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Abstract

We analyze the 3-year WMAP data and look for a deviation from Gaussianity in the form of a

3-point function that has either of the two theoretically motivated shapes: local and equilateral.

There is no evidence of departure from Gaussianity and the analysis gives the presently tightest

bounds on the parameters f local
NL and f equil.

NL , which define the amplitude of respectively the local

and the equilateral non-Gaussianity: −36 < f local
NL < 100, −256 < f equil.

NL < 332 at 95% C.L.
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1 Introduction

During the last few years our understanding of primordial non-Gaussianities of cosmological

perturbations has improved significantly.

On the theoretical side it has been firmly established [1, 2] that the simplest models of in-

flation sharply predict a level of non-Gaussianity (. 10−6) far below the detection threshold of

foreseable CMB experiments. Non-Gaussianity therefore represents a smoking gun for devia-

tions from this minimal scenario; in fact many alternatives have been studied which give a much

larger non-Gaussianity, an incomplete list including [3, 4, 5, 6, 7, 8, 9, 10]. In all these models the

deviation from pure Gaussian statistics shows up in the 3-point correlator of density perturba-

tions. This 3-point function contains all the information about deviation from Gaussianity: no

additional information to constrain these models can be obtained looking for other signatures of

non-Gaussianity, e.g. Minkowski functionals or the 4-point function [11]. Moreover it has been

noted that, as every model gives a definite prediction for the dependence of the 3-point function

on the 3-momenta, information about the source of non-Gaussianity in the early Universe can

be recovered by the study of the shape dependence of the 3-point correlator [12].

From the experimental point of view the progress has been dramatic. The WMAP ex-

periment has greatly tightened the limits on departures from Gaussianity. Given the relative

simplicity of the physics describing the CMB, which allows a linearized treatment of perturba-

tions, and the large data set provided by WMAP, this experiment alone gives practically all the

information we have about non-Gaussianity nowadays. In [13] the recent 3-year data have been

analyzed by the WMAP collaboration; no evidence for non-Gaussianity has been found and new

bounds are obtained.

The purpose of this paper is to extend this analysis of WMAP 3 year data, similarly to

what was done for the 1 year data release in [14]. The main difference with respect to the

WMAP collaboration analysis [13] is that we look for two different shapes of the 3-point function.

Instead of concentrating only on the so-called “local” shape, we also do the analysis for the other

theoretically motivated shape dependence, dubbed “equilateral”. As explained in [12, 15, 14],

it is justified to concentrate on these two possibilities, both because these are quite different (so

that a single analysis in not good for both) and because they describe with good approximation

all the proposed models producing a high level of non-Gaussianity. Roughly speaking the local

shape is typical of multi-field models, while the equilateral one characteristic of single field

models. Given one of the two shapes one puts constraints on the overall amplitude of the

3-point function, namely on the two parameters f local
NL and f equil.

NL [14].

Another relevant difference with respect to [13] is the way we cope with the anisotropies of

the noise, which is caused by the fact that some regions of the sky are observed by the satellite

more often than others. We use an improved version of the estimator as explained in [14], which

allows a ∼ 20% tightening of the limits on f local
NL .
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As this paper is an updated version of [14] we will concentrate (section 2) on the new features

of the analysis, referring the reader to the 1st year paper [14] for all the details. The new limits

on f local
NL and f equil.

NL are discussed in section 3 and conclusions are drawn in section 4.

2 Differences with respect to the 1st year analysis

2.1 Introduction of the tilt in the analysis.

As data now favor a deviation from a scale invariant spectrum, the analysis of the 3-point

function has been updated to take into account the presence of a non-zero tilt. This is completely

straightforward in the case of the local shape; the non-Gaussianity for the Newtonian potential

Φ is generated by a quadratic term which is local in real space

Φ(x) = Φg(x) + f local
NL (Φ2

g(x) − 〈Φ2
g〉) , (1)

where Φg is a Gaussian variable. In the presence of a non-zero tilt this gives in Fourier space

〈Φ(k1)Φ(k2)Φ(k3)〉 = (2π)3δ3
(

k1 + k2 + k3

)

F (k1, k2, k3) (2)

with

F (k1, k2, k3) = 2f local
NL · [P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)] (3)

= f local
NL · 2∆2

Φ ·
(
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where P (k) is the power spectrum 〈Φ(k1)Φ(k2)〉 ≡ (2π)3δ3
(

k1 + k2

)

P (k1), with normalization

∆Φ and tilt ns: P (k) ≡ ∆Φ · k−3+(ns−1). We remind the reader that the function F enters in

the estimator as:

E =
1

N
·
∑

limi

∫

d2n̂ Yl1m1(n̂)Yl2m2(n̂)Yl3m3(n̂)

