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Abstract

From the observed late-time acceleration of cosmic expansion arises the quest for the nature
of Dark Energy. As has been widely discussed, the cosmic neutrino background naturally
qualifies for a connection with the Dark Energy sector and as a result could play a key role
for the origin of cosmic acceleration. In this thesis we explore various theoretical aspects and
phenomenological consequences arising from non-standard neutrino interactions, which dy-
namically link the cosmic neutrino background and a slowly-evolving scalar field of the dark
sector. In the considered scenario, known as Neutrino Dark Energy, the complex interplay
between the neutrinos and the scalar field not only allows to explain cosmic acceleration, but
intriguingly, as a distinct signature, also gives rise to dynamical, time-dependent neutrino
masses. In a first analysis, we thoroughly investigate an astrophysical high energy neutrino
process which is sensitive to neutrino masses. We work out, both semi-analytically and nu-
merically, the generic clear-cut signatures arising from a possible time variation of neutrino
masses which we compare to the corresponding results for constant neutrino masses. Finally,
we demonstrate that even for the lowest possible neutrino mass scale, it is feasible for the radio
telescope LOFAR to reveal a variation of neutrino masses and therefore to probe the nature of
Dark Energy within the next decade. A second independent analysis deals with the recently
challenged stability of Neutrino Dark Energy against the strong growth of hydrodynamic per-
turbations, driven by the new scalar force felt between neutrinos. Within the framework of
linear cosmological perturbation theory, we derive the equation of motion of the neutrino per-
turbations in a model-independent way. This equation allows to deduce an analytical stability
condition which translates into a comfortable upper bound on the scalar-neutrino coupling
which is determined by the ratio of the densities in cold dark matter and in neutrinos. We
illustrate our findings by presenting numerical results for representative examples of stable as
well as of unstable scenarios.



Zusammenfassung

Die beobachtete Beschleunigung der kosmischen Expansion zu späten Zeiten wirft die Frage
auf nach der Natur der dunklen Energie. Wie bereits mehrfach in der Literatur erörtert wurde,
eignet sich der kosmische Neutrinohintergrund auf natürliche Weise für einen Zusammenhang
mit dem für die dunkle Energie verantwortlichen Sektor. Als Folge könnte er eine Schlüsselrolle
spielen für die Entstehung der kosmischen Beschleunigung. In dieser Arbeit untersuchen wir
verschiedene theoretische Aspekte und phänomenologische Auswirkungen von neuen Neutri-
nowechselwirkungen, die eine neue dynamische Kopplung zwischen dem kosmischen Neutri-
nohintergrund und einem leichten Skalarfeld des dunklen Sektors herstellen. In dem betra-
chteten Szenario, der sogannten “Neutrino Dark Energy”, erlaubt das komplexe Wechselspiel
zwischen den Neutrinos und dem Skalarfeld die Beschleunigung der kosmischen Expansion
zu erklären. Faszinierenderweise werden darüberhinaus als eindeutiges Merkmal dynamische,
zeitabhängige Neutrinomassen erzeugt. In einer ersten Analyse führen wir eine sorgfältige Un-
tersuchung eines astrophysikalischen Neutrinoprozesses durch, der eine Abhängigkeit von den
Neutrinomassen aufweist. Wir arbeiten sowohl semi-analytisch als auch numerisch die charak-
teristischen, klaren Signaturen der zeitlichen Neutrinomassenvariation aus und vergleichen sie
mit den entsprechenden Ergebnissen für Neutrinos mit konstanten Massen. Schlussendlich
zeigen wir, dass das Radioteleskop LOFAR in der Lage wäre, eine Neutrinomassenvaria-
tion zu detektieren, selbst im Falle der niedrigst möglichen Neutrinomassenskala. Auf diese
Weise könnte innerhalb der nächsten Dekade das Wesen der dunklen Energie getestet wer-
den. Eine zweite unabhängige Analyse beschäftigt sich mit der vor kurzem angezweifelten
Stabilität des Szenarios. Sie wird in Frage gestellt aufgrund des möglichen starken Anwach-
sens von hydrodynamischen Fluktuationen, das von der neuen, zwischen Neutrinos wirkenden
Kraft angetrieben wird. Im Rahmen der linearen kosmologischen Störungsrechnung leiten
wir in modellunabhängiger Weise die Bewegungsgleichung für die Neutrinofluktuationen her.
Die Bewegungsgleichung erlaubt, eine analytische Stabilitätsbedingung aufzustellen, die einer
großzügigen oberen Schranke für die Kopplungsstärke zwischen Neutrinos und dem Skalarfeld
entspricht. Sie ist bestimmt durch das Verhältnis der Dichten der kalten dunklen Materie und
der Neutrinos. Wir veranschaulichen unsere Resultate mithilfe von numerischen Berechnungen
für repräsentative Beispiele sowohl von stabilen als auch von instabilen Modellen.
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1 Introduction

