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Abstract

We obtain a generalized Christoffel-Darboux (GCD) formula for skew-orthogonal polynomi-

als. Using this, we present an alternative derivation of the level density and two-point function

for Gaussian orthogonal ensembles and Gaussian symplectic ensembles of random matrices.
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Random matrices have found applications in different branches of physics mainly due to

the ‘universality’ in their correlation function under certain scaling limits. In this context,

although unitary ensembles of random matrices, corresponding to systems with broken time-

reversal symmetry (for example, a mesoscopic conductor in the presence of a magnetic field)

have been extensively studied [1, 2], much less is known about Orthogonal Ensembles (OE) and

Symplectic Ensembles (SE) of random matrices.

In his phenomenal paper [3] Dyson stressed the importance of a good understanding of the

skew-orthogonal polynomials (SOP) to study the OE and SE of random matrices. Some progress

has been made in this regard [1, 4, 5] to develop the theory of SOP. Alternative approaches were

taken by various authors [6–13] to study these ensembles. For example, Deift and Gioev [14, 15]

have recently used the Widom’s representation [16] to prove Universality for a wide class of

polynomial potentials of the OE and SE of random matrices. In all these work, the authors have

used the well known properties of orthogonal polynomials to study these ensembles. Here we

use the more elegant SOP, evolving naturally from OE and SE of random matrices.

In this paper we obtain recursion relations for SOP. Using this we derive the GCD formula.

We use them to obtain the level density and two-point correlation function for Gaussian orthog-

onal ensembles and Gaussian symplectic ensembles of random matrices.

We consider ensembles of 2N dimensional matrices H with probability distribution

Pβ,N (H)dH =
1

ZβN
exp[−[TrV (H)]]dH, (1)

where the parameter β = 1 and 4 corresponds to H real symmetric or quaternion real self

dual.(Note that we have considered the OE of even dimension. The odd dimension can be easily

generalized.) dH is the standard Haar measure. ZβN is the so called ‘partition function’, and

is proportional to the product of skew-normalization constants [1]:

ZβN =

∫
exp[−[TrV (H)]]dH = N !

nF−1∏

j=0

g
(β)
j . (2)

Here nF is called the ‘Fermi level’ by analogy with a system of fermions. In our case, it takes

the value nF = 2N for β = 1 and 4 respectively. It is assumed that most of the physical

quantities (like level density and correlation functions) are related to properties of g
(β)
n around

the ‘vicinity’ [18] of the Fermi level. In this paper, we give rigorous justification for such a claim.

To study different correlations among the eigenvalues of random matrices, we need to study

certain kernel functions [1, 3]. For example, the two-point correlation function for β = 1 and 4

can be expressed in terms of the 2 × 2 matrix

σ
(β)
2 (x, y) =



 S
(β)
2N (x, y) D

(β)
2N (x, y)

I
(β)
2N (x, y) S

(β)
2N (y, x)



 , (3)
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while the level-density

ρ(β)(x) = S
(β)
2N (x, x). (4)

Here, the kernel functions are defined as

S
(β)
2N (x, y) = −Φ̂(β)(x)

∏

2N

Ψ(β)(y),

= Ψ̂(β)(y)
∏

2N

Φ(β)(x), (5)

D
(β)
2N (x, y) = Φ̂(β)(x)

∏

N

Φ(β)(y), (6)

I
(β)
2N (x, y) = −Ψ̂(β)(x)

∏

2N

Ψ(β)(y) + δ1,β
ǫ(x− y)

2
, (7)

where

Φ(β) = (Φ
(β)
0 . . .Φ(β)

n . . .)
t
, Φ̂(β) = −Φ(β)tZ, (8)

(similarly for Ψ(β)) are semi-infinite vectors. They are formed by quasi-polynomials

Φ(β)
n (x) =



 φ
(β)
2n (x)

φ
(β)
2n+1(x)



 , (9)

where

φ(β)
n (x) =

1√
g
(β)
n

Π(β)
n (x) exp[−V (x)], (10)

and

Π(β)
n (x) =

n∑

k=0

c
(n,β)
k xk, (11)

is the SOP of order n.

