figures. Otherwise the figures show values in the laboratory system.

The authors suggest that a diagram showing the shape of cross sections or excitation functions provides a more rapid and useful source of information than do data from tables. For this reason only diagrams of absolute, normalized experimental values have been presented, even in those instances where tables were provided by the experimentalists. Unified symbols and units (see conventions and symbols) have been used, abbreviated references and comments have been included on the same page as the figures. The absolute errors as determined by the experimentalists are shown in the diagrams.

A reference list will be found at the end of this compilation

arranged in P (number) for proton, D (number) for deuteron, A (number) for alpha and H (number) for ³He-particle-induced reactions.

In some cases we found several publications concerned with the same reaction. Where the cross section was measured in different energy regions an attempt was made to fit and normalize the different results to a mean value at the point of intersection. Where identical information was presented by several authors the choice was restricted to that of the most recent origin.

In most cases the cross sections collected for this compilation will be found up to 20 MeV. In order to optimize irradiation conditions it may be necessary to know whether the cross section increases at higher energies or whether the resonance for the reaction concerned is already exceeded at low bombarding energies. Unfortunately there are only very few measurements for reactions induced by charged particles at higher energies. Therefore a request was addressed to H Münzel at Kernforschungszentrum Karlsruhe to include the systematic study made by him and his coworker on calculated and experimental cross-sections for charged particle induced reactions at higher energies. The original work is to be found in KFK 767, May 1968 (I Lange, H Münzel). A condensed part of this work is given in Appendix I. A more comprehensive compilation of this kind will be published in Landolt-Bernstein Vol III in the near future.

 $(\mathbf{p}, \mathbf{\gamma})$ reactions exhibit several resonances in the MeV region. These resonances are of special interest in charged particle activation analysis. For calibration purposes and depth distribution studies of light elements in heavy matrices use can favourably be made of these sharp resonances. In most of the cases the shape of the resonances is not so important as the characteristic data like position (resonance energy in keV), resonance width (FWHM in keV) and height (cross section in mb). Therefore a request was addressed to I W Butler, U S Naval Research Laboratory, Washington D C, to include the systematic collection made by him on $(\mathbf{p}, \mathbf{\gamma})$ resonances (see Appendix II). The original report will be found in NRL-5282 from April 1959.

The cross section given is the total cross section in millibarns at the resonance peak. Where more than one primary gamma ray is emitted, the tabulated value of the cross section is the sum of all such individual primary gamma-ray cross sections. For those resonances

- 4 -

which are too narrow for such cross section measurements, the integrated cross section, $\int \sigma dE$, has been tabulated where this measurement has been made. In these instances, the abbreviation "evb" for "electron-volt barn" has been inserted in the cross-section column.

As far as the gamma energies are concerned only the most predominant have been compiled here. A question mark means doubt about the number.

In Appendix III, finally, a collection of references concerning various data about charged particle induced reactions is given.

The authors wish to express their gratitude to the various contributors to this compilation, especially to Dr McGowan of the Data Centre at Oak Ridge, Tennessee.

CONVENTIONS AND SYMBOLS

σ	total cross section
σexc	excitation function
$\frac{d\sigma}{d\Omega}$	angular distribution
$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(0^{\mathrm{O}})$	diff cross section for 0 ⁰
c. m.	Centre-of-Mass system
θ	lab angle of measurement in angular distributions
E	energy in lab system
р	subscripts refer to proton
d	subscripts refer to deuteron
³ He	subscripts refer to helium-3
α	subscripts refer to alpha particle
gr .s t.	ground state
exc.st.	excited state
(p,p')	inelastic proton scattering

Reaction	Cross sections and ang distr	Energy range (MeV)	Page
$.7_{\mathrm{Li}(p,n)}$ ⁷ Be	$\sigma(0^{\circ})$	3-13	11
7 Li(p, α) 4 He	σ(90 [°] , 120 [°])	0.5-2.3	12
$7_{Be(p,\gamma)}^{8}B$	σ	1-3.5	12
$9_{\mathrm{Be}(p,\alpha)}^{6}\mathrm{Li}$	$\frac{d\sigma}{d\Omega}$	6-8	13
⁹ Be(p,d) ⁸ Be	~ 2 5	5-11	13
$10^{10} Be(p, \gamma)^{11} B$	σ(0 [°] , 90 [°])	0 - 6	16
${}^{10}B(p,\gamma){}^{11}C$	σ(90 [°])	3-17	16
${}^{11}B(p,\gamma){}^{12}C$	$\sigma, \frac{d\sigma}{dO}(90^{\circ})$	1 - 1 4	17
${}^{12}C(p,\gamma){}^{13}N$	Q Q	0-2.2	19
${}^{13}C(p,n){}^{13}N$	σ; σ(5 [°] , 40 [°])	3-14	19
$14_{N(p,\gamma)}15_{O}$	σ(90 ⁰)	2-19	21
$15_{N(p,n)}15_{O}$	σ; σ(5 [°] , 40 [°])	4-14	22
¹⁸ O(p, p) ¹⁸ O	σ(0 ⁰)	3.2-5,4	23
$^{18}O(\mathbf{p},\alpha)^{15}N$	σ(0 [°])	3.2-5.4	24
${}^{19}F(p,\alpha){}^{16}O$	$\sigma; \frac{d\sigma}{d\Omega}$	4-12	24
	$\sigma(70^{\circ}, 165^{\circ}); \frac{d\sigma}{d\Omega}$	9-12	25
$^{19}F(p, \alpha_{\gamma})^{16}O$	relative yield	0-5.6	29

PROTON

.

Reaction	Cross sections and ang distr	Energy range (MeV)	Page
$9_{Be(d,\gamma)}^{11}B$	σ	0.5-3.5	30
$10^{10} B(d, n)^{11} C$	$\sigma; \sigma(\theta); \frac{d\sigma}{d\Omega}$	3-9	31
	σ	5-12	33
${}^{11}B(d,n){}^{12}C$	$\sigma(0^{\circ})$	0.6-3	33
${}^{11}B(d, 2n){}^{11}C$	σ	8-18	34
${}^{12}C(d, p){}^{13}C$	σ(θ)	5-10	35
	$\sigma(30^{\circ})$	1-9	39
${}^{12}C(d,n){}^{13}N$	σ d=	1-4.5; 1-12; 4-19	39
	$\frac{d\Omega}{d\Omega}$	7-12	41
${}^{12}C(d, \alpha){}^{10}B$	σ(θ)	5-10	42
.14 _{N(d,p)} 15 _N	σ	i .0-3.5	44
$^{14}N(d,n)^{15}O$	$\sigma; \sigma(\theta); \frac{d\sigma}{d\Omega}$	1-5.5	44
${}^{16}O(d,n){}^{17}F$	σ; σ(θ)	2,5-4.5	47
$^{16}O(d,\alpha)^{14}N$	$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$, $\sigma(\theta)$	4-5.3; 3-15	49
	σ(θ)	3-5; 9-15	52
20 27	$\frac{d\sigma}{d\Omega}$	5.7-11	54
$20 \text{Ne}(d, p)^{21} \text{Ne}(d, p)$	$\sigma(30^{\circ}, 150^{\circ})$	0.8-2.6	56
	$\frac{d\sigma}{d\Omega}$	1.4-2.4	5 7

.

DEUTERON

Reaction	Cross section and ang distr	Energy range (MeV)	Page
6 _{Li+α}	$\frac{d\sigma}{d\sigma}$	10; 12.5	60
7 Li(α , n) 10 B	$\sigma; \sigma(0^{\circ})$	4-8	61
		4.8-7.8	62
${}^{9}Be(\alpha, n){}^{12}C$	$\sigma; \sigma(0^{\circ})$	1.6-6.4	63
	$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$ (0°)	0.34-0.7	64
	$\frac{d\sigma}{d\Omega}$	3.2-6.4	65
$^{9}Be(\alpha, 2n)^{11}C$	σ	24-38	69 .
$^{13}C(\alpha, n)^{16}O$	σ	2-5.3	69
$^{16}O(\alpha, n)^{19}Ne$	σ	6-17.5	70
20 Ne(α , n) 23 Mg	σ	11-28	70

ALPHA

Reaction	Cross-section and ang distr	Energy range (MeV)	Page
³ H(³ He, n) ⁵ Li	$\frac{d\sigma}{dO}$; $\sigma(0^{\circ}, 40^{\circ})$	1-4	71
7 Li $(^{3}$ He,t $)^{7}$ Be	$\sigma(30^{\circ})$	2-4	72
	$\frac{d\sigma}{d\Omega}$	3; 3.5; 4	72
⁷ Li(³ He,α) ⁶ Li	$\sigma(40^{\circ})$	2-4	73
⁹ Bc(³ He, n) ¹¹ C	σ	3-10	73
⁹ Be(³ He,t) ⁹ B	σ(40 [°])	2.5-4	73
	$\frac{d\sigma}{d\Omega}$	3-3.8	74
10^{10} Be(3 He, p) 12 C	$\sigma(90^{\circ}, 150^{\circ})$	11-18	75
¹⁰ Be(³ He,d) ¹¹ C	σ(150 [°])	11-19	75
¹⁰ Be(³ He, α) ⁹ B	σ(θ)	2-19	76
	σ(θ)	9-19	77
¹⁰ Be(³ He, n) ¹² N	σ	1 - 7	78
¹⁰ B(³ He,α) ⁹ B	σ(θ)	2-10	78
	$\frac{d\sigma}{d\Omega}$	3.4-9.8	79
¹² C(³ He,p) ¹⁴ N	$\frac{d\sigma}{d\Omega}$; σ	3-11	81#
${}^{12}C({}^{3}He,d){}^{13}N$	σ	6-10	101
$12_{C(^{3}He, d)} 13_{N+}$ + $12_{C(^{3}He, pn)} 13_{N+}$	$v_{\rm N}^{\sigma}$ ex	6-30	101
$12_{C(^{3}He,\alpha)}11_{C}$	σ	1-6	102
¹² C(³ He, n) ¹⁴ O	σ	1.6-6; 1.6-11	102
	σ _{ex}	2 - 32	103
$^{14}N(^{3}He, p)^{16}O$	σ	3-12	104
$^{14}N(^{3}He, \alpha)^{13}N$	σ	4-10	104
$^{16}O(^{3}He, p)^{18}F$	σ	2 -9	108
$^{16}O(^{3}He,\alpha)^{15}O$	σ	2-9	108
$^{19}F(^{3}He,\alpha)^{18}F$	σ	3- 9	109
$^{19}F(^{3}He, \alpha n)^{17}F$	σ	3-9	109

HELIUM 3

Reaction	Energy range (McV)	Page
$9_{Be}(^{3}_{He,n})^{11}C$	6-18	110
$10_{B}({}^{3}_{He,\gamma})^{13}_{N+}$	6 49	110
$+^{11}B(^{3}He,n)^{13}N$	0-18	110
$10^{10} B(^{3} He, d)^{11} C+$	6-18	110
$+^{11}B(^{3}He, t)^{11}C$	0-10	110
$14 N(^{3}He, d)^{15}O$	6-18	111
$^{14}N(^{3}He,\alpha)^{13}N$: 6-18	111
²³ Na(³ He, 2p) ²⁴ Na	9-18	111
a) ${}^{9}\text{Be}({}^{3}\text{He,n}){}^{11}\text{C}$	0 - 18	112
$10_{B}({}^{3}_{He, d}){}^{11}_{C} + {}^{11}_{B}({}^{3}_{He, t}){}^{11}_{He, t}$	C 0-18	
${}^{12}C({}^{3}He,\alpha){}^{11}C$	0-18	
b) ¹¹ B(³ He, n) ¹³ N	0-18	
${}^{12}C({}^{3}He, d){}^{13}N$	0-18	
$14_{N}(3_{He,\alpha})^{13}N$	0-18	
a) ${}^{14}N({}^{3}He, d){}^{15}O$	0-18	113
${}^{16}O({}^{3}He,\alpha){}^{15}O$	0-18	·
b) ${}^{19}F({}^{3}He,\alpha n){}^{17}F$	0-18	
c) ${}^{16}O({}^{3}He, p){}^{18}F$	0-18	
${}^{19}F({}^{3}He,\alpha){}^{18}F$	0-18	

Ref P1

Ref P1

Ref P2

⁹Be(p,d_o)⁸Be

Ref P4

Ref P4

Ref P4

Ref P4

Ref P5

Ref P6

Ref P7

Ref P7

Ref P7

Ref P9

Ref P9

ł

Ref P9

Ref P9

Ref P9

Ep(MeV)

Ref P12

Ref P12

Ref P12

Ref P12

Ref P12

Ref P12

Ref P12

Ref P12

Ref P12

Ref P12

1

Ref P12

Ref P12

Ref P12

0 20

40 60 80

100 120 140

θ_{c.m.}

160 180

Ref P12

Ref P13

Ref D1

Ref D1

Ref Di

Ref D2

Ref D2

Ref D3

Ref D2

Ref D3

Ref D4

Ref D4

Ref D6

Ref D5

.