∞
∫

0

r2dr jl1(k1r)jl2(k2r)jl3(k3r) C−1
l1

C−1
l2

C−1
l3

∫

2k2
1dk1

π

2k2
2dk2

π

2k2
3dk3

π
F (k1, k2, k3)∆

T
l1(k1)∆

T
l2(k2)∆

T
l3(k3) al1m1al2m2al3m3 , (4)

where ∆T
l (k) is the CMB transfer function, and where for simplicity we have neglected the term

linear in the data discussed in [14]. It is straightforward to check that the only modification

introduced in the analysis is that the function βl(r) defined in [16] now depends on the tilt,

while the function αl(r) remains unchanged:

αl(r) ≡ 2

π

∫ +∞

0
dk k2 ∆T

l (k)jl(kr) (5)

βl(r) ≡ 2

π

∫ +∞

0
dk k−1+(ns−1) ∆T

l (k)jl(kr)∆Φ . (6)

As discussed in [14] the analysis of the equilateral shape is done using a template function

F (k1, k2, k3), which is very similar (with few percent corrections) to the different shapes predicted
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by equilateral models, and at the same time sufficiently simple to make the analysis feasible.

For the equilateral case the way to take into account a non-zero tilt is not unique. In models

which predict this shape of non-Gaussianity the evolution with scale of the 3-point function is

not fixed by the tilt of the spectrum1.

For consistency with the local shape we can define new γl(r) and δl(r) functions as

γl(r) ≡ 2

π

∫ +∞

0
dk k1+ 1

3
(ns−1) ∆T

l (k)jl(kr)∆
1/3
Φ (8)

δl(r) ≡ 2

π

∫ +∞

0
dk k

2
3
(ns−1) ∆T

l (k)jl(kr)∆
2/3
Φ . (9)

The new template shape will be of the form2

F = f equil.
NL · 6∆2

Φ ·
(

− 1

k
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+ (2 perm.) − 2
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3
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+
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3
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

 . (10)

As discussed above we expect that the difference between a given model and this template

shape, taking also into account differences in the evolution with scale, to be small. Until a clear

detection of non-Gaussianity is found, the use of a single template shape for the whole class of

“equilateral models” is justified.

2.2 Improved combination of the maps.

In the non-Gaussianity analysis [17, 13] and [14] the 8 maps at different frequency Q1, Q2, V1,

V2, W1, W2, W3 and W4 were combined making a pixel by pixel average weighted by the noise

σ2
0/Nobs, where Nobs is the number of observations of the pixel and σ0 is a band dependent

constant. As the Nobs maps are very similar to each other, the procedure amounts to take

a pixel-independent combination of the maps, weighted by the average noise. This procedure

however is not really optimal because it neglects the effect of the beams: at high l one should

give more weight to the W bands as they have the narrowest beam. In other words the optimal

procedure is an l-dependent combination with signal-to-noise weight [18]. The difference with

the naive combination becomes more and more relevant going to higher multipoles, when the

effect of the beams is relevant. Thus the improvement becomes more important as time passes

1What is fixed by the spectrum is the squeezed limit of any single field model [1, 15]. Without any slow-roll
approximation

lim
k1→0

〈ζ~k1
ζ~k2

ζ~k3
〉 = −(2π)3δ3(

X

i

~ki)Pk1
Pk3

d log k3
3Pk3

d log k3
. (7)

This just tells us that the signal of non-Gaussianity is very small in the squeezed limit, but it does not help
in fixing the scale dependence of the 3-point function for configurations close to equilateral, where the signal is
concentrated.

2Notice that the relationship between the new and the old, scale invariant, template function used in [14] is

simply Fnew(k1, k2, k3) = Fold(k
1− 1

3
(ns−1)

1 , k
1− 1

3
(ns−1)

2 , k
1− 1

3
(ns−1)

3 ). From this we see that the function goes as

k
−1+ 1

3
(ns−1)

1 for k1 → 0, while in the local case the signal is much more enhanced going as k
−3+(ns−1)
1 .
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and noise reduces, allowing to explore regions of higher l. Making a combination in Fourier

space has however some disadvantage: given the non-locality of the combination in real space it

is not clear how to proceed in masking the contaminated regions of the sky.

We choose to use an intermediate procedure. We combine the maps with a constant coeffi-

cient as in the previous analyses, but instead of using the noise as weight, we use a weight based

on the signal-to-noise ratio at a given fixed multipole lcomb. If we choose a very small lcomb, the

signal is the same in all the maps and we are back to a noise weight, which is optimal for the

lowest multipoles. On the other hand if lcomb is large we are making an optimal combination

at high l, but not so good at low l. We tried many values of lcomb to get a result which is as

close as possible to the optimal combination. The choice lcomb = 235 turns out to be the best

one. We estimated that it improves the limits on the fNL parameters by ∼ 1.4% with respect

to the original noise weighting. A very small further improvement, of order 0.4%, could be

theoretically achieved with the optimal signal-to-noise weighting. Given the problems in dealing

with the masking of foregrounds, it is clearly not worthwhile using an l-dependent combination.