Various cosmological precision measurements provide increasingly strong evidence that the
expansion of the universe has recently entered a phase of accelerated expansion [1–6]. From
this observational advance arises one of the major challenges for theoretical cosmology and
particle physics which, in the framework of general relativity, translates into the quest for
the nature of Dark Energy1. In order to cause the observed late-time acceleration, this so far
unknown source of energy has to be homogeneously distributed, can at best be slowly-varying
with time and must be characterized by a negative pressure to counteract gravity.

It may be a cosmological constant identified with the energy of the vacuum [9], or a dynamical
quintessence scalar field, slowly rolling down its self-interaction potential [10–13], or some more
exotic dynamical variant [14–17]. However, in any case, so far neither fifth force searches [18]
nor tests of the equivalence principle [19] could shed light on the origin of the Dark Energy
sector by tracing (non-gravitational) interactions with standard model particles [20].

Recently, it has been argued that Big Bang relic neutrinos, which are the analog of the photons
of the microwave background (CMB), naturally qualify for a connection with the Dark Energy
sector [21–24] and as a result could play a key role for the origin of cosmic acceleration. Their
existence is a fundamental prediction of Big Bang cosmology and traces its origin to the freeze-
out of the weak interactions merely about 1 sec after the Big Bang at a temperature scale
of 1 MeV [25]. Ever since their decoupling from the thermal bath, these relic neutrinos are
assumed to permeate the universe homogeneously as cosmic neutrino background (CνB) with
a substantial relic abundance which is only surpassed by the CMB photons.

In this thesis we explore possible realizations of non-standard neutrino interactions which dy-
namically link the cosmic evolution of the CνB and the sector responsible for Dark Energy. As
successively described in the following, they emerge from the requirement of energy-momentum
conservation of the coupled two-component system and turn out to have interesting, testable
consequences for neutrino physics, cosmology as well as astro-particle physics.

The approaches are based on a scenario proposed by Fardon, Nelson and Weiner and have
the following common framework [21, 22]. The authors of Ref. [21, 22] have shown that relic
neutrinos are promoted to a natural Dark Energy candidate if they interact through a new
force mediated by a light scalar field of the dark sector2. This idea has great appeal and
is supported by the following line of arguments. Neutrinos are the only fermions without
right-handed partners in the Standard Model. Since the discovery of neutrino oscillations we

1For a complementary approach in which instead of the matter sector gravity is modified in such a way as to produce
cosmic acceleration see e.g. [7, 8].

2Implications of non-standard neutrino interactions mediated by a light scalar field have already been considered
before in Refs. [26–31].
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Introduction

know that a deeper understanding of the neutrino sector including the origin of neutrino masses
requires physics beyond the Standard Model. Provided lepton number is violated, therefore the
active, left-handed neutrinos are generally assumed to mix with dark right-handed neutrinos
to acquire small masses via the well-known see-saw mechanism [32–35]. Hence, if these dark
fermions directly couple to the dark scalar field, the attractive possibility arises [21, 22] that
neutrinos indirectly feel the scalar field mediated force by mixing with the dark fermions via
the see-saw mechanism. Intriguingly, by these means they are uniquely capable of opening a
window to the dark sector. Moreover, the scale relevant for neutrino mass squared differences
as determined from neutrino oscillation experiments, δmν

2 ∼ (10−2 eV)2 [36], is of the order
of the tiny scale associated with the Dark Energy density, ρDE ∼ (2× 10−3 eV)4.