Ref D4

44.

60

 θ_{lab}

120°

0°

0

120° 180°

,

60°

0°

60°

120°

,

Ref D9

Ref D9

¹⁵0(d,n)¹⁷F

וריריז דדדד

┱┲┲╻╼┲┲┲┰

T

40°

Ref D10

Ref D11

- 52 -

Ref Dii

θ_{c.m.}

Ref D11

Ref D12

2

Ref D12

Ref A1

Ref A2

Ref A2

Ref A2

For clarity some curves have been raised by the number in mb/sr in brackets.

For clarity some curves have been raised by the number in mb/sr in brackets.

- 64 -

Ref A3

Ref A6

Ref A8

Ref H1

Ref H1

Ref H4

Ref H4

- 76 -

Ref H5

Ref H6

Ref H6

Ref H7

Ref H7

Ref H7

•

+ [

Ref H7

Ref H7

Ref H7

ī

Ref H7

θ c.m.

- 98 -

Ref H7

Ref H9

.

Ref H9

Ref H10

Ref H8

1

Ref H11

Ref H11

.

Ref H12

Ref H12

- 106 -

T.

x indicates data from: KNUDSON; YOUNG.

Nucl Phys A 149, 323 (1970)

The plotted cross-section must be multiplied by the number in brackets to obtain the true cross-section.

Ref H11

Ref H3

REFERENCE LIST

Proton

- P1 R R BORCHERS and C H POPPE Phys Rev 129 (1963) p 2679.
- P2 W E SWEENY and J B MARION Phys Rev 182 (1969) p 1007.
- P3 F I VAUGHN et al Phys Rev 2 (1970) p 1657.
- P4 H R BLIEDEN, G M TEMMER and K L WARSH Nucl Phys 49 (1963) p 209.
- P5 D R GOOSMAN, E G ADELBERGER and K A SNOVEJ Phys Rev 1 (1970) p 123.
- P6 H M KUAN et al Nucl Phys A151 (1970) p 129.
- P7 R G ALLAS et al Nucl Phys 58 (1964) p 122.
- P8 N JARMIE and J D SEAGRAVE LA-2014 (1957).
- P9 C WONG et al Phys Rev 123 (1961) p 598.
- P10 P DAGLEY, W HAEBERLI and J X SALADIN Nucl Phys 24 (1961) p 353.
- P11 G BERGDOLT and G GUILLAUME J Phys 30 (1969) p 145.
- P12 K L WARSH, G M TEMMER and H R BLIEDEN Phys Rev 131 (1963) p 1690.
- P13 H B WILLARD et al Phys Rev 85 (1952) p 849.
- P14 C Y CHAO et al Phys Rev 79 (1950) p 108.

Deuteron

Dí	K BATTLESON and D K McDANIELS
	Phys Rev 4 (1971) p 1601.

- D2 G U DIN, M A NAGARAJAN and R POLLARD Nucl Phys A93 (1967) p 190.
- D3 O D BRILL and L V SUMIN At Energ 7 (1959) p 377.

- D4 H CORDS, G U DIN and B A ROBSON Nucl Phys A127 (1969) p 95.
- D5 J R DAVIS and G U DIN Nucl Phys A179 (1972) p 101.
- D6 R J JASZCZAK, R L MACKLIN and J H GIBBONS Phys Rev 181 (1969) p 1428.
- D7 V G PORTO et al Nucl Phys A136 (1969) p 385.
- D8 T RETZ-SCHMIDT and J L WEIL Phys Rev 119 (1960) p 1079.
- D9 R M BAHNSEN, W R WYLIE and H W LEFEVRE Phys Rev 2 (1970) p 859.
- D10 S T THORNTON et al Phys Rev 3 (1971) p 1065.
- D11 J JOBST, S MESSELT and H T RICHARDS Phys Rev 178 (1969) p 1663.
- D12 M N H COMSAN Atomkernenergie 18 (1971) p 317.

Alpha

- A1 H R BLIEDEN, G M TEMMER and K L WARSH Nucl Phys 49 (1963) p 209.
- A2 L VAN DER ZWAN and K W GEIGER Nucl Phys A180 (1972) p 615.
- A3 A W OBST, T B GRANDY and J L WEIL Phys Rev C 5 (1972) p 738.
- A4 T RETZ-SCHMIDT et al Bull Am Phys Soc 5 (1960) p 110
- A5 C N DAVIDS Nucl Phys A110 (1968) p 619.
- A6 O D BRILL and L V SUMIN At Energi 7 (1959) p 377.
- A7 K K SEKHARAN et al Phys Rev 156 (1967) p 1187.
- A8 W GRUHLE, W SCHMIDT and W BURGMER Nucl Phys A186 (1972) p 257.

Helium

Hí	J T KLOPCIC and S E DARDEN
	Phys Rev C 3 (1971) p 2171.

- H2 H ORIHARA et al Nucl Phys A139 (1969) p 226.
- H3 R L HAHN and E RICCI Phys Rev 146 (1966) p 650.
- H4 R A I BELL et al ANU-P/550 (1972).
- H5 R W PETERSON and N W GLASS Phys Rev 130 (1963) p 292.
- H6 J R PATTERSON, J M POATE and E W TITTERTON Proc Phys Soc 85 (1965) p 1085.
- H7 F HAAS et al Phys Rev 188 (1969) p 1625.
- H8 J SINGH Nucl Phys A155 (1970) p 443.
- H9 S D CIRILOV, J O NEWTON and J P SCHAPIRA Nucl Phys 77 (1966) p 472.
- H10 D R OSGOOD, J R PATTERSON and E W TITTERTON Nucl Phys 60 (1964) p 503.
- H11 P GUAZZONI, S MICHELETTI and M PIGNANELLI Phys Rev C 4 (1971) p 1086.
- H12 A R KNUDSON and R C YOUNG Nucl Phys A149 (1970) p 323.

Yield curves

- Y1-6 R L HAHN and E RICCI Nucl Phys, A101 (1967) p 353.
- Y7-8 E RICCI and R L HAHN Anal Chem 40 (1968) p 54.

APPENDIX I

Characteristic data for excitation functions of charged particle induced reactions at higher energies.

Systematics

Table of the characteristic data for the exictation functions	AI-1
Position of the maxima for the excitation functions dependent on the atomic numbers Z of the target nucleus	AI-10
Full width at half maximum for the excitation functions dependent on the atomic number Z of the target nucleus	AI-11
Heights of maxima for the excitation functions dependent on the atomic number Z of the target nucleus	AI-12
Characteristic data of the excitation functions dependent on the atomic number Z of the target nucleus	AI-13
Calculated and experimental excitation functions	AI-14
Yield from thick targets	AI-22

.

TABLE OF THE CHARACTERISTIC DATA FOR THE EXCITATION FUNCTIONS

The five columns below list the following parameters:

- 1. No of excitation function in fig AI-14 to AI-21
- 2. Target nucleus, atomic number, chem symbol, mass number
- 3. Q-value of the reaction (MeV)
- 4. Position of the maximum with respect to the energy scale E+Q (MeV)
- 5. Height of the maximum (mb)

No	Target nucleus	Q- value	Position of maximum	Height of maximum
(<i>a</i> , n)				
1	21 Sc-45	-2.2	12.7	630
2a	25 Mn-55	-3.5	8.7	680
2b	2 5 Mn-55	-3.5	10.9	520
3	26 Fe-54	-5.8	10.5	190
4	2 7 Co-59	-5.i	-	-
5	28 Ni-60	-7.9	11.1	550
6	Ni-62	-6.5	9.7	950
7	29 Cu-63	-7.5	8.9	700
8a	Cu-65	-5.8	-	-
8b	Cu-65	-5.8	11.8	820
9a	30 Zn-64	-9.2	10.9	770 ·
9Ъ	30 Zn-64	-9.2	10.2	320
10	Zn-68	-5.7	-	-
11	37 Rb-85	-3.5	12.0	250
12	Rb-87	-3 .8	10.0	2 40
13a	41 Nb-93	-7.0	9.4	470
13b	41 Nb-93	-7.0	-	
i 4	42 Mo-92	-8,4	11.6	370
15	Mo-100	-4.6	9.6	760
16a	47 Ag-107	-7.6	9.2	420
16b	47 Ag-107	-7.6	10.8	340
17	Ag-109	-6.4	10.0	360
18	48 Cd-106	-10.1	i0 .9	670

No	Target nucleus	Q- value	Position of maximum	Height of maximum
(α, n)				
19	49 In-115	-7.2	12.1	300
20	50 Sn-112	-13.0	6.4	550
21	Sn-114	-11.1	7.0	29 0
22	Sn-124	-5,6	13.4	1 60
23a	56 Ba -13 8	-8.6	7.4	130
23b	56 Ba -13 8	-8.6	17.2	900
24a	57 La-139	-9,2	9.1	115
24Ъ	57 La-139	-9.2	8.4	ii 0
2 4c	57 La-139	-9.2	8.3	i i 0
25a	67 Ho-165	-9.2	11.8	79
25Ъ	67 Ho-165	-9.2	8.8	30
26	68 Er-164	-11.1	6.9	260
27	79 Au-197	-9.8	-	-
28	82 Pb-207	-12.1	10.3	110
29	Pb-208	-15.0	6.4	90
30	92 U-235	-10.9	-	-
31	94 Pu-238	-13.1	-	-
(a, 2n)				
1	21 Sc-45	-12.8	13.3	200
2a	25 Mn-55	-12.1	-	640
2Ъ	25 Mn-55	-12.1	-	670
3	26 Fe-54	-16.0	16.3	10
4	27 Co-59	-14.0	14.4	390
5	28 Ni-60	-17.1	14.9	180
6	29 Cu-63	-16.6	14.4	260
7a	Cu-65	-14.1	13,4	650
7Ъ	Cu-65	-14.1	-	10 00
8	30 Zn-64	-19.0	13.5	86
9	32 Ge-70	-16. i	16.9	320
10	35 Br-79	-14.4	-	2300
11	37 Rb-85	-12.7	12.3	810
12	47 Ag-107	-15.6	11.4	1000

No	Target nucleus	Q- value	Position of maximum	Height of maximum
(α, 2n)				
13	Ag-109	-14.3	10.2	1050
14	48 Cd-106	-19.2	12.3	430
1 5	52 Te-130	-11.8	13.7	66
16	67 Ho-165	-16.2	7.3	750
17	68 Er-164	-18.0	11.0	820
1 8a	79 Au-197	-16.4	12.6	640
1 8Ъ	79 Au-197	-1 6.4	13.6	800
1 8c	79 Au-197	-16.4	i2.4	650
19	82 Pb-206	-20.0	11.0	1050
20	Pb-208	-19.5	10.5	1000
21a	83 Bi-209	-20.3	9 . 9	900
21 b	83 Bi-209	-20.3	10.5	910
22	92 U-233	-19. i	8.9	6.5
23	U-235	-17.9	8.3	i 6
24	93 Np-237	-18.3	9.7	16
25	94 Pu-238	-17.8	8.2	15.5
26	Pu-239	-18.2	10.8	13
27	Pu-242	-17.2	7.8	10.5
2 8	98 Cf-252	-18.2	10.4	9.5
(a, 3n)				
1	25 Mn-55	-23.5	-	-
2	26 Fe-56	-26.3	17.3	16
3	30 Zn-64	-31.5	-	-
4	37 Rb-85	-24.7	15.1	600
5	47 Ag-107	-26.1	13.1	550
6a	Ag-109	-24.1	11.9	1000
6ъ	Ag-109	-24.1	13,9	950
7	49 In-115	-24.4	-	-
8	50 Sn-124	-21.0	15.0	i400
9	57 La-139	-24.5	11.7	i 400
10	67 Ho-165	-24.7	10.1	840
11	68 Er-164	-27.5	12.9	1180