Z =



 0 1

−1 0



∔ . . .∔ (12)

is a semi-infinite anti-symmetric block-diagonal matrix with Z2 = −1 and

ǫ(r) =
|r|
r
.

δ is the kronecker delta. The matrix

∏

2N

= diag(1, . . . , 1︸ ︷︷ ︸
2N

, 0, . . . , 0) (13)

has 2N entries. Finally, we define

Ψ(4)
n (x) = Φ′(4)

n (x), Ψ(1)
n (x) =

∫
Φ(1)

n (y)ǫ(x− y)dy, (14)
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which satisfy skew-orthonormality relation [1, 4, 5]:

(Ψ̂(β)
n ,Φ(β)

m ) ≡
∫

Γ
Ψ̂(β)

n Φ(β)
m dx = δnm. (15)

The contour of integration ‘Γ’ is the real axis. Here, one must mention that under suitable

assumptions on V (x) that ensures convergence of the integral (15), for a given V (x), these SOP

are unique up to the addition of a lower even order polynomial to the odd ones.

For the unitary ensemble, study of correlation function involve similar kernel function, which

is calculated [4, 5] using the well known Christoffel Darboux formula [17]. To study the kernel

functions arising in OE and SE (5,6,7), we derive a GCD formula.

To this effect, we expand xΦ(β)(x), (Φ(β)(x))
′
and (xΦ(β)(x))

′
in terms of Φ(β)(x) (and hence

introduce the semi-infinite matrices Q(β), P (β) and R(β) respectively):

xΦ(β)(x) = Q(β)Φ(β)(x), (16)

Ψ(4)(x) = P (4)Φ(4)(x), xΨ(4)(x) = R(4)Φ(4)(x), (17)

Φ(1)(x) = P (1)Ψ(1)(x), xΦ(1)(x) = R(1)Ψ(1)(x), (18)

where (18) is obtained by multiplying the above expansion by ǫ(y−x) and integrating by parts.

They satisfy the following commutation relations:

[Q(β), P (β)] = 1, [R(β), P (β)] = P (β). (19)

Using (ψ
(4)
n (x), ψ

(4)
m (x)) and (xψ

(4)
n (x), ψ

(4)
m (x)) for β = 4, and replacing ψ(4)(x) by φ(1)(x)

for β = 1, we get

P (β) = −P (β)D, R(β) = −R(β)D, (20)

where dual of a matrix A is defined as

AD = −ZAtZ. (21)

However starting with (xφ
(β)
n (x), ψ

(β)
m (x)) and using (19), we get

Q(β) = Q(β)D + (P (β))
−1
. (22)

We will use the matrices P (β) and R(β) to obtain the GCD formula. For β = 4, using (5),
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(17) and (20), we get

S
(4)
2N (x, y) − S

(4)
2N (y, x) =

[
Φ(4)t(x)

∏

2N

Z
∏

2N

Ψ(4)(y) + Ψ(4)t(x)
∏

2N

Z
∏

2N

Φ(4)(y)

]
,

=

[
Φ(4)t(x)

∏

2N

Z
∏

2N

PΦ(4)(y) + Φ(4)t(x)P t
∏

2N

Z
∏

2N

Φ(4)(y)

]
,

=

[
−Φ(4)t(x)ZZ

∏

2N

Z
∏

2N

PΦ(4)(y)

+Φ(4)t(x)ZZP tZZ
∏

2N

Z
∏

2N

Φ(4)(y)

]
,

= Φ̂(4)(x)

[
P (4),

∏

2N

]
Φ(4)(y), (23)

where we have used Z
∏

2N Z
∏

2N = −
∏

2N . Similarly, using (5), (14), (17) and (20) we get

yS
(4)
2N (x, y) − xS

(4)
2N (y, x) =

(
x
d

dx
+ y

d

dy

)
Φ(4)t(x)