From the new interaction, in such a scenario an intricate interplay arises which links the dy-
namics of the relic neutrinos and the light scalar field, the mediator of the dark force. Namely,
on the one hand, the vacuum expectation value φ of the scalar field generates neutrino masses,
mν(φ). Correspondingly, the φ dependence of the neutrino masses mν(φ) is transmitted to the
neutrino energy densities ρν(mν(φ)), since these are functions of mν(φ). On the other hand,
as a direct consequence, the neutrino energy densities ρν(mν , φ) can stabilize the scalar field
by contributing to its effective potential,

V (φ, ρν(mν(φ))) = Vφ(φ) + ρν(mν(φ)). (1.1)

More precisely, by these means, the competition of the self-interaction potential Vφ(φ) of the
scalar field and the neutrino source term can lead to a stabilization of φ in a minimum3 exhib-
ited by its effective potential V (φ, ρν). As a crucial consequence, φ cannot evolve faster than
the neutrino density gets diluted by cosmic expansion. Accordingly, the characteristic time
scale governing its dynamics is determined by cosmic expansion which is naturally slow. Thus,
the steadily decreasing energy density of its effective potential can drive cosmic acceleration
and as an intriguing side effect, its slowly evolving value generates dynamical time-dependent
neutrino masses mν(φ).

Accordingly, in this so-called Mass Varying Neutrino (MaVaN) Scenario, also known as Neu-
trino Dark Energy, the typical problems arising in slow-roll quintessence [20, 37–40] can be
ameliorated. Namely, since the coupling to neutrinos impedes the scalar field from rolling
down its potential, its mass can be much larger than the tiny Hubble scale sized mass ∼ 10−33

eV of a slow-roll quintessence field. As it turns out, it is allowed to be of comparable size
as the milli-eV Dark Energy scale and as a consequence is more plausibly stable against ra-
diative corrections than the Hubble scale. It should also be noted that neutrinos are ideal
candidates for coupling to a light scalar field, since the arising quantum radiative corrections
to its potential remain of natural size due to the smallness of neutrino masses [21,22].4

From a phenomenological point of view, the Mass Varying Neutrino scenario is also appealing,
since it predicts as a clear and testable signature a variation of neutrino masses with time.

The rich phenomenology of the MaVaN scenario has been explored by many authors. The
cosmological effects of varying neutrino masses have been studied in Refs. [43–47] and were

3Since therefore in the presence of the relic neutrinos the scalar field possesses a stable (time dependent) vacuum
state, in the literature both the scalar field and its vacuum expectation value are referred to as φ.

4Of course, within the framework of quintessence alternative ways out of the problems have been considered [38,41,42].
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elaborated in the context of gamma ray bursts [48]. Apart from the time variation, the con-
jectured new scalar forces between neutrinos as well as the additional possibility of radiatively
induced small scalar field couplings to matter, lead to an environment dependence of the
neutrino masses governed by the local neutrino and matter densities [21, 49, 50]. The conse-
quences for neutrino oscillations in general were exploited in Refs. [49,51], in particular in the
sun [52–54], in reactor experiments [53,55] as well as in long-baseline experiments [56].

However, recently, it has been pointed out by Afshordi, Zaldarriaga and Kohri that the viability
of the MaVaN scenario in the non-relativistic neutrino regime is threatened by a stability
problem [57]. It originates from the non-standard scalar force felt between neutrinos, which
can drive a strong growth of hydrodynamic perturbations in the neutrino density possibly
leading to bound neutrino structure [57, 58]. We will further pursue this challenge in the
second main part of this thesis.