•

No	Target nucleus	Q- value	Position of maximum	Height of maximum
(a, 3n)				
12a	79 Au-197	-25,4	13.6	1100
12b	79 Au-197	-25,4	12.8	1400
13	82 Pb-206	-28.5	-	-
14	Pb-207	-26,8	12 8	1400
15	83 Bi-209	-28.0	-	-
16	83 Bi-209	-28.0	11.5	1200
17	92 U-233	-25.3	9.1	1
18	U-235	-23.8	9.8	8
19	93 Np-237	-25.4	13.4	14
20	94 Pu-239	-23.8	13.2	4.5
21	98 Cf-252	-25.0	12.4	3, 3
(<i>α</i> , p)				
1	26 Fe-54	-1,8	16.2	600
2	28 Ni-58	-3.1	-	-
3	30 Zn-64	-4.0	15.0	520
4	42 Mo-92	-5.6	14.4	185
5	48 Cd-10 6	-5,6	17.3	245
6	50 Sn-124	-6.4	23.0	18
(α, pn)				
1a	26 Fe-54	-13.2	14.8	7 50
iь	26 Fe-54	-13.2	14.6	470
2a	Fe-56	-13.7	13.7	840
2ъ	Fe-56	-13.7	14.7	790
2c	Fe-56	-13.7	16.3	630
3	28 Ni-60	-1 4.6	16.4	890
4	Ni-62	-14.3	17.2	495
5	29 Cu-63	-12,6	17.4	870
6a	30 Zn-64	-16.0	-	-
6ъ	30 Zn-64	-16.0	16.6	790
7	Zn-66	-15.5	-	-
8	Zn-70	-13.9	17.1	88
9	32 Ge-70	-15.3	15.7	5 7 5

No	Target nucleus	Q- value	Position of maximum	Height of maximum
(α, pn)				
i 0	47 Ag-107	-13.6	17.4	91
11	48 Cd-106	-16.7	18.6	2 25
12.	50 Sn-124	-14.8	24.2	46
13	57 La-139	-15,6	-	~
i 4	94 Pu-238	-18.3	20.7	15
(d, n)				
i	22 Ti-47	4.6	12.4	200
2	24 Cr-50	2.9	8.3	265
3	26 Fe-54	2,8	10.5	155
4	30 Zn-66	3.1	11.4	450
5	32 Ge-70	2.4	10.4	270
6a	40 Zr-94	4.6	13.8	120
6Ъ	40 Zr-94	4.6	12,3	130
7a	Zr-96	5.2	12.7	85
7 b	Zr-96	5,2	13.0	85
8	42 Mo-92	1.9	i 0.9	1 90
9	52 Te-130	5.2	16.2	75
1 0a	58 Ce-142	3.5	-	-
10b	58 Ce-142	3.5	i 5.9	60
ila	83 Bi-209	2.8	20,8	34
1 1b	83 Bi-209	2,8	, 	32
12	9 2 U-235	2.6	22.2	10
13	94 Pu-239	2.2	24.2	14
(d, 2n)				
1	22 Ti-47	-5.9	9.5	400
2.	Ti-48	-7.0	10.0	38
3a	24 Cr-52	-7. 7	-	-
3b	24 Cr-52	-7.7	14,3	200
4	26 Fe-56	-7.6	10.0	310
5	29 Cu-63	-6.4	-	-
6a	Cu-65	-4.4	11.3	920
6Ъ	Cu-65	-4.4	9.6	820
7a	30 Zn-66	-8.2	-	-

No	Target nucleus	Q- value	Position of maximum	Height of maximum
(d, 2n)				
7b	30 Zn-66	-8.2	-	-
8	Zn - 68	-5.9	-	-
9	32 Ge-70	-9.2	-	-
10	34 Se-82	-3.1	-	-
11 a	40 Zr-96	-2.8	-	-
11b	40 Zr-96	-2.8	8,2	1050
12	52 Te-126	-5.2	7.3	750
13	Te-128	-4.3	9.0	800
14a	Te-130	-3.4	8.8	700
1 4b	Te-130	-3.4	8,5	750
15	53 J-127	-3.7	10.9	700
16	55 Cs-133	-3. 5	10.3	600
17a	58 Ce-142	-3. 8	-	-
17 Ъ	58 Ce -i 42	-3.8	7.8	750
18	73 Ta-181	-3.2	8.4	660
i 9	74 W-184	-4.7	-	-
20	W-186	-3.6	9.2	380
21	79 Au-197	-3,8	10.8	60 0
22	83 Bi-209	-4.9	9.9	540
23	92 U-234	-4.8	9.2	32
24a	U-235	-3.1	86	19
24 b	U-235	-3. i	10.8	25
25	U-236	-3.9	8.4	43
26a	U-238	-3,1	8.9	48
26Ъ	U-23 8	-3, 1	10.5	7 0
2 7	94 Pu-239	-3.8	10.6	28
(d, 3n)				
1	40 Zr-96	-10.0	-	-
2	53 J -127	-10.9	-	-
3	59 Pr-141	-12.7	12.9	1200
4a	83 Bi-209	-11.9	-	-
4b	83 Bi-209	-11.9	-	-
5	92 U-234	-10.9	7.9	19

No	Target nucleu s	Q- value	Position of maximum	Height of maximum
(d, 3n)				
6a	92 U-235	-10.1	10.1	26
6Ъ	92 U-235	-10.1	8.9	24
7	U-23 6	-9.6	9.4	57
8	94 Pu-239	-10.9	-	-
(d,p)				
í	27 Co-59	5.3	13.1	300
2	29 Cu-6 3	5.7	14.7	275
3	30 Zn-68	4.3	12.5	450
4	32 Ge-70	5.2	13.4	450
5	33 As-75	5.1	13.6	250
6	35 Br-81	5.4	13.9	370
7	39 Y-89	4.6	13.6	205
8	40 Zr-94	4.2	13.4	2 80
9a	Zr-96	3.4	12.8	220
9Ъ	Zr-96	3.4	12.6	300
10	45 Rh-103	4.8	1 4.5	200
11	46 Pd-110	3.5	12.8	285
12	48 Cd-114	3.9	13.3	265
13	52 Te-130	3.7	13.5	200
1 4	55 Cs-133	3.9	13.5	175
15a	58 Ce-142	2.9	-	-
15b	58 Ce-142	2.9	12.9	230
16	59 Pr-141	3.6	15.8	260
17	73 Ta-181	3.8	15.8	230
i 8	74 W -1 84	3.5	15.8	280
19	W -1 86	3.3	15. 7	310
20	75 Re-187	3.0	17.0	210
21	78 Pt-196	3, 1	-	-
2 2a	79 Au-197	4.3	18.8	280
22b	79 Au-197	4.3	19.3	160
2.3	82 Pb-208	1.7	15.1	205
24	83 Bi-209	2.4	15.4	115
25	Bi-209	2.4	15.6	i1 0
26	92 U-238	2.6	18,6	220

No	Target nucleus	Q - value	Position of maximum	Height of maximum
(p, n)				
1	22 Ti-47	-3.7	6.5	300
2	Ti-48	-4.8	7.2	510
3a	23 V-51	-1.5	-	-
3 b	23 V-51	-1. 5	11 .5	700
4a	24 Cr-52	-5.5	7.i	600
4b	2 4 Cr-52	-5.5	-	-
5	25 Mn-55	-1.0	-	-
6	26 Fe-56	-5.4	6.6	450
7	Fe-57	-1.6	7.4	400
8	27 Co-59	-1.9	8.1	500
9	28 Ni-61	-3.0	6.6	700
10	Ni-62	-4.7	-	-
11	Ni-64	-2.5	7.9	850
12	29 Cu-63	-4.2	8.2	5 0 0
13	Cu-65	-2.1	-	-
i 4	31 Ga-69	-2.2	-	-
15	3 9 Y-89	-3,6	9.4	730
16	47 Ag-107	-2.2	-	-
17	Ag-109	-1 ,0	8.2	360
18	48 Cd-110	-4.7	8.3	870
19a	Cd-111	-1.9	11.1	53 0
1 9Ъ	Cd-111	-1.9	-	-
20	Cd-112	-3.4	-	-
21	Cd-114	-2.2	-	-
22	50 Sn-124	-1.4	-	-
23	57 La-139	-1.1	-	-
24	58 Ce-142	-1.6	7.4	120
2 5	59 Pr-141	-2.6	-	-
26a	73 Ta-181	-1.0	8,5	100
26Ъ	73 Ta-181	-1.0	9.0	i 00
26c	73 Ta-181	-1.0	9.0	105
26d	73 Ta-181	-1.0	12	100
27	79 Au-197	-1.6	9.2	95

No	Target nucleus	Q- value	Position of maximum	lleight of maximum
(p, 2n)				
1	23 V-51	-10.8	4.2	240
2	27 Co-59	-10.9	-	~
3	28 Nj-62	-13.6	9. 9	210
4	29 Cu-63	-13.3	ii. 7	180
5	31 Ga-69	-11.6	7.4	500
6	39 Y-89	-12.8	13.2	1300
7	41 Nb-93	-9.3	-	-
8	47 Ag-107	-10.1	-	**
9	48 Cd-110	-12,7	-	-
10	Cd-111	-11.7	-	-
11	Cd-112	-11.3	9.7	1050
1 2a	73 Ta-181	-7.9	-	-
1 2b	73 Ta-181	-7.9	6.8	900
13a	79 Au-197	-8,2	-	-
i 3b	79 Au-197	-8,2	-	
14	82 Pb-206	-11.6	9.4	i 050
(p, 3n)				
1	23 V-51	-23.7	16.3	100
2	27 Co-59	-23, 1	17.9	11
3	2 9 Cu-65	-22.0	16.0	160
4	31 Ga-69	-23.8	13.2	65
5	Ga-71	-20.0	10.0	550
6	39 Y-89	-20.8	20.2	390
7	48 Cd-112	-21,1	9.9	780
8	73 Ta-181	-15,5	9.5	1200
9	82 Pb-206	-20.0	9.0	900
10	83 Bi-209	-18.0	12.0	850

.

ł

Positions of the maxima for the excitation functions dependent on the atomic number Z of the target nucleus

 Full width at half maximum for the excitation functions dependent on the atomic number Z of the target nucleus

Heights of maxima for the excitation functions dependent on the atomic number Z of the target nucleus

Characteristic data of excitation functions dependent on the atomic number Z of the target nucleus

structure corresponding to figs AI-10-AI-12

----- structure estimated

Calculated and experimental excitation functions experimental excitation functions calculated excitation functions

Calculated and experimental excitation functions experimental excitation functions calculated excitation functions

----- calculated excitation functions

Yield from thick targets AK = yield from short irradiation times (t = 0.1 T) AL = yield from long irradiation times (t >>T)
APPENDIX II

 (p, γ) -resonances listed in respect to resonance energies from 163 keV to 3.0 MeV.

The different columns show

- 1. The proton energy in keV
- 2. The (p, γ) -reaction concerned
- 3. The energies of emitted gamma rays
- 4. The cross section in mb
- 5. FWHM of the resonance in keV
- 6. Half life and β -energy in β^+ -decay (from "Chart of the nuclides" 3rd edition 1968, Bonn).