In figure (1) we compare the different ways of combining the maps, showing the effective noise

as a function of l, compared with the signal. We see that lcomb = 235 gives something very close

to optimal.
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Figure 1: Effective noise for different combinations of the maps compared with the signal (short-dashed).
Optimal signal-to-noise combination (solid); the combination used in the analysis, with lcomb = 235 (dotted); and
the noise weighted combination, equivalent to lcomb = 0 (long-dashed) used in the 1st year analysis [14] and in
the 3yr analysis by the WMAP collaboration [13].
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2.3 Variation of the cosmological parameters.

We use for our analysis the Power Law ΛCDM Model which gives the best fit to WMAP 3

year data (see Table 2 of [13]). The cosmological parameters are given by: Ωbh
2 = 0.0223,

Ωmh2 = 0.128, h = 0.73, τ = 0.092, ns = 0.958. The most notable differences with respect to

the first year parameters are the drop in the optical depth and the presence of a non-zero tilt of

the spectrum.

Let us try to estimate the effect of these changes on the variance of the estimators for the

fNL parameters. Roughly speaking the reionization optical depth τ enters as a multiplicative

factor e−τ in front of the transfer function ∆T
l (k) for l corresponding to scales shorter than

the horizon at reionization. In first approximation one can assume that the points on the first

peak remain unchanged: as their error is very small the normalization will change to keep the

power unchanged there. This means that the reduction of the best fit value for τ from τ = 0.17

to τ = 0.092 will be compensated by a decrease in the amplitude of perturbations: ∆Φ will

decrease by approximately 16%. The level of non-Gaussianity of the fluctuations is given by

fNL ·∆1/2
Φ , so that a decrease in the amplitude of perturbation will relax the constraints on the

fNL parameters. The decrease in the optical depth enlarges the error on the fNL parameters by

∼ 8%.

Let us now discuss the effect of the tilt. We can schematize the addition of a red tilt as

a reduction of the power ∆short at scales shorter than the first peak and an enhancement for

larger scales (∆long). What is the effect of this on the limits we can put on the fNL parameters?

For the local shape the signal is mostly coming from squeezed triangles in Fourier space, with

one side much shorter than the others [12]. The non-Gaussian signal for these triangles goes

as ∆long · ∆short (see eq. (3)), while the error, i.e. the typical value in a realization with pure

Gaussian statistics, will go as ∆
1/2
long · ∆

1/2
short · ∆

1/2
short. Thus the limits on f local

NL will become

tighter proportionally to ∆
1/2
long. For the equilateral shape the signal is coming from equilateral

configurations. The contribution from triangles with l smaller than the first peak will have more

signal while triangles on shorter scale will have less. There is a mild cancellation between these

effects giving a rather small effect in the equilateral case. One can check this intuition with a

numerical analysis of the variance of the estimator varying the tilt. Going from a flat spectrum

to the value of ns favored by WMAP 3yr data, the constraint on f local
NL becomes tighter by 9%,

while the one on f equil.
NL becomes looser by 5%.

Obviously this way of taking into account the variation in the knowledge of the cosmological

parameters is quite naive. One should properly marginalize over all parameters when quoting

the final limits on the non-Gaussianity. This would slightly enlarge the allowed range, roughly

by an amount comparable to the variation induced by the change of the cosmological parameters

discussed above. This approach is numerically very demanding but it will be mandatory if a

significant detection of non-Gaussianity will be achieved.
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One can put together the variations induced by the change in the cosmological parameters

with the reduction of the noise given the additional amount of data, to estimate the final

improvement on the allowed range for fNL. With a scale invariant signal the noise reduction

would give a
√

3 improvement. But this is not a good approximation, both because the transfer

function imprints features on the scale invariant primordial spectrum and because the beams

cut off the signal at high l. A good estimate of the improvement is to look at the multipole

where signal and noise intersect, with 1st and 3yr data. The constraints on the non-Gaussianity

parameters will scale as N
−1/2
pixels ∝ l−1

max. The multipole of intersection increases by ∼ 20%, so

that we naively expect a ∼ 20% reduction of the limits. If one puts this together with the

discussion above a ∼ 20% improvement for f local
NL is expected, while the improvement on f equil.

NL

will be really marginal.

3 Results of the analysis

Aside from the few differences discussed above, the analysis of the 3-year data strictly follows

what was done for the 1st year release in [14].