A way of circumventing this stability problem was proposed in a follow-up publication by
Fardon, Nelson and Weiner [22] implemented in a viable Supersymmetric version of the Ma-
VaN scenario. Besides various other theoretical merits, in its framework the Dark Energy
density could be expressed in terms of neutrino mass parameters. As a consequence, the ori-
gin of Dark Energy was attributed to the lightest neutrino. By naturalness arguments the
authors concluded that it still has to be relativistic today as allowed by neutrino oscillation
experiments. Consequently, if indeed such a low neutrino mass scale is realized in nature,
the pressure support in the relativistic neutrino can stabilize the MaVaN perturbations [59].
Thereby, possible instabilities are prevented which can only occur in highly non-relativistic
theories of Neutrino Dark Energy [22,57,59,60].

The stage is now set for the questions to be investigated in the two main parts of this thesis:

1) Signatures of Mass Varying Neutrinos in the Sky?

In light of the possible realization of Neutrino Dark Energy in nature, an avenue will be
thoroughly explored which allows for a more direct detection of the CνB [61–68]. In the
framework of [22], the prospects will be analyzed for probing its interpretation as source of
Neutrino Dark Energy by means of neutrino observatories largely following our Refs. [69,70].

For this purpose, we will consider a process which is sensitive to possible variations in the relic
neutrino masses with time, namely, the resonant annihilation into Z-Bosons of extremely-high
energy cosmic neutrinos (EHECν’s) with relic anti-neutrinos of the CνB and vice versa [61–68].
In general, this process is expected to lead to sizeable absorption dips in the diffuse cosmic
neutrino fluxes to be detected on earth in the relevant energy region above 1013 GeV. We
will work out the characteristic absorption features produced by constant and time varying
neutrino masses for various cosmic neutrino sources, incorporating all thermal effects resulting
from the relic neutrino motion.

As it will turn out, our results are largely independent of the details of the model, since only a
few generic features of the setting enter the investigation. As a result, for the radio telescope
LOFAR it will turn out to be feasible to reveal a time-dependence of neutrino masses, even for
the lowest possible neutrino mass scale, given that a sufficient EHECν flux can be established.
Therefore, LOFAR could provide a possible signature for Neutrino Dark Energy within the
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next decade.

2) On the stability of Neutrino Dark Energy

The second main part of this thesis is devoted to an exploration of the stability issue in
highly non-relativistic theories of Neutrino Dark Energy as challenged by Afshordi, Kohri
and Zaldarriaga [57], largely based on our Ref. [71]. To this end, in the framework of linear
cosmological perturbation theory we will thoroughly investigate the effects of the scalar-field-
induced attractive force on the Mass Varying Neutrino perturbations in a model-independent
way. As it will turn out, this framework naturally leads us to take into account the interplay
between the scalar-neutrino fluid and other important cosmic components like cold dark matter
which were not considered in Ref. [57]. As we will show, this opens up the possibility for
a stabilization of the Mass Varying Neutrino perturbations even in highly non-relativistic
theories of Neutrino Dark Energy.

Hence, our ultimate goal will be the derivation of the corresponding stability condition which
will turn out to translate into a comfortable upper bound on the allowed scalar-neutrino
coupling. We will illustrate our results by considering meaningful, representative examples
both for stable and unstable scenarios of Neutrino Dark Energy.

For the convenience of the reader, each of the main sections, Sec. 3 and Sec. 4, includes an
introduction as well as a summary of the results. Furthermore, in order to make the thesis
as self-contained as possible, we provide an introductory chapter which briefly reviews the
fundamentals and relevant concepts on which Secs. 3 – 4 rely and in addition introduces the
notation. The outline of this thesis is as follows.

In the introductory section Sec. 2 we provide the tools to analyze the large scale dynamics
of the universe and discuss the properties of possible sources of Dark Energy as well as of
other important cosmic components. Furthermore, we include a brief excursion into the early
universe to illuminate the origin of the CνB and the CMB, respectively. The second part of
Sec. 2 is devoted to the basics in neutrino physics. For later reference, we introduce the see-
saw mechanism as possible origin of neutrino masses and collect recent neutrino mass squared
splittings, mixing parameters as well as upper bounds on the absolute neutrino mass scale.