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and β ⁺ energy (MeV)
163	$B^{11}(p, y)C^{12}$	16.11, 11.68, 4,43	0.157	7	
224	$F^{19}(p, \alpha_{v})O^{16}$	7.12. 6.92. 6.13	>0.2	1	
226	$Mg^{24}(p, y)A1^{25}$	2.06. 1.56. 0.95		1?	7.2 s: 3.3
226	$Al^{27}(p, \gamma)Si^{28}$,
251	$Na^{23}(p,\gamma)Mg^{24}$			0.3	
261	$C^{14}(p, \gamma)N^{15}$				
278	$N^{14}(p, \gamma)O^{15}$	6.82, 6.14, 1.47		1.6	2.03 m; 1.7
294	$Al^{27}(p, \gamma)Si^{28}$			<1	
295	$Mg^{26}(p, \gamma)A1^{27}$				
308	$Na^{23}(p,\gamma)Mg^{24}$	10.6, 7.8, 6.7		0.8	
317	$Mg^{25}(p,\gamma)Al^{26}$	6.19, 4.86, 0.82		12	6.4 s; 3.2
326	$Al^{27}(p, \gamma)Si^{28}$	7.6, 7.2, 6.2		<1	
326	${\rm Si}^{29}({\rm p, \gamma}){\rm P}^{30}$	5.88, 5.17			2.50 m; 3.2
330	$Be^{9}(p, \gamma)B^{10}$	6.9, 6.2, 5.2		160	
339	$Mg^{26}(p,\gamma)Al^{27}$	7.74, 5.85, 5.61			
340	$F^{19}(p,\alpha\gamma)O^{16}$	7.12, 6.92, 6.13	160	3	
3 55	$P^{31}(p, \gamma)S^{32}$				
356	$C^{14}(p, \gamma)N^{15}$	10.5, 7.1, 5.4			
360	$N^{15}(p, \gamma)O^{16}$	12.43, 6.37	0.007	94	
360	$N^{15}(p,\alpha_{\gamma})C^{12}$	4.43	0.03	94	
374	$Na^{23}(p,\gamma)Mg^{24}$	6.26	2		
392	$Mg^{25}(p, \gamma)Al^{26}$	6.26, 4.6?, 3.5?	4	8	6.4 s; 3.2
405	$A1^{27}(p, \gamma)Si^{28}$	7.3, 5.1, 2.8			
414	$\operatorname{Si}^{29}(\mathbf{p},\mathbf{\gamma})\mathbf{P}^{30}$	5.25, 0.70			2.5 m; 3.2
418	$Mg^{24}(p, \gamma)A1^{25}$	2,70, 2.25, 0.89		i	7.2 s; 3.3
429	$N^{15}(\mathbf{p},\alpha_{\gamma})C^{12}$	4.43	300	0.9	
429	$N^{15}(p, \gamma)O^{16}$	6.46	0.001	0.9	
437	$Mg^{25}(p, \gamma)A1^{26}$	6.72, 6.30, 4.66?			6.4 s; 3.2
439	$Al^{27}(p, \gamma)Si^{28}$				
440	$P^{31}(p, \gamma)S^{32}$			34	
441	$\text{Li}^{7}(p,\gamma)\text{Be}^{8}$	17.64, 14.74, 12.24	6	12	

Reaction	Gamma-ray energy	Cross section	Width	Half life and β^{+} energy
	(MeV)	(mb)	(keV)	(MeV)
$Na^{23}(p,\gamma)Mg^{24}$			0.8	
$C^{13}(p, \gamma)N^{14}$				
$Mg^{26}(p,\gamma)Al^{27}$	7.85, 7.68, 5.71		ļ	
$C^{12}(p, \gamma)N^{13}$	2.36	0.127	39.5	9.96 m; 1.2
$Mg^{25}(p,\gamma)Al^{26}$		1		6.4 s; 3.2
$F^{19}(p,\alpha_{\gamma})O^{16}$	7.12, 6.92, 6.13	>32	0.9	
$Mg^{25}(p,\gamma)Al^{26}$	6.36, 4.24, 4.21?		5	6.4 s; 3.2
${\rm Si}^{30}(p, \gamma) {\rm P}^{31}$	7.75, 6.48, 4.62			
$A1^{27}(p, \gamma)Si^{28}$	12.07		<0.20	
$A1^{27}(p, \gamma)Si^{28}$	10.29		<0.17	
$Na^{23}(p,\gamma)Mg^{24}$	10.8, 8.0, 6.9		0.8	
$Mg^{25}(p, \gamma)A1^{26}$			3	6.4 s; 3.2
$Mg^{25}(p,\gamma)Al^{26}$			3	6.4 s; 3.2
$C^{14}(p, \gamma)N^{15}$	10.7, 5.3			
$P^{31}(p, \gamma)S^{32}$				
$C^{13}(p, \gamma)N^{14}$	8.06, 4.11	1.44	32, 5	
$Mg^{25}(p,\gamma)Al^{26}$	6.85?, 6.43, 4.28			6.4 s; 3.2
$Na^{23}(p,\gamma)Mg^{24}$	10.9, 8.0, 7.0		2	
$S^{32}(p, \gamma)C1^{33}$	2.86, 2.05, 0.806			2.53 s; 4.5
$F^{19}(p, \alpha_{\gamma})O^{16}$	7.12, 6.92, 6.13	7.1	30	
$Mg^{25}(p,\gamma)A1^{26}$	6.88?, 6.46, 4.34			6.4 s; 3.2
$A1^{27}(p, \gamma)Si^{28}$			<1	
${\rm Si}^{30}({\rm p,\gamma}){\rm P}^{31}$	7.87			
18 19	0 5		21	

M ; 3.2 F^{1} Mg ; 3.2 Si A1 A1 Na M ; 3.2 M ; 3.2 c^1 P^3 c^1 Mg ; 3.2 Na s^3 s; 4.5 F¹ Mg ; 3.2 Al Si $O^{18}(p,\gamma)F$ 8.5 2.6 $A1^{27}(p,\gamma)Si^{28}$ <0.06 10.41, 7.59, 1.77 $Ne^{22}(p,\gamma)Na^{23}$ 9.40 $C^{14}(p, \gamma)N^{15}$ 10.8, 5.3 $P^{31}(p,\gamma)S^{32}$ 17 $\frac{P^{(p,\gamma)S}}{Ca^{40}(p,\gamma)Sc^{41}}$ $A1^{27}(p,\gamma)Si^{28}$ $Ne^{22}(p,\gamma)Na^{23}$ $Mg^{26}(p,\gamma)A1^{27}$ $Mg^{25}(p,\gamma)A1^{26}$ 0.596 s; 5.6 <0.06 10.43, 7.61

7.88, 6.68, 5.9

4 s; 3.2

Proton energy

(keV)

444

448

454

457 473

484 496

500

504

506

511

513

530

532

540

550 580

594

594

597 607

612 625

630

632

636

640

648

650

654 660?

661 667

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and β ⁺ energy (MeV)
672	$F^{19}(p,v)Ne^{20}$	11,88, 1,63	0.5	6.0	
672	$F^{19}(p, \alpha_{\rm V})O^{16}$	7.12. 6.92. 6.13	5 7	6.0	
675	$B^{11}(p, y)C^{12}$	12.15, 4.43	0.050	322	
675	$Na^{23}(p, y)Mg^{24}$	11.0, 8.1, 7.1		≤ 1	
675	$Mg^{25}(p, y)A1^{26}$	6.55, 5.21, 3.30			6.4 s; 3.2
675	${\rm Si}^{30}({\rm p,y}){\rm P}^{31}$	7.92, 6.65, 1.27			
678	$A1^{27}(p, \gamma)Si^{28}$	10.45,763		<1	
693	${\rm Si}^{29}({\rm p, y}){\rm P}^{30}$	6.26, 4.29, 3.51			2.5 m; 3.2
700	$N^{14}(p, y)O^{15}$	8.0		100	
703?	Si(p, y)P				2.03 m; 1.7
710	$N^{15}(p, \gamma)O^{16}$	6.72		40	
717?	Si(p, y)P				
720	$Mg^{25}(p,\gamma)A1^{26}$	6.59, 4.93, 2.46			6.4 s; 3.2
720	$Mg^{26}(p, \gamma)Al^{27}$	6.74, 5.96, 5.28			
725	$Ni^{60}(p, \gamma)Cu^{61}$	<u>≤</u> 5, 52	0.01 evb	<1	3.3 h; 1.2
730	${\rm Si}^{29}({\rm p,y}){\rm P}^{30}$	3. 33			2,5 m; 3.2
731	$Al^{27}(p, \gamma)Si^{28}$			<0.16	
736	$Al^{27}(p, \gamma)Si^{28}$			< 0. 09	
740	$Na^{23}(p,\gamma)Mg^{24}$	11		<3	
741	$Al^{27}(p, \gamma)Si^{28}$			<1	
744	$Na^{23}(p, v)Mg^{24}$	8		<3	
759	$Al^{27}(p, \gamma)Si^{28}$			<0.06	
760	$Si^{30}(p, y)P^{31}$	6.71, 4.57, 1.27			
7 65	$Ne^{21}(p,\gamma)Na^{22}$				2.62 y; 0.5, 1.8
7 66	$Al^{27}(p, \gamma)Si^{28}$			<0.08	
773	${\rm Al}^{27}({\rm p,\gamma}){\rm Si}^{28}$	12.33		0. 0 09	
775	${\rm Si}^{30}({\rm p},{\rm \gamma}){\rm P}^{31}$	8.00, 6.73, 1.27			
777	$Mg^{25}(p, \gamma)Al^{26}$	6.65?, 4.99, 3.90			
780	$F^{19}(p, \alpha_{\gamma})O^{16}$			7.6	6.4 s; 3.2
800?	Si(p, y)P				
813	$Mg^{26}(p, \gamma)A1^{27}$				
816	$P^{31}(p, \gamma)S^{32}$	7.39			
820	$Mg^{25}(p,\gamma)A1^{26}$	7.69, 5.04, 4.56			6.4 s; 3.2
825	$Mg^{24}(p, v)Al^{25}$	3.09, 2.64, 2.14		1.5	·
825	$P^{31}(p, y)S^{32}$	9.64			7.2 s; 3.3
828	$Ne^{22}(p,\gamma)Na^{23}$				*

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and β^+ energy (MeV)
835	$F^{19}(p, \alpha_{\rm V})O^{16}$	7.12, 6.92, 6.13	19	6, 5	
840	$Mg^{26}(p, v)A1^{27}$				
840	${\rm Si}^{30}({\rm p, y}){\rm P}^{31}$	6.82, 4.80, 1.27			
849	$O^{18}(p, \gamma)F^{19}$	8,8		40	
854	$Ne^{22}(p,\gamma)Na^{23}$	9,61, 9.17, 5.70			
855	$C1^{35}(p, \gamma)A^{36}$	7.2, 5.1, 4.3		≲5	
855	Ni ⁵⁸ (p, y)Cu ⁵⁹	≤4.26	0.007 evb	<1	81 s; 3.7
872	$F^{19}(p,\alpha\gamma)O^{16}$	7.12, 6.92, 6.13	540	4.5	
87 7	$Na^{23}(p,\gamma)Mg^{24}$	11		8	
883?	К ³⁹ (р,ү)Са ⁴⁰	9?			
884	$A1^{27}(p, \gamma)Si^{28}$			<1	
888	$C1^{35}(p,\gamma)A^{36}$				
890	$Mg^{25}(p, \gamma)A1^{26}$				
892	$P^{31}(p, \gamma)S^{32}$			9	
895?	$Si(p, \gamma)P$				
895	Ni ⁶⁰ (p, y)Cu ⁶¹	≤5.69	0.01 evb	<1	3.3 h; 1.2
898	$N^{15}(p, \alpha \gamma)C^{12}$	4.43	800	2.2	
900	$A^{40}(p, \gamma)K^{41}$				
901	$Ne^{22}(p,\gamma)Na^{23}$	9.66?,9.22?			
902	$F^{19}(p, \alpha_{\gamma})O^{16}$	7.12, 6.92, 6.13	23	5.1	
916	${\rm Si}^{29}({\rm p,\gamma}){\rm P}^{30}$	5.74, 4.48			2.5 m; 3.2
922	$A1^{27}(p, \gamma)Si^{28}$			<0.19	
925?	$K^{39}(p, \gamma)Ca^{40}$	9?			
933	$Ne^{22}(p,\gamma)Na^{23}$	9.69?, 9.25?			
935	$F^{19}(p,\alpha\gamma)O^{16}$	7.12, 6.92, 6.13	180	8.6	
936	$Al^{27}(p,\gamma)Si^{28}$			0.34	
940	$Mg^{25}(p,\gamma)A1^{26}$	6.99, 5.15			6.4 s; 3.2
943?	$Ne^{22}(p, \gamma)Na^{23}$				
944?	$Si(p, \gamma)P$				
947	$Ni^{58}(p, \gamma)Cu^{59}$	≤4 . 3 5	0.14 evb	<i< td=""><td>81 s; 3.7</td></i<>	81 s; 3.7
954	$Mg^{26}(p, \gamma)A1^{27}$				
955	$Si_{20}^{30}(p, \gamma)P^{31}$	8.19, 6.92, 1.27			
956	$\operatorname{Si}^{29}(\mathbf{p},\mathbf{\gamma})\operatorname{P}^{30}$	649, 5.04, 4.52			2.5 m; 3.2
960	$Mg^{25}(p, \gamma)A1^{26}$	5.17, 4.70, 3.57?			6.4 s; 3.2
980?	$F^{19}(p, \gamma)Ne^{20}$				