∏

2N

Z
∏

2N

Φ(4)(y),

=

[

Φ(4)t(x)Rt
∏

2N

Z
∏

2N

Φ(4)(y) + Φ(4)t(x)
∏

2N

Z
∏

2N

RΦ(4)(y)

]

,

= Φ̂(4)(x)

[

R(4),
∏

2N

]

Φ(4)(y). (24)

Finally using (23) and (24), the GCD for the SE (β = 4) is given by

S
(4)
2N (x, y) =

xΦ̂(4)(x)
[
P (4),

∏
2N

]
Φ(4)(y) − Φ̂(4)(x)

[
R(4),

∏
2N

]
Φ(4)(y)

x− y
. (25)

Following a similar procedure, the GCD for the OE (β = 1) is given by

S
(1)
2N (x, y) =

yΨ̂(1)(x)
[
P (1),

∏
2N

]
Ψ(1)(y) − Ψ̂(1)(x)

[
R(1),

∏
2N

]
Ψ(1)(y)

y − x
. (26)

Here, one might recall, that for orthogonal polynomials, the Christoffel-Darboux sum takes

the form

S
(2)
N (x, y) = φt(x)

∏

N

φ(y) =
φt(x) [Q,

∏
N ]φ(y)

x− y
, (27)

where Q is a tri-diagonal Jacobi matrix, and φ are the normalized orthogonal quasi-polynomials.

Any matrix of the form [A,
∏

N ] has only off-diagonal blocks whose size depends on the number

of bands above and below the diagonal of A. Thus the ‘size’ of P (β) and R(β) decides the number

of terms around the ‘Fermi-level’ that will ultimately contribute to the correlation. For example,

for the orthogonal polynomials, the Christoffel-Darboux has only two terms.

Having derived the GCD for arbitrary weight, we will study ensembles with

V (x) =

d+1∑

l=1

ul

l
xl, (28)
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where V (x) is a polynomial of order d+ 1. ul is called the deformation parameter [2]. We will

show that for such ensembles, the matrix P (β) and R(β) are finite band matrices, i.e. have finite

number of bands below and above the principal diagonal.

For β = 4,

φ′
(4)
n (x) =

∑
P (4)

n,mφ
(4)
m (x)

=
[
−V ′(x)φ(4)

n (x) + φ
(4)
n−1(x) + . . .

]

= −
∑

(V ′(Q))n,mφ
(1)
m (x) + φ

(1)
n−1(x) + . . . , (29)

while for β = 1,

φ(1)
n (x) =

∑
P (1)

nmψ
(1)
m (x)

=

∫
d

dy

[
φ(1)

n (y)
]
ǫ(x− y)dy

=

∫ [
−
∑

(V ′(Q))n,mφ
(1)
m (y)

]
ǫ(x− y)dy + ψ

(1)
n−1(x) + . . . . (30)

This gives

[
P (β) + V ′(Q(β))

]
= lower. (31)

Similarly, for β = 4, we have

xψ(4)
n (x) =

∑
R(4)

n,mφ
(4)
m (x) = x

d

dx
φ(4)

n (x)

= [−xV ′(x)φ(4)
n (x) + nφ(4)

n (x) + . . .

= −(
∑

m,l

Q(4)
nm[(V ′(Q(4)))mlφ

(4)
l (x)) + . . . , (32)

while for β = 1, we get

xφ(1)
n (x) =

∑
R(1)

nmψ
(1)
m (x)

=

∫
d

dy

[
yφ(1)

n (y)
]
ǫ(x− y)dy

=

∫ [
−yV ′(y)φ(1)

n (y)
]
ǫ(x− y)dy

+(n+ 1)ψ(1)
n (x) + . . .

= −(
∑

m,l

Q(1)
nm[(V ′(Q(1)))mlψ

(1)
l (x)) + . . . . (33)

Thus we get

[
R(β) +Q(β)V ′(Q(β))

]
= lower+, (34)

where ‘lower’ denotes a strictly lower triangular matrix and ‘lower′+ a lower triangular matrix

with the principal diagonal. Since Q(β) has only one band above the diagonal, Eqs.(31,34)
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confirm that P (β) and R(β) has d and d+1 bands above and below (since they are anti-self dual)

the principal diagonal. However, unlike β = 2, Q(β) for β = 1 and 4 is not a finite band matrix.

Q(β) can be calculated in terms of the normalization constant g
(β)
n and the coefficients of the

polynomials c
(k,β)
j . For SOP, with g

(β)
2N = g

(β)
2N+1, we have

Q
(β)
j,j+1 =

c
(j,β)
j

c
(j+1,β)
j+1

√√√√g
(β)
j+1

g
(β)
j

, Q
(β)
j,j =

c
(j,β)
j−1

c
(j,β)
j

−
c
(j+1,β)
j

c
(j+1,β)
j+1

.

Finally using Eqs.(25), (26) and the asymptotic results for these SOP [5], we present an al-

ternative derivation of the level-density and the ‘two-point’ function for the Gaussian orthogonal

and symplectic ensembles. For the Gaussian Ensembles, with d = 1, (25) and (26) give

S
(4)
2N (x, y) =

[xP
(4)
(1,2) −R

(4)
(1,2)]φ

(4)
(0,2) +R

(4)
(0,2)φ

(4)
(1,2) −R

(4)
(1,3)φ

(4)
(0,3)

x− y
, (35)

and

S
(1)
2N (x, y) =

[yP
(1)
(1,2) −R

(1)
(1,2)]ψ

(1)
(0,2) +R

(1)
(0,2)ψ

(1)
(1,2) −R

(1)
(1,3)ψ

(1)
(0,3)

y − x
, (36)

respectively, where

φ
(4)
(j,k) ≡ [φ

(4)
2N+j(x)φ

(4)
2N+k(y) − φ

(4)
2N+j(y)φ

(4)
2N+k(x)] (37)

(and similarly for ψ
(1)
(j,k) ) and

A
(β)
(j,k) ≡ A

(β)
2N+j,2N+k. (38)

For β = 4, using g
(4)
2n = (2n + 1)!π1/222n and c

(n,4)
n = (

√
2)

3n−1
[5], we have Q

(4)
(0,1) = 1/2

√
2

and Q
(4)
(1,2) =

√
2N . From Eq.(31) and (34), with u2 = 2 and u1 = 0, we get

P
(4)
(1,2) = −2Q

(4)
(1,2) = −4N/

√
2, (39)

R
(4)
(0,2) = −2Q

(4)
(0,1)Q

(4)
(1,2) = −N, (40)

R
(4)
(1,3) = −2Q

(4)
(1,2)Q

(4)
(2,3) = −N. (41)

For large N , we use the asymptotic results (with Gaussian weight) for the SOP [5]:

φ
(4)
2n+1(x) =

sin
[
f (4)(n, θ)

]

n1/4
√
π sin θ

, (42)

φ
(4)
2n (x) =

1

(4n)1/4

[
cos
[
f (4)(n, θ)

]

2
√

2nπsin3θ
+

1

2

]

, (43)

where

f (4)(n, θ) = (n+ 3/4)(sin 2θ − 2θ) +
3π

4
,

= 2

∫ x

−
√

2n
ρ(n, x)dx+

3π

4
, (44)
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and x = (2n + 3/2)1/2 cos θ. For a given x, θ depends on n; for example θn − θn∓1 ≃
±(2n tan θn)−1. Then with y = x + ∆x and θ ≡ θn, where θn ≡ (θ2nθ2n+1)

t, and expand-

ing in θ and N , we get from the first term in Eq.(35):

xP
(4)
(1,2)[φ

(4)
(0,2)] = − 1

4π

cos θ

sin3 sin

(

∆θ
∂f (4)(N, θ)

∂θ

)

sin 2θ. (45)

The second and third terms in Eq.(35) give

R
(4)
(0,2)[φ

(4)
(1,2)] = −R(4)

(1,3)[φ
(4)
(0,3)]

=
cos 2θ

4π sin2 θ
sin

(

∆θ
∂f (4)(N, θ)

∂θ

)

. (46)

We know that the odd SOP is arbitrary to the addition of a lower even order polynomial. This

choice cancels the term R
(4)
(1,2)[φ

(4)
(0,2)]. Collecting all the terms, we get

S
(4)
2N (x, y) =

sin[2
√

(2N − x2)∆x]

2π∆x
, |x| <

√
2N. (47)

Taking ∆x→ 0, we get the famous ‘semi-circle’, while

S
(4)
2N (x, y)

S
(4)
2N (x, x)

=
sin[2π∆xS

(4)
N (x, x)]

2π∆xS
(4)
2N (x, x)

=
sin 2πr

2πr
, (48)

where r = ∆xS
(4)
2N (x, x), gives the universal sine-kernel in the bulk of the spectrum.

For β = 1, we have from [5] g
(1)
2n = (2n)!π1/222n and c

(2n,1)
2n = −c(2n+1,1)

2n+1 = 22n, which gives

Q
(1)
(0,1) = −1, Q

(1)
(1,2) = −N . For u2 = 1 and u1 = 0, Eqs.(31) and (34) gives

P
(1)
(1,2) = −Q(1)

(1,2) = N, (49)

R
(1)
(0,2) = −Q(1)

(0,1)Q
(1)
(1,2) = −N, (50)

R
(1)
(1,3) = −Q(1)

(1,2)Q
(1)
(2,3) = −N. (51)

For large N , we use the asymptotic results for the SOP [5]:

ψ
(1)
2n+1(x) =

sin
[
f (1)(n, θ)

]

n1/4
√
π sin θ

, (52)

ψ
(1)
2n (x) = − 1

2n1/4

[
cos
[
f (1)(n, θ)

]
√
nπsin3θ

]

, (53)

where

f (1)(n, θ) = (n+ 1/4)(sin 2θ − 2θ) +
3π

4
,

=

∫ x

−
√

4n
ρ(n, x)dx+

3π

4
, (54)

and x = (4n + 1)1/2 cos θ. Writing y = x+ ∆x, and expanding in θ and N in (36), we get

S
(1)
2N (x, y) =

sin[
√

(4N − x2)∆x]

π∆x
, |x| <

√
4N. (55)
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Taking ∆x→ 0, we get the level density, while

S
(1)
2N (x, y)

S
(1)
2N (x, x)

=
sin[πS

(1)
2N (x, x)∆x]

π∆xS
(1)
2N (x, x)

=
sinπr

πr
, (56)

where r = ∆xS
(1)
2N (x, x), gives the universal sine-kernel in the bulk of the spectrum.

For general d the correlation function corresponding to a weight with single support can be

obtained using the asymptotic results for the SOP [18]. However, one needs to understand in

greater detail the structure of the finite-band matrices and hence the matrix Q(β) to come up

with a proof.

In conclusion, the unitary ensembles of random matrices, which involve the orthogonal poly-

nomials have been well studied in recent years. In contrast, barring a few specific weights,

nothing much is known about the OE and SE. This is mainly due to the hurdles created by the

SOP.

In this paper, we have made some progress in understanding some of the basic properties

of these SOP. In this context, we would like to emphasize that the GCD formula, derived in

this paper, can at best be considered as the first step for a systematic study of the OE and SE

of random matrices. One still needs to develop the theory further to come to an equal footing

with the unitary ensemble of random matrices. For example, one would like to understand in

greater details the asymptotic behavior of these SOP [18] to study different correlations for a

larger family of OE and SE. We would also like to point out the similarity in the GCD formula

for β = 1 and 4 with the interchange of Φ with Ψ. This may be useful in proving the duality

between these two ensembles. We believe that these SOP satisfy a d × d differential system,

which can be used to formulate a Riemann-Hilbert problem for these matrix models. We wish

to come back to a few of these questions in a later publication.
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