In Sec. 3 we explore an astrophysical approach to test the realization of Neutrino Dark Energy
in nature. For this purpose, in Sec. 3.1 we start by introducing the Mass Varying Neutrino
Scenario focusing on its Supersymmetric version. Furthermore, it is accommodated into a
generic form [22] suitable to serve as framework for our later investigation. Thereafter, in
Sec. 3.2, we provide all state-of-the art tools to analyze absorption dips in the EHECν fluxes to
be observed at earth extending the complete analysis to incorporate varying neutrino masses,
including the full thermal effects. In addition, on the level of the survival probabilities in
Sec. 3.2.3 we switch off the thermal effects, for the purpose of gaining more physical insight into
the characteristic features caused by the mass variation and in order to compare to common
approximations employed in the literature. Finally, in Sec. 3.2.4 we illustrate the discovery
potential for neutrino observatories for the CνB and give an outlook for the testability of
Neutrino Dark Energy by calculating the expected fluxes, both for astrophysical sources and
for topological defect sources. In the latter case, for the first time, we employ the appropriate
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fragmentation functions. Our results are summarized in Sec. 3.3.

In Sec. 4 we revisit the stability issue arising in highly non-relativistic theories of Neutrino
Dark Energy. After setting the stage in Sec. 4.1 for performing a model-independent analysis,
in Sec. 4.2 we briefly introduce the concept of linear cosmological perturbation theory consti-
tuting the framework for our analysis. For the purpose of developing an intuition for the main
physical effects leading to instabilities, in Sec. 4.2.2 we discuss, as a simple example, gravi-
tational instabilities in Newtonian theory. Afterwards, from linearizing Einstein’s equations
about an expanding background, in Sec. 4.4 we derive the equation of motion for the MaVaN
perturbations. Justified approximations are applied to interpret its solutions and to arrive at
the stability criterion corresponding to an upper bound on the scalar-neutrino coupling. We
illustrate our results in Sec. 4.5 by the help of representative examples both for stable and
unstable scenarios. In Sec. 4.7 we summarize our results and provide an outlook.

Finally, in Sec. 5 we summarize our results gained in the first and second main part of this
thesis and provide an outlook on promising open issues which arose in the course of this work.
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2 Cosmology and Neutrino Physics – Basics

2.1 Cosmology in a Nutshell

This subsection aims at providing an overview over the basic concepts and fundamentals of
standard cosmology which our later analysis is built upon. In addition, it serves as an abstract
for the introductory sections on cosmology, Secs. 2.2– 2.5.2.

The key idea of Einstein’s theory of general relativity is that gravity is a distortion of space
and time itself and can be described by a metric. Moreover, it responds to the matter and
energy in the universe in a way described by Einstein’s field equations. After this revolutionary
discovery in 1916, cosmology became the task of finding solutions to Einstein’s field equations
consistent with the large-scale matter and energy distribution in our universe. However, owing
to the inherent non-linearity of the equations, a general solution which describes the origin,
the evolution and the ultimate fate of the entire Universe, turned out to be very difficult.

However, as observational cosmology has demonstrated, on the very largest scales > 100 Mpc
the Universe appears highly symmetric in its properties1. This makes the approach reasonable
to study the large-scale dynamics of our universe by postulating it to be spatially homogeneous
and isotropic, but evolving in time. Modeling its different matter and energy components by a
fluid, this assumption allows for exact solutions of Einstein’s equations. The emerging ‘Fried-
mann models’ which can be compared to observations are distinguished by their curvature,
which could be positive, negative, or flat. In a universe where matter and radiation provide
the only types of energy density, they would thus predict different fates of our universe, namely
a collapse, an eternal expansion or something exactly in between.