ł

А	I	I	-	5	

Proton energy (keV)	Reaction	Gamma -r ay energy (MeV)	Cross section (mb)	Width (keV)	Half life and β ⁺ energy (MeV)
980	$Si^{30}(p, \gamma)P^{31}$	4.96, 4.84, 1.27			
980	$K^{39}(p,\gamma)Ca^{40}$	9?			
982	$Ne^{22}(p,\gamma)Na^{23}$				
989	$Na^{23}(p,\gamma)Mg^{24}$	9		<1	
990	$Mg^{25}(p, \gamma)A1^{26}$				6.4 s; 3.2
991	$Be^{9}(p,\gamma)B^{10}$	7.5, 6.8, 5.8		89	
992	$Mg^{26}(p, \gamma)A1^{27}$				
992	A1 ²⁷ (p, _y)Si ²⁸	10.78, 7.93, 1.77		0.05	
995	${\rm Si}^{30}(p, \gamma){\rm P}^{31}$	6.98, 6.02, 1.27			
1 000	${\rm Si}^{30}(p, \gamma) {\rm P}^{31}$	8.25, 6.98, 5.12			
1001	$A1^{27}(p, \gamma)Si^{28}$			<1	
1002	$Ne^{22}(p, \gamma)Na^{23}$				
1006	$Ge^{74}(p,\gamma)As^{75}$			< 2. 5	
1010	Ni ⁵⁸ (p, _Y)Cu ⁵⁹	≤4.41	0.007 evb	<1	81 s; 3.7
1011	$Na^{23}(p,\gamma)Mg^{24}$			≤0.5	
1015	$Mg^{26}(p, \gamma)A1^{27}$				
1022	$Na^{23}(p,\gamma)Mg^{24}$	9		6.6	
1024	$\operatorname{Al}^{27}(p,\gamma)\operatorname{Si}^{28}$			<0.24	
1 029	$Ni^{60}(p,\gamma)Cu^{61}$	<5.82	0.02 evb	<1	3.3 h; 1.2
1030	$\text{Li}^{7}(\mathbf{p}, \mathbf{\gamma}) \text{Be}^{8}$	18.15, 15.25, 0.478		168	
1040	$N^{15}(p, \gamma)O^{16}$	13.09	· i	130	
1040	$N^{15}(p,\alpha_{\gamma})C^{12}$	4.43	15	130	
1046	$Mg^{25}(p,\gamma)A1^{26}$				6.4 s; 3.2
1050	$P^{31}(p, \gamma)S^{32}$		、 ·	<5	
1050	$A^{40}(p, \gamma)K^{41}$				
1056	$Mg^{26}(p,\gamma)Al^{27}$				
1059	$N^{14}(p, \gamma)O^{15}$	8.34, 5.27, 3.04		4	
1066	$Ni^{60}(p,\gamma)Cu^{61}$	≤5,86	0.05 evb	<1	2.03 m; 1.7
1 068	$P^{31}(p, \gamma)S^{32}$			6	3.3 h; 3.2
1070	$Ne^{22}(p,\gamma)Na^{23}$			~	
1 070	$Cl^{37}(p,\gamma)Ar^{38}$	9.1, 7.5, 6.3		≤5	
1078	$Ni^{60}(p, \gamma)Cu^{61}$	≤5.87	0.03 evb	<1	
1080	$A^{40}(p, \gamma) K^{41}$				
1084	$\operatorname{Be}^{9}(p,\gamma)\operatorname{B}^{10}$	6.9, 5.4, 0.7		3.8	
1086	$Mg^{25}(p, \gamma)A1^{26}$				6.4 s; 3.2

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Widih (keV)	Half life and β ⁺ energy (MeV)
1087	$Na^{23}(p,\gamma)Mg^{24}$			1.1	
1088	$Ne^{22}(p,\gamma)Na^{23}$				
1089	$Al^{27}(p, \gamma)Si^{28}$			<0.11	
1090	F ¹⁹ (p, y)Ne ²⁰	12.28, 8.84, 1.63	> 0. 05	0.7	
1090	$F^{19}(p, \alpha_{\rm Y}) O^{16}$	7.12, 6.92, 6.13	>13	0.7	
1090	$C1^{37}(p, \gamma) Ar^{38}$				
1096	$Al^{27}(p, \gamma)Si^{38}$			<1	
1094	$\mathrm{Ge}^{74}(\mathrm{p},\mathrm{\gamma})\mathrm{As}^{75}$			9.5	
1100	$A^{40}(p, \gamma)K^{41}$				
1100	Ni ⁵⁸ (p, y)Cu ⁵⁹	≤4. 50	0.05 evb	<1	81 s; 3.7
1101	$P^{31}(p, \gamma)S^{32}$				
1102	$Cl^{35}(p, \gamma)Ar^{36}$				
1105	$Mg^{25}(p, \gamma)A1^{26}$				6.4 s; 3.2
1106	$Ne^{22}(p,\gamma)Na^{23}$				
1117	$A1^{27}(p, \gamma)Si^{28}$			0.80	
1117	$P^{31}(p, \gamma)S^{32}$	9.92	-	5	
1120	$K^{39}(p,\gamma)Ca^{40}$	9.5, 6.1, 3.8		<u>≤</u> 5	
1123?	$F^{19}(p, \alpha \gamma)O^{16}$			22	
1132	$Ni^{60}(p,\gamma)Cu^{61}$	≤5,92	0.04 evb	<1	3.3 h; 1.2
1135	$Cl^{37}(p,\gamma)Ar^{38}$	9.1, 7.5, 6.3		<5	
1140	$F^{19}(p,\alpha\gamma)O^{16}$	7.12, 6.92, 6.13	15	2. 5	
1146	$B^{10}(p, \gamma)C^{11}$	9.7, 5.5?, 4.2?	0.0055	450	20.3 m; 1.0
1146	$P^{31}(p, \gamma)S^{32}$	7.71			
1160	$C^{13}(p, \gamma)N^{14}$	8.62, 4.67, 2.39	0.56	6	
1163	$C^{14}(p, \gamma)N^{15}$	11.30		12	-
1165	$Ne^{20}(p,\gamma)Na^{21}$	<4			22.8 s; 2.5
1166	$Na^{23}(p,\gamma)Mg^{24}$			i.2	
1167	$Ni^{60}(p,\gamma)Cu^{61}$	≤ 5. 96	0.15 evb	<1	3.3 h; 1.2
1167	$Ge^{74}(p,\gamma)As^{75}$			4.5	
1169	$O^{18}(p, \gamma)F^{19}$	6.3		1	
1171	$A1^{27}(p,\gamma)Si^{28}$			0.25	
1172	$Mg^{26}(p, \gamma)Al^{27}$				
1176	$Na^{23}(p,\gamma)Mg^{24}$			2.5	
1180	$B^{10}(p, \gamma)C^{11}$	9.4	0.0075	570	20.3 m; 1.0
1182	$A1^{27}(p,\gamma)Si^{28}$			0,71	

Proton energy (keV)	Reaction	Gamma-ray encrgy (MeV)	Cross section (mb)	Width (keV)	Half life and S ⁺ energy (MeV)
1185	$Mg^{25}(p, y)Al^{26}$				6.4 s; 3.2
1189	$F^{19}(p,\alpha_{\rm Y})O^{16}$	7.12, 6.92, 6.13	19	110	
1197	$Ni^{60}(p,\gamma)Cu^{61}$	≤5. 99	0.13 evb	<1	3.3 h; 1.2
i19 8	$A1^{27}(p, \gamma)Si^{28}$			6.3	
i 200	$Mg^{24}(p, \gamma)Al^{25}$	3.44, 1.83, 1.61		<10	7.2 s; 3.3
1209	Ni ⁶⁰ (p, y)Cu ⁶¹	<u>≤</u> 6.00	0.14 evb	<1	3.3 h; 1.2
1210	$N^{15}(p,\alpha_{\gamma})C^{12}$	4.43	425	2.2.5	
1212	$A1^{27}(p,\gamma)Si^{28}$			<0.21	
1213	$Na^{23}(p,\gamma)Mg^{24}$			0.4	
1213	$Ge^{74}(p,\gamma)As^{75}$			<2.5	
1227	Ni ⁵⁸ (p, y)Cu ⁵⁹	≤4. 63	0 045 evb	<1	81 s; 3.7
1235	$A^{40}(p,\gamma)K^{41}$				
1 239	$Ni^{60}(p,\gamma)Cu^{61}$	≤6.03	0.13 evb		3.3 h; 1.2
1247	$Ni^{60}(p,\gamma)Cu^{61}$	<u>≤</u> 6. 04	0.1 evb	<1	3.3 h; 1.2
1248	$P^{31}(p, \gamma)S^{32}$	10.05, 7.80		9	
1250	$C^{13}(p, \gamma)N^{14}$	8.71	0,062	500	
i 255	$Mg^{26}(p,\gamma)Al^{27}$				
i 257	$Ge^{(4)}(p,\gamma)As^{(5)}$			<2.5	
1 258	$C1^{35}(p,\gamma)A^{36}$				
1261	$\operatorname{Al}^{27}(p,\gamma)\operatorname{Si}^{28}$			<0.20	
1262	$Ne^{23}(p, \gamma)Na^{23}$				
1273	$Na^{23}(p, \gamma)Mg^{24}$				
1274	$Al^{2}(p,\gamma)Si^{28}$			<1	
1278	$Ne^{22}(p, \gamma)Na^{23}$				
1283	$F^{1}(p, \alpha_{\gamma})O^{10}$	7.12, 6.92, 6.13	29	19	
1 295	$Mg^{20}(p,\gamma)Al^{27}$				
1300	$K^{5}(p, \gamma)Ca^{40}$	9.6, 6.3, 3.8		≤5	
1308	$Ni^{50}(p,\gamma)Cu^{59}$	≤4.71	0. i 1 evb	<1	
1312	$C^{1+}(p, \gamma)N^{1}$	11.43		43	
1313	$Ni^{CO}(p, \gamma)Cu^{C1}$	<u>≤</u> 6.10	0.21 evb	<1	3.3 h; 1.2
1315	$\operatorname{Al}_{58}^{27}(p,\gamma)\operatorname{Si}_{59}^{20}$			<0.16	
1316	$Ni^{50}(p,\gamma)Cu^{57}$	≤4. 7 1	0.08 evb	<1	81 s; 3.7
1319	$Ni^{\circ}(p,\gamma)Cu^{\circ}$	≤6 . 11	0.25 evb	<1	3.3 h; 1.2
1321	$Na^{(p, \gamma)}Mg^{(1)}$	11		2. 1	
1322?	$F^{(p,\gamma)Ne^{0}}$	12.50, 1.63	0.081	4.0	

Proton energy (kcV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and β^+ energy (MeV)
1322	$Ne^{22}(p, y)Na^{23}$				
1232	$Ni^{60}(p, v)Cu^{61}$	<6.11	0.29 evb	<1	3.3 h: 1.2
1327	$A1^{27}(p, y)Si^{28}$			<0.16	,
1331	$Ni^{60}(p, v)Cu^{61}$	≤6.12	0.06 evb	<1	3.3 h; 1.2
1332	$Ge^{74}(p, y)As^{75}$			5.0	
1338	$K^{39}(p, y)Ca^{40}$	5.91, 5.74, 3.8		≤5	
1343	$Ni^{60}(p,\gamma)Cu^{61}$	≤6.13	0.45 evb	<1	3.3 h; 1.2
1347	$Ni^{60}(p,\gamma)Cu^{61}$	≤6.14	0.40 evb	<1	3.3 h; 1.2
13 48	$F^{19}(p, y)Ne^{20}$		0.1	5.6	
1348	$F^{19}(p, \alpha_{\rm Y})O^{16}$	7.12, 6.92, 6.13	89	5,6	
1350	$Ne^{22}(p,\gamma)Na^{23}$				
1362	$A1^{27}(p, \gamma)Si^{28}$			<0.12	
1370?	$S^{34}(p, \gamma)C1^{35}$				
1371	Ni ⁶⁰ (p, y)Cu ⁶¹	<u>≤</u> 6.16	0.15 evb	<1	3.3 h; 1.2
1375	$F^{19}(p, \alpha_{\gamma})O^{16}$	7.12, 6.92, 6.13	300	11	
1375	$Ne^{22}(p,\gamma)Na^{23}$				
1376	Ni ⁵⁸ (p, _Y)Cu ⁵⁹	4.77, 4.28, 3.86	0 19 evb	<1	
1380	$Al^{27}(p, \gamma)Si^{28}$			0.70	
1387	$A1^{27}(p, \gamma)Si^{28}$			0.29	
1381	$Ni^{60}(p,\gamma)Cu^{61}$	<u>≤</u> 6.17	0.2 evb	<1	3.3 h; 1.2
1386	$Ne^{22}(p, \gamma)Na^{23}$				
1388	$B^{11}(p, \gamma)C^{12}$	17.23, 12.80	0 053	1270	
1 395	$P^{31}(p, \gamma)S^{32}$			15	
1398	$Na^{23}(p,\gamma)Mg^{24}$	8		0.5	
1 399	$O^{18}(p, \gamma)F^{19}$	9.3		<15	
1408	$P^{31}(p, \gamma)S^{32}$			15	
1415	Ni ⁶⁰ (p, _Y)Cu ⁶¹	<u>≤</u> 6. 2 0	0.35 evb	<1	3.3 h; 1.2
1419	$Na^{23}(p,\gamma)Mg^{24}$	9		≤0.3	
1422	$Ge^{74}(p, \gamma)As^{75}$			<2.5	
1424	Ni ⁵⁸ (p, _Y)Cu ⁵⁹	4.82, 4.33	1.7 evb	≤0.05	
1425	$Mg^{26}(p, \gamma)Al^{27}$				
1431?	$F^{19}(p,\gamma)Ne^{20}$	12.60, 1.63	0.19	15.7	
1431	Ni ⁶⁰ (p, y)Cu ⁶¹	≤6.22	0.18 evb	<1	3.3 h; 1.2
1433	$Ne^{22}(p,\gamma)Na^{23}$				
1443	$P^{31}(p, \gamma)S^{32}$		ļ.	12	

Proton energy (LeV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and ^{ff} energy (MeV)
1451	$Ni^{60}(p,\gamma)Cu^{61}$	6.24	0.75 evb	<1	3.3 h; 1.2
1461	$Ni^{60}(p, \gamma)Cv^{61}$	≤6.25	0.14 evb	<1	3.3 h; 1.2
1465	$Mg^{26}(p,v)Al^{27}$				
1465	$Ni^{60}(p,\gamma)Cu^{61}$	<u>≤</u> 6.25	0.11 evb	<1	3.3 h; 1.2
1470	$C^{13}(p, v)N^{14}$	5.83, 5.10, 3.07	0.074	20	
1 482	$P^{31}(p, v)S^{32}$			6	
1483	$Ni^{60}(p, v)Cu^{61}$	<6. 27	0.14 evb	<1	3.3 h; 1.2
1484	$C1^{35}(p, \gamma)Ar^{36}$	9.9		≤5	
1490	$Mg^{24}(\dot{p},\gamma)\Lambda l^{25}$	3.72, 1.91		0.3	7.2 s; 3.3
1491	$Ni^{60}(p, \gamma)Cu^{61}$	≤6. 28	0.14 evb	<1	3.3 h; 1.2
1492	$Ne^{22}(p,\gamma)Na^{23}$				
1500	$C^{14}(p, \gamma)N^{15}$	11.61		520	
1500	$A1^{27}(p, \gamma)Si^{28}$				
1502	$Ne^{22}(p,\gamma)Na^{23}$				
1510	$C1^{35}(p, \gamma) Ar^{36}$	9.9		≤5	
1515	$Ni^{60}(p,\gamma)Cu^{61}$	<u>≤</u> 6.30	0.4 evb	<1	3.3 h; 1.2
1519	Ni ⁶⁰ (p, y)Cu ⁶¹	<u>≤</u> 6. 30	0.7 evb	<i< td=""><td>3.3 h; 1.2</td></i<>	3.3 h; 1.2
1520?	Si(p,y)P			9.0	
1522	Ni ⁵⁸ (p, y)Cu ⁵⁹	<u>≤</u> 4. 92	0.012 evb	<1	81 s; 3.7
152 7	$P^{31}(p, \gamma)S^{32}$			14	
1529	Ni ⁶⁰ (p,y)Cu ⁶¹	≤6.31	0.06 evb	<1	3.3 h; 1.2
1530	Ge ⁷⁴ (p, _y)As ⁷⁵			9.0	
1533	$C1^{37}(p,\gamma)Ar^{38}$	9.5		≤5	
1 538	Ni ⁶⁰ (p,y)Cu ⁶¹	6. 32	0.35 evb	<1	3.3 h; 1,2
1540	Ni ⁵⁸ (p, _Y)Cu ⁵⁹	<u>≤</u> 4. 93	0.020 evb	<1	81 s; 3.7
1544	$N^{14}(p, \gamma)O^{15}$	8.8?		34	2.03 m; 1.7
i 550	$C^{13}(p, \gamma)N^{14}$	8.99	0.037	7	
1 559	$Ge^{74}(p,\gamma)As^{75}$			6.5	
1566	$K^{39}(p,\gamma)Ca^{40}$	9.9, 6.6, 6.1		<u><</u> 5	
1566	Ni ⁶⁰ (p, y)Cu ⁶¹	<u>≤</u> 6.35	0.22 evb	<1	3.3 h; 1.2
1570	$\operatorname{Al}^{27}(p,\gamma)\operatorname{Si}^{28}$				
1571	$P^{31}(p, \gamma)S^{32}$			7	
1577	$Ni^{60}(p,\gamma)Cu^{61}$	<u>≤</u> 6.36	0.35 evb	<1	3.3 h; 1.2
1500	C_{1}^{35}	10		~ 5	•

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Halflife and β ⁺ energy (MeV)
1582	Ni ⁵⁸ (p, y)Cu ⁵⁹	≤4. 98	0.066 evb	<1	81 s; 3.7
1588	$Ni^{60}(p,\gamma)Cu^{61}$	6.37, 5.90	0.9 evb	<1	3.3 h; 1.2
1 598	$P^{31}(p, y)S^{32}$			5	
i 599	Ni ⁶⁰ (p, y)Cu ⁶¹	6,38, 5.00	2.3 evb	<1	3.3 h; 1.2
1605	$Ni^{60}(p,\gamma)Cu^{61}$	6.39, 5.01	2.0 evb	<1	3.3 h; 1.2
1607	$F^{19}(p, \alpha_{\rm Y})O^{16}$			6.0	
1610?	$S^{34}(p, \gamma)C1^{35}$				
1618?	Si(p, y)P				
1620	$Mg^{24}(p,\gamma)A1^{25}$	3.40, 2.90, 1.34		36	7.2 s; 3.3
1620	$Ni^{60}(p,\gamma)Cu^{61}$	6.40, 5.02	1.8 evb	<1	3.3 h; 1.2
1635?	Si(p, y)P				
1635	$Cl(p, \gamma)Ar$				
1639	Ni ⁶⁰ (p, _Y)Cu ⁶¹	<u>≤</u> 6, 42	0.14 evb	<1	3.3 h; 1.2
1640	$N^{15}(p,\alpha\gamma)C^{12}$	4.43	340	68	
1640	$A1^{27}(p, \gamma)Si^{28}$				
1643	$Ni^{60}(p,\gamma)Cu^{61}$	⊴6. 43	0.35 evb	<1	3.3 h; 1.2
1643	$Ge^{74}(p,\gamma)As^{75}$			~15	
1 645	Cl(p, y)Ar				
1649	$Ni^{60}(p, \gamma)Cu^{61}$	<u>≤</u> 6. 43	0.29 evb	<1	3.3 h; 1.2
1650	$Si^{28}(p, \gamma) P^{29}$	4.30		50	4.20 s; 4.0
1653	$Ni^{58}(p,\gamma)Cu^{59}$	<u><</u> 5.05	0.045 evb	<1	81 s; 3.7
1656	$Ni^{60}(p, \gamma)Cu^{61}$	6.44, 5.97	1.0 evb	<1	3.3 h; 1.2
1659	$A1^{27}(p,\gamma)Si^{28}$				
1660	$Mg^{24}(p, \gamma)A1^{25}$	3.88, 3.43, 2.93		0.1	7.2 s; 3.3
1660	Cl(p,y)Ar				
1663?	Si(p, y)P				
1 663	Ni ⁵⁸ (p, _Y)Cu ⁵⁹	5.06, 4.15, 3.28	0.16 evb	<1	81 s; 3.7
1665	$\mathrm{Ge}^{74}(\mathbf{p},\mathbf{\gamma})\mathrm{As}^{75}$			~15	
1669	Ni ⁶⁰ (p,y)Cu ⁶¹	≤6.4 5 .	0.4 evb	<1	3.3h; 1.2

≤6.46

9.6

5.5**0**, 5.08

1.0 evb

0.5 evb

<1

<1

15

3.3 h; 1.2

3.3 h; 1.2

1670 1674

1679

1680?