For the local shape analysis, the inhomogeneity of the noise, which reflects the fact that

different regions of the sky are observed a different number of times, causes some trouble when

one extends the analysis to high l where the noise is relevant. The variance of the naive trilinear

estimator, which would be optimal in the presence of rotational invariance, starts increasing

at a certain point while including more and more data at short scale (see figure 2). This was

already noted by the WMAP collaboration in [17]. A partial solution of the problem was given

in [14], with the introduction of an improved estimator. The improvement simply consists in

an additional term which is linear in the multipoles alm. We stress that this additional term by

construction vanishes on average, independently of the value of f local
NL . In other words it does

not bias the estimator, just reduces its variance. In figure 2 we see that the behavior at high

l of the new estimator is greatly improved, with a resulting ∼ 20% improvement on the limits

on f local
NL . The estimator has minimum variance for lmax = 370, with a standard deviation of 34.

Unfortunately this is not a big improvement with respect to the 1st year analysis which had a

standard deviation of 37. From figure 2 we see that an optimal analysis, which would require the

full inversion of the covariance matrix, should be able to further reduce the standard deviation

to 25, a ∼ 25% improvement with respect to our result.

We applied the estimator to the foreground reduced WMAP sky maps data (see [19] for a

discussion about foreground removal) and we obtain f local
NL = 32. There is therefore no evidence

of deviation from a Gaussian statistics 3. The new limits on f local
NL are:

−36 < f local
NL < 100 at 95% C.L. (11)

3We notice that if we apply our estimator to the WMAP sky maps data without foreground subtraction, we
still see no evidence of deviation from Gaussianity both in the case of f local

NL and of f
equil.
NL .
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Figure 2: Standard deviation for estimators of f local
NL as a function of the maximum l used in the analysis. The

combination of the maps is done using lcomb = 235. Lower curve: lower bound deduced from the full sky variance.
Lower data points: standard deviation for the trilinear + linear estimator (see details in [14]). Upper data points:
the same for the estimator without linear term used in [13]. The error bars are not independent as the results at
different l are all based on the same set of MonteCarlo maps.

As explained in [14] the effect of the noise inhomogeneities is small for the equilateral shape,

so that any improvement of the estimator is useless (see figure 3). Following the discussion in

the section above, it is easy to understand that the red tilt makes the curve in figure 3 flatten out

faster than in the local case (figure 2): the contribution at high l is suppressed. The estimator

does not get worse going to higher l and we can do the analysis at lmax = 475. The standard

deviation of the estimator is 147. As expected the improvement with respect to the first year

analysis is marginal, only ∼ 3%. The value obtained on the real maps is f equil.
NL = 38. Again

there is no evidence of non-Gaussianity of this shape and the new allowed range is given by

−256 < f equil.
NL < 332 at 95% C.L. (12)

An optimal analysis should be able to reduce the range by ∼ 15% (see figure 3).

4 Conclusions

We have analyzed the 3-year WMAP data and looked for theoretically motivated deviations from

Gaussianity. Inflationary models which give an observable amount of non-Gaussianity predict a

3-point function of either local or equilateral form. In the data there is no evidence of deviation

from Gaussianity, so that we derive bounds on the parameters f local
NL and f equil.

NL , the amplitude
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Figure 3: Standard deviation of the estimator of f
equil.
NL as a function of the maximum l used in the analysis. The

combination of the maps is done using lcomb = 235. Lower curve: lower bound deduced from the full sky variance.
Data points: standard deviation for the estimator used in the analysis. The error bars are not independent as
the results at different l are all based on the same set of MonteCarlo maps.

of the local and equilateral shape, respectively. The results are

−36 < f local
NL < 100 at 95% C.L. (13)

−256 < f equil.
NL < 332 at 95% C.L. (14)

The improvement with respect to the 1st year analysis is marginal (∼ 10% in the local case

and ∼ 3% for the equilateral case): the expected ∼ 20% improvement from noise reduction is

partially compensated by a change in the best fit cosmological parameters. A further ∼ 20%

improvement is expected with 8-year statistics. In the future, this kind of analysis will allow

to extract in a numerically feasible way almost all the information about f local
NL and f equil.

NL from

Planck data. The signal should be dominant until l ∼ 1500, so that one expects a factor of 4

improvement. In addition, polarization measurements can further enhance the sensitivity by a

factor of 1.6 [20].

We stress that our approach is to look only for forms of non-Gaussianity which are theo-

retically motivated within the inflationary paradigm. Our results are not in contradiction with

some claims in the literature of detection of a non-Gaussian statistics different from ours (see

for example [22, 23] and references therein). Given the fact there are infinite ways of deviating

from Gaussiannity, it remains difficult to assess the statistical significance of those results.
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