However, in 1998 by the help of studies using exploding stars, Type Ia supernovae, as “stan-
dardizable candles ”, for the first time solid evidence was provided that the universe recently
has entered a phase of accelerated expansion [72,73]. This observation was stunning, since the
gravitational attraction felt between matter in the universe on the basis of Einstein’s theory of
general relativity was predicted to cause a deceleration of cosmic expansion. Thus, if gravity
does not weaken on the largest cosmological scales, this implies that our universe at present
is dominated by a so far unknown exotic form of energy. This homogeneously distributed,
at best slowly-varying, yet only gravitationally detected and thus dark energy has to be of
negative pressure to act like a tension opposing gravity. It actually makes up more than 70%
of the current total energy density. By now, this revolutionary observation is supported by
various cosmological data (see e.g. [1–6, 74]) and has completely separated our concepts of

1Note that 1 Mpc corresponding to 3.3 million light years is the typical separation of two galaxies and at the same
time a measure for their maximal size.
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Cosmology and Neutrino Physics – Basics

geometry and destiny. While observations strongly suggest that our universe is remarkably
flat (see e.g. [6, 75]), a universe at late times dominated by Dark Energy can expand forever
irrespective of the value of the spatial curvature.

However, looking back in time, an isotropic homogeneous universe governed by Einstein’s
equations generally must have started with a singularity of infinite density, the so-called ‘Big
Bang’ which initiated cosmic expansion. The most compelling evidence for its existence con-
stituted the detection of the ‘Cosmic Microwave Background’ (CMB) of photons, a blackbody
spectrum of T ∼ 2.7 K pervading the universe, interpreted as remnant heat of the Big Bang.
The precisely measured, minute anisotropies in the CMB temperature over the full sky tell us
that the very early Universe was indeed very smooth and isotropic.

However, according to observations, today this is only true when averaged over very large
scales, while the universe appears very lumpy on scales characteristic for galaxies and clusters
of galaxies (see e.g. [5]). According to the standard picture of structure formation, small pri-
mordial density perturbations in the matter density, traced by the CMB anisotropies, could
slowly grow in amplitude by gravity, until they finally formed the structure we observe to-
day. The causal mechanism which generated these primordial small fluctuations according
to our current paradigm of early universe cosmology is provided by cosmic inflation [76] (see
also [77–79]). Namely, shortly after the Big Bang the universe underwent an inflationary
period where it grew exponentially. As a crucial consequence of this inflationary expansion,
ordinary microscopic quantum fluctuations could become stretched up to cosmologically in-
teresting scales [77,80] and thus provide the seeds for structure to form.

One of the cornerstones of modern cosmology is provided by linear cosmological perturba-
tions theory (for pioneering work see [81–84] and for comprehensive reviews see [85–91]). It is
the right tool at hand to understand and to calculate the earliest stages of structure forma-
tion. More precisely, as long as the density perturbations are small compared to the average
background values, they can be treated as small deviations from the smooth Universe. Fur-
thermore, in its framework the angular spectrum of CMB fluctuations can be predicted (see
e.g. Ref. [92] for a comprehensive review). By comparison with measurements, it provides a
wealth of information about the history and geometry of our universe [6]. Combining it with
the data of various other cosmological precision measurements has allowed cosmologists to es-
tablish the ‘Cosmological Concordance Model’ (also known as Λ Cold Dark Matter (ΛCDM)
model). It rests on the theoretical basis of the Friedmann model and relies on a minimal set of
parameters that fit the data impressively well, including a cosmological constant Λ as simplest
realization of Dark Energy (see e.g. Refs. [5, 6, 74])2.

From a theoretical point of view, however, Λ is not at all well understood (see Ref. [93] for
a review). In fact, the zero-point energy contributions of quantum fields to the cosmological
constant lead to a quartically divergent momentum integral. Thus, theorists are faced with
the problem why the milli-eV momentum scale underlying Dark Energy is many orders of
magnitudes smaller than any reasonable cut-off scale in an effective field theory of particle
physics.

However, at the current experimental stage, dynamical alternatives are well allowed. In the

2Commonly, the vacuum energy is referred to as cosmological constant and vice versa.
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2.2 Einstein’s Equation

course of this work examples of such scenarios will be explored in which neutrinos turn out to
play a key role for the apparently non-trivial acceleration history of our universe. As a nice
feature, opposed to scenarios involving no dynamics, such approaches imply the possibility of
testing the scenarios within the near future as we will discuss in Sec. 3.

2.2 Einstein’s Equation

In the framework of general relativity Einstein’s field equations describe the fundamental
forces of gravitation as a curved spacetime responding to the energy and momentum within
the spacetime,

Gµν = 8πGTµν . (