1680 1685 $Cl(p, \gamma) Ar$ Ni⁶⁰(p, \gamma) Cu⁶¹ Ni⁶⁰(p, \gamma) Cu⁶¹

 $\text{Si}(\text{p},\gamma)\text{P}$

 $Cl(p,\gamma)Ar$ O¹⁸(p,\gamma)F¹⁹

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and 5 ⁺ energy (MeV)
1690	$S^{34}(p, \gamma)C1^{35}$				
1690	$Ge^{74}(p,\gamma)As^{75}$			~30	
1691	$F^{19}(p, \alpha_{\rm Y})O^{16}$	7.12, 6.92, 6.13		35	
1694	$Ni^{60}(p, y)Cu^{61}$	6.48, 5.52	1.0 evb	<1	3 3 h; 1.2
1698	$C^{12}(p, \gamma) N^{13}$	3.51, 2.37, 1.14	0.035	70	9.98 m; 1.2
1698	$Ni^{60}(p, \gamma)Cu^{61}$	≤6.48	0.3 evb	<1	3.3 h; 1.2
1699?	$Si(p, \gamma)P$				
1700	$Al^{27}(p, \gamma)Si^{28}$				
1710	$Cl(p, \gamma)Ar$				
1711	$Ni^{60}(p,\gamma)Cu^{61}$	≤6.49	0.23 evb	<1	3.3 h; 1.2
1716	$Ni^{58}(p,\gamma)Cu^{59}$	5.11, 4.20	0.35 evb	<1	81 s; 3.7
1721	$Ni^{60}(p,\gamma)Cu^{61}$	≤6. 50	0.11 evb	<1	3.3 h; 1.2
1725	$C1^{37}(p, y)A^{38}$	5.2, 3		≤5	
1726	$A1^{27}(p, \gamma)Si^{28}$				
1734	$Ni^{60}(p, v)Cu^{61}$	6.52	0.7 evb	<1	3.3 h: 1.2
1739	$Ni^{60}(p, y)Cu^{61}$	<6.52	0.3 evb	<1	3.3 h: 1.2
1742	$N^{14}(p, v)O^{15}$	9.0?		5	2.03 m: 1.7
1748	$C^{13}(p, v)N^{14}$	9.17, 6.43, 2.74	340	0.075	7 • •
1755	Cl(p, y)Ar				
1757	$Ni^{60}(p, y)Cu^{61}$	<u>≤</u> 6. 54	0.5 evb	<1	3.3 h: 1.2
1764	$Ni^{60}(p, y)Cu^{61}$	<u>≤</u> 6.55	0.6 evb	<1	3.3 h; 1.2
1765	$Cl(p, \gamma)Ar$,
1769	$O^{18}(p, \gamma)F^{19}$	9.6		4	
1770	$Ni^{60}(p,\gamma)Cu^{61}$	<u><</u> 6.55	0.75 evb	<1	3.3 h; 1.2
1774?	Si(p, y)P				
1781	$Al^{27}(p,\gamma)Si^{28}$				
1783	$Ni^{60}(p,\gamma)Cu^{61}$	<u><</u> 6.56	0.55 evb	<1	3.3 h; 1.2
1797	$Ni^{60}(p, \gamma)Cu^{61}$	<u><</u> 6.57	0.45 evb	<1	3.3 h; 1.2
1800?	$s^{34}(p, v) Cl^{35}$				
1805	$Ge^{74}(p, y)As^{75}$			20	
1810?	Si(p, v)P				
1807	$N^{14}(p, v)O^{15}$	9.0?		5	2.03 m; 1.7
1833	$Mg^{24}(p,v)A1^{25}$	4. [.] 05, 2.43, 1.62			7.2 s: 3 3
1833	$Ni^{58}(p,v)Cu^{59}$	<5.22	0.063 evb	<1	81 s: 3 7
1844	Ni ⁵⁸ (p,v)Cu ⁵⁹	5.23	2.1 evb	≤0.1	81 s; 3.7
					÷ -••

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (mb)	Width (keV)	Half life and β ⁺ energy (MeV)
1860?	$s^{34}(p, \gamma) Cl^{35}$				
1870	$\operatorname{Ca}^{40}(\mathrm{p},\gamma)\operatorname{Sc}^{41}$				0.596 s; 5.6
1879?	$Si(p, \gamma)P$	•			
1890	A1 ²⁷ (p, y)Si ²⁸				
1892	$P^{31}(p, \gamma)S^{32}$	10.68		24	
1906	Ge ⁷⁴ (p, _Y)As ⁷⁵			~ ¹⁵	
1 916	$P^{31}(p, \gamma)S^{32}$				
1926	Ge ⁷⁴ (p, _Y)As ⁷⁵			~15	
1931	$O^{18}(p, \gamma) F^{19}$	9.8		1.5	
1940	$\operatorname{Al}^{27}(p,\gamma)\operatorname{Si}^{28}$				
1945	$F^{19}(p,\alpha\gamma)O^{16}$	6-7		40	
1972	Ge ⁷⁴ (p, _Y)As ⁷⁵			35	
1979	$N^{15}(p, \alpha_{\gamma})C^{12}$	4.43	35	23	
1985	$P^{31}(p, \gamma)S^{32}$	10.77			
2000?	$\mathrm{Li}^{7}(\mathrm{p},\gamma)\mathrm{Be}^{8}$	19.0?, 16.1?			
2000	$C^{13}(p, \gamma)N^{14}$	5.10, 4.80		~ ²⁰	
2010	$Mg^{24}(p,\gamma)Al^{25}$	3.77, 3.27		0.15	7.2 s; 3.3
2025	$C^{14}(p, \gamma)N^{15}$			18	
2026	$F^{19}(p, \alpha\gamma)O^{16}$	6-7		120	
2026	$A1^{27}(p, \gamma)Si^{28}$				
2027	$P^{31}(p, \gamma)S^{32}$	10.81			
2074	$Ge^{74}(p,\gamma)As^{75}$			13.5	
2079	$C^{14}(p, \gamma)N^{15}$			55	
2083	$Al^{27}(p,\gamma)Si^{28}$				
2090	$\operatorname{Si}^{28}(p,\gamma)P^{29}$	4.74		12	4.20 s; 4.0
2120	$C^{13}(p, \gamma)N^{14}$	5.10, 4.39	0.20	45	
2120	$P^{31}(p, \gamma)S^{32}$	10.90		5	
2130	$\operatorname{Li}^{\prime}(\mathbf{p}, \mathbf{\gamma})\operatorname{Be}^{8}$	19.12, 16.21		400	
2135	$Ne^{20}(p,\gamma)Na^{21}$				
2161	$Ge^{4}(p,\gamma)As^{75}$			~1 5	22.8 s; 2.5
2180	$Al^{27}(p,\gamma)Si^{28}$				
2200	$Al^{2}(p, \gamma)Si^{28}$				
2210	$\operatorname{Ge}^{4}(p,\gamma)\operatorname{As}^{75}$			40	
2212	$A1^{27}(p,\gamma)Si^{28}$				
2282	$\operatorname{Al}^{27}(p,\gamma)\operatorname{Si}^{28}$				

Proton energy (keV)	Reaction	Gamma-ray energy (MeV)	Cross section (nıb)	Width (keV)	Half life and 3 ⁺ cnergy (MeV)
2295	$Ge^{74}(p_{\rm W})As^{75}$			27	
2315	$F^{19}(p, \alpha_V)O^{16}$	6-7		85	
2320	$P^{31}(p, v)S^{32}$	11.09		8	
2340	$P^{31}(p, \gamma)S^{32}$	11.11		8	
2342	$\mathrm{Ge}^{74}(\mathrm{p},\mathrm{y})\mathrm{As}^{75}$	-		15	
2344	$Al^{27}(p,\gamma)Si^{28}$				
2350	$N^{14}(p, \gamma)O^{15}$	9.5?		14	2.03 m; 1.7
2400	$Mg^{24}(p,\gamma)Al^{25}$	3.65		0.3	7.2 s; 3.3
2440	$Ge^{74}(p,\gamma)As^{75}$			11	
2480	$N^{14}(p, \gamma)O^{15}$	9.7?		11	2.03 m; 1.7
2510	$F^{19}(p, \alpha_{\gamma})O^{16}$	6-7		30 .	
2520?	Si(p, y)P				
2 528	$\mathrm{Ge}^{74}(\mathrm{p},\mathrm{\gamma})\mathrm{As}^{75}$			15	
2542	Al ²⁷ (p, _Y)Si ²⁸				
2543?	Si(p,y)P				
2553?	Si(p,y)P				
2558?	$Si(p, \gamma)P$				
2564	$Be^{9}(p,\gamma)B^{10}$	8.1, 0.7		39	
2564	$Be^{9}(p, \alpha_{\gamma})Li^{6}$	3. 56		39	
2570?	Si(p, y)P				
2575	$N^{14}(p, \gamma)O^{15}$	9.8?		1000	2.03 m; 1.7
2 575?	Si(p, y)P				
2593	$Ge^{4}(p,\gamma)As^{5}$			44	
2630	$B^{14}(p, \gamma)C^{12}$	13.94, 4.43, 2.14		300	
2630	$F^{19}(p, \alpha_{\gamma})O^{10}$	6-7		90	
2664	$Ge''(p, \gamma)As''$			10	
2800	$F^{19}(p,\alpha\gamma)O^{10}$	6-7		60	
3000	$N^{15}(p,\alpha\gamma)C^{12}$	4.43	750	45	

APPENDIX III

- Theoretical cross sections for charged particle reactions at higher energies:
 J Lange and H Münzel KFK-767 (1968).
- (p, γ)-reactions.
 J W Butler
 NRL-5282 (1959).
- 3. Detection limits and sensitivities for charged particle reactions on light elements:
 - i. S S Markowitz and J D Mahony Anal Chem 34 (1962) p 329.
 - ii. E Ricci and R L HahnAnal Chem 39 (1967) p 794; 40 (1968) p 54.
 - iii. Ch EngelmanIsotop Radiat Technol 8 (1970) p 118.
 - iv. Ch EngelmanJ Radioanalytical Chem 7 (1971) p 89 and p 281.
- Some references to other compilations of charged particle reactions cross-sections together with references on special topics concerning charged particles:
 - i. N Jarmie and J D Seagrave LA-2014 (1956) P-F.
 - ii. D B Smith (comp and ed)LA-2424 (1961) Ne-Cr.
 - iii. F Ajzenberg-Selove and T Lauritsen Nucl Phys 11 (1959) p 1.
 - iv. F Ajzenberg-Selove LAP-99 (1970).
 - v. F Ajzenberg-Selove LAP-100 (1971).

LIST OF PUBLISHED AE-REPORTS

1-400 (See back cover earlier reports.)

- 401. Needle type solid state detectors for in vivo measurement of tracer activity. By A. Lauber, M. Wolgast. 1970. 43 p. Sw. cr. 10:-
- 402. Application of pseudo-random signals to the Agesta nuclear power station By P-A. Bliselius. 1970. 30 p. Sw. cr. 10:-.
- Studies of redox equilibria at elevated temperatures 2 An automatic di-vided-function autoclave and cell with flowing liquid junction for electro chemical measurements on aqueous systems. By K. Johnsson, D Lewis and M. de Pourbaix. 1970. 38 p. Sw. cr. 10:-.
- 404. Reduction of noise in closed loop servo systems. By K. Nygaard. 1970 23 p Sw. cr. 10:-
- 405. Spectral parameters in water-moderated lattices. A survey of experimental data with the aid of two-group formulae. By E. K. Sokolowski. 1970. 22 p Sw. cr. 10:--.
- 406. The decay of optically thick helium plasmas, taking into account ionizing collisions between metastable atoms or molecules. By J. Stevetelt. 1970. 18 p. Sw. cr. 10:-.
- 407. Zooplankton from Lake Magelungen, Central Sweden 1960-63. By E. Alm-quist. 1970. 62 p. Sw. cr. 10:--.
- A method for calculating the washout of elemental iodine by water sprays. By E Bachofner and R. Hesböl. 1970. 24 p. Sw. cr. 10:-. 408.
- 409. X-ray powder diffraction with Guinier-Hägg focusing cameras. By A. Brown 1970. 102 p. Sw. cr. 10:--.
- General physic section Progress report. Fiscal year 1969/70 By J. Braun. 1970. 92 p. Sw cr. 10:-.
- 411. In-pile determination of the thermal conductivity of UO₂ in the range 500-2 500 degrees centigrade. By J-Å Gyllander. 1971. 70 p. Sw. cr. 10:-..
- 412. A study of the ring test for determination of transverse ductility of fuel element canning. By G. Anevi and G. Ustberg. 1971. 17 p. Sw. cr. 15:-. 413. Pulse radiolysis of Aqueous Solutions of aniline and substituted anilines. By H. C. Christensen. 1971. 40 p Sw. cr. 15:-..
- Radiolysis of aqueous toluene solutions. By H. C. Christensen and R. Gustaf-son. 1971. 20 p. Sw. cr. 15:-.
- 415. The influence of powder characteristics on process and product parame-ters in UO₂ pelletization. By U. Runfors 1971. 32 p. Sw. cr. 15:--.
- 416. Quantitative assay of Pu239 and Pu240 by neutron transmission measurements. By E. Johansson. 1971. 26 p. Sw. cr 15:-.
- 417. Yield of prompt gamma radiation in slow-neutron induced fission of ³³⁵U as a function of the total fragment kinetic energy. By H. Albinsson. 1971. 38 p Sw. cr. 15:-.
- 418. Measurements or the spectral light emission from decaying high pressur helium plasmas. By J. Stevefelt and J. Johansson. 1971. 48 p. Sw. cr. 15.-
- 419. Progress report 1970. Nuclear chemistry. 1971. 32 p. Sw. cr. 15:-.
- 420. Energies and yields of prompt gamma rays from fragments in slow-neutron induced fission of ²²⁵U. By H. Albinsson. 1971. 56 p. Sw. cr. 15:--, 421. Decay curves and half-lives of gamma-emitting states from a study of prompt fission gamma radiation. By H. Albinsson. 1971. 28 p. Sw. cr. 15:-.
- 422. Adjustment of neutron cross section data by a least square fit of calculated quantities to experimental results. Part 1. Theory. By H. Häggblom. 1971. 28 p. Sw. cr. 15:-.
- 423. Personnel dosimetry at AB Atomenergi during 1969. By J. Carlsson and T Wahlberg. 1971. 10 p. Sw cr. 15:-.
- 424. Some elements of equilibrium diagrams for systems of iron with water above 100°C and with simple chloride, carbonate and sulfate melts. By D. Lewis. 1971. 40 p. Sw. cr. 15:-.
- 425. A study of material buckling in uranium-loaded assemblies of the fast reactor FR0. By R. Håkansson and L. I. Tirén. 1971. 32 p. Sw. cr. 15:-.
- 426. Dislocation line tensions in the noble metals, the alkali metals and β-Brass. By B. Pettersson and K. Malén 1971. 14 p. Sw. cr. 15:-..
 427. Studies of fine structure in the flux distribution due to the heterogeneity in some FR0 cores. By T. L. Andersson and H. Häggblom. 1971. 32 p. Sw.
- in some cr. 15:--.
- Integral measurement of fission-product reactivity worths in some fast re-actor spectra. By T. L. Andersson. 1971. 36 p. Sw. cr. 15:-.
- 429. Neutron energy spectra from neutron induced fission of ³³⁵U at 0.95 MeV and of ³³⁵U at 1.35 and 2.02 MeV. By E. Almén, B. Holmqvist and T. Wied-ling. 1971. 16 p. Sw. cr. 15-...
- Optical model analyses of experimental fast neutron elastic scattering data. By B. Holmqvist and T. Wiedling. 1971. 238 p. Sw. cr. 20:-.
- 431. Theoretical studies of aqueous systems above 25°C. 1. Fundamental concepts for equilibrium diagrams and some general features of the water system. By Derek Lewis. 1971. 27 p. Sw. cr. 15:-.
- 432. Theoretical studies of aqueous systems above 25°C . 2. The iron water system. By Derek Lewis. 1971. 41 p. Sw. cr. 15:-.
- 433. A detector for (n,y) cross section measurements. By J Hellström and S. Beshai, 1971. 22 p. Sw. cr. 15:-.
 434. Influence of elastic anisotropy on extended dislocation nodes. By B. Pettersson. 1971. 27 p. Sw. cr. 15:-.
- 435. Lattice dynamics of CsBr. By S. Rolandson and G. Raunio. 1971. 24 p. Sw. cr. 15:-.
- 436. The hydrolysis of iron (III) and iron (II) ions between 25°C and 375°C. By Derek Lewis. 1971.16 p. Sw. cr. 15:-.
 437. Studies of the tendency of intergranular corrosion cracking of austenitic Fe-Cr-Ni alloys in high purity water at 300°C. By W. Hübner, B. Johansson and M. de Pourbaux. 1971. 30 p. Sw. cr. 15:-.
- Studies concerning water-surface deposits in recovery boilers. By O. Strandberg, J. Arvesen and L. Dahl. 1971. 132 p. Sw. cr. 15:-.
- 439. Adjustment of neutron cross section data by a least square fit of calculated quantities to experimental results. Part II. Numerical results. By H Häggblom. 1971 70 p. Sw. cr. 15:-.
- 440. Self-powered neutron and gamma detectors for in-core measurements. By O. Strindehag. 1971. 16 p. Sw. cr. 15:-.
- 441. Neutron capture gamma ray cross sections for Ta, Ag, in and Au between 30 and 175 keV. By J. Hellström and S. Beshai. 1971. 30 p. Sw. cr. 15:-.
- 442. Thermodynamical properties of the solidified rare gases By I. Ebbsjö. 1971. 46 p. Sw. cr. 15⊱.
- 443. Fast neutron radiative capture cross sections for some important standards from 30 keV to 1.5 MeV. By J. Hellström. 1971. 22 p. Sw. cr. 15:-.
- 444. A Ge (Li) bore hole probe for in situ gamma ray spectrometry. By A. Lauber and O. Landström. 1971 26 p. Sw. cr. 15:-.

- 445. Neutron inelastic scattering study of liquid argon. By K. Sköld, J M. Rowe, G. Ostrowski and P. D. Randolph. 1972. 62 p. Sw. cr. 15:-.,
- 446. Personnel dosimetry at Studsvik during 1970. By L. Hedlin and C.-O. Widell 1972.. 8 p Sw. cr. 15:-.
- On the action of a rotating magnetic (ield on a conducting liquid. By E. Dahlberg 1972. 60 p. Sw. cr. 15:-. 447
- Low grade heat from thermal electricity production. Quantity, worth and possible utilisation in Sweden By J. Christensen. 1972. 102 p. Sw cr 15:-448
- 449. Personnel dosimetry at studsvik during 1971. By L. Hedlin and C.-O. Widell 1972 8 p Sw cr 15:-.
- 450 Deposition of aerosol particles in electrically charged membrane filters By L. Ström. 1972. 60 p. Sw. cr. 15 –.
- 451. Depth distribution studies of carbon in steel surfaces by means of charged particle activation analysis with an account of heat and diffusion effects in the sample. By D Brune, J Lorenzen and E. Witalis. 1972. 46 p. Sw. cr. 15--
- 452. Fast neutron elastic scattering experiments. By M Salama. 1972. 98 p. Sw cr. 15:--.
- 453. Progress report 1971 Nuclear chemistry. 1972 21 p. Sw. cr. 15:-.
- 454 Measurement of bone mineral content using radiation sources. An annotated bibliography. By P. Schmeling. 1972. 64 p. Sw. cr. 15:-.
 455. Long-term test of self-powered deectors in HBWR. By M. Brakas, O. Strin dehag and B. Söderlund 24 p. 1972. Sw. cr. 15:-.
- Measurement of the effective delayed neutron fraction in three different FR0-cores. By L. Moberg and J. Kockum. 1972. Sw. cr. 15:--. 456.
- Applications of magnetohydrodynamics in the metal industry. By T. Robinson, J. Braun and S. Linder. 1972. 42 p. Sw. cr. 15:--.
- 458. Accuracy and precision studies of a radiochemical multielement method for activation analysis in the field of life sciences By K. Samsahl. 1972. 20 p Sw. cr. 15:-
- 459. Temperature increments from deposits on heat transfer surfaces: the thermal resistivity and thermal conductivity of deposits of magnetite, calcium hydro-xy apatite, humus and copper oxides. By T. Kelén and J. Arvesen. 1972. 68 p. Sw. cr. 15....
- Ionization of a high-pressure gas flow in a longitudinal discharge. By S Palmgren. 1972. 20 p. Sw. cr 15 -.. 460.
- 461. The caustic stress corrosion cracking of alloyed steels an electrochemical study. By L. Dahl, T. Dahlgren and N. Lagmyr. 1972. 43 p. Sw. cr. 15:–.
 462. Electrodeposition of "point" Cu¹²⁵I roentgen sources. By P. Beronius, B. Johansson and R. Söremark. 1972. 12 p. Sw. cr. 15:–. an electrochemical
- A twin large-area proportional flow counter for the assay of plutonium in human lungs. By R. C. Sharma, I. Nilsson and L. Lindgren. 1972. 50 p. Sw. cr. 15:--.
- 464. Measurements and analysis of gamma heating in the R2 core. By R. Carlsson and L. G. Larsson. 1972. 34 p. Sw. cr. 15:-.
- 465. Determination of oxygen in zircaloy surfaces by means of charged particle activation analysis. By J. Lorenzen and D. Brune. 1972. 18 p. Sw. cr. 15:-.
- Neutron activation of liquid samples at low temperature in reactors with Re-ference to nuclear chemistry. By D. Brune. 1972. 8 p. Sw. cr. 15:-. 467. Irradiation facilities for coated particle fuel testing in the Studsvik R2 re-actor. By S. Sandklef. 1973. 28 p. Sw. cr. 20:-.
- 468. Neutron absorber techniques developed in the Studsvik R2 reactor. By R. Bodh and S. Sandklef. 1973. 26 p. Sw cr. 20:-.
- 469. A radiochemical machine for the analysis of Cd, Cr, Cu, Mo and Zn. By K. Samsahl, P. O. Wester, G. Blomqvist. 1973. 13 p. Sw. cr. 20:-.
- 470. Proton pulse radiolysis. By H. C. Christensen, G. Nilsson, T. Reitberger and K.-A. Thuomas. 1973. 26 p. Sw. cr. 20:-.
 471. Progress report 1972. Nuclear chemistry. 1973. 28 p. Sw. cr. 20:-.
- An automatic sampling station for fission gas analysis. By S. Sandklef and P.Svensson 1973. 52 p. Sw. cr. 20:-.
- 473. Selective step scanning: a simple means of automating the Philips diffractometer for studies of line profiles and residual stress. By A. Brown and S. Å. Lindh. 1973. 38 p. Sw. cr. 20:-..
 474. Radiation damage in CaF₂ and BaF₂ investigated by the channeling technique By R. Hellborg and G. Skog. 1973. 38 p. Sw. cr. 20:-..
- 475. A survey of applied instrument systems for use with light water reactor-containments. By H. Tuxen-Meyer. 1973. 20 p. Sw. cr. 20:-.
- Excitation functions for charged particle induced reactions in light elements at low projectile energies. By J. Lorenzen and D. Brune. 1973. 154 p. Sw. cr. 20:-. 476.

List of published AES-reports (In Swedish)

- 1. Analysis by means of gamma spectrometry. By D. Brune, 1961, 10 p. Sw.
- Irradiation changes and neutron atmosphere in reactor pressure vessels-some points of view. By M. Grounes. 1962. 33 p. Sw cr. 6:-.
- 3. Study of the elongation limit in mild steel. By G. Östberg and R. Atter-mo. 1963. 17 p. Sw. cr. 6:-.
- Technical purchasing in the reactor field. By Erik Jonson. 1963. 64 p. Sw. cr. 8:--.
- Agesta nuclear power station. Summary of technical data, descriptions, etc. for the reactor. By B. Lilliehöök. 1964. 336 p. Sw. cr. 15:-6. Atom Day 1965. Summary of lectures and discussions. By S. Sandström. 1966. 321 p. Sw. cr. 15:-.
- Building materials containing radium considered from the radiation pro-tection point of view. By Stig O. W. Bergström and Tor Wahlberg, 1967. 26 p. Sw. cr. 10:-.
- 8. Uranium market. 1971. 30 p. Sw. cr. 15:-.
- 9. Radiography day at Studsvik. Tuesday 27 april 1971. Arranged by AB Atom-energy, IVA's Committee for nondestructive testing and TRC AB. 1971. 102 p. Sw. cr. 15:-.
- 10. The supply of enriched uranium. By M. Mårtensson. 1972, 53 p. Sw. cr. 15:-11. Fire studies of plastic-insulated electric cables, sealing lead-in wires and switch gear cubicles and floors. 1973. 117 p. Sw. cr. 35:-.
- Additional copies available from the Library of AB Atomenergi, Fack, S-611 01 Nyköping 1, Sweden.