ЗАХВАТ ДЕЙТЕРИЯ В ПЛАЗМЕННО-НАПЫЛЕННЫЙ ВОЛЬФРАМ

А.В. Голубева, В.А. Курнаев

Московский инженерно-физический институт (Государственный университет), г. Москва, Российская федерация

М. Маер, И. Рот

Институт физики плазмы общества имени Макса Планка, Гархинг, Германия

Международный экспериментальный термоядерный реактор ИТЭР призван продемонстрировать возможность получения энергии в управляемой реакции синтеза. Хотя проектирование реактора на сегодняшний день считается завершенным, остается множество вопросов, связанных с работой реактора. Одним из таких вопросов является накопление водорода в обращенных к плазме материалах (ОПМ), важное не только как компонента рециклинга топлива, но и с точки зрения радиационной безопасности установки, поскольку тритий радиоактивен.

В термоядерном реакторе ИТЭР в качестве обращенных к плазме материалов (ОПМ) будут использоваться бериллий, углерод и вольфрам. Бериллий будет использоваться для облицовки первой стенки реактора, вольфрам-дивертора, за исключением наиболее энергонапряженной области дивертора, которая будет покрыта графитом.

За долгие годы накопления информации о захвате водорода вольфрамом набрана внушительная база данных, оставляющая многие аспекты накопления открытыми. В частности, подавляющее большинство модельных экспериментов было поставлено с поликристаллическим (PolyW) и монокристаллическим (SCW) вольфрамом. В реакторе ИТЭР площадь вольфрамового покрытия дивертора будет составлять 100 м². Одним из способов нанесения вольфрамового покрытия с улучшенными термомеханическими свойствами на такую площадь является плазменное напыление. Имеющиеся данные по накоплению водорода в плазменнонапыленном вольфраме (PSW) крайне фрагментарны^[1, 2]. Накопление водорода в вольфраме существенно зависит от структуры материала (что значит, от способа его производства и предыстории каждого конкретного образца) и может различаться в разы для материалов идентичного состава, но разной структуры. Поэтому накопление водорода в PSW потребовало дополнительного подробного исследования.

В данной работе исследовался захват ионов дейтерия в PSW в сравнении с захватом в SCW и PCW. Исследуемые образцы облучались пучком ионов дейтерия двух выделенных энергий: $200\,$ и $3000\,$ эВ/D в диапазоне доз облучения $10^{22}\text{-}10^{24}\,$ D/м 2 . Захват дейтерия исследовался с помощью термодесорбционной методики. Исследована зависимость накопления от температуры образца при облучении. Обсуждается природа пиков в ТДС исследовавшихся вольфрамовых материалов.

В работе было установлено, что во всем диапазоне доз облучения PSW накапливает в 4-5 раз больше дейтерия, чем PCW. Однако накопление остается на порядок меньшим, чем в графитовых композитных материалах, которые также планируется использовать в диверторе, поэтому плазменно-напыленный вольфрам остается вполне приемлемым материалом для реактора ИТЭР.

¹. García-Rosales C., Franzen P., Plank H., Roth J. and Gauthier E. J. Nucl. Mater., Vol. 233-237, Part 1, (1996), P. 803-808.

². Alimov, V. Kh. and Scherzer, B.M.U., J. Nucl. Mater. Vol. 240 (1996), P. 75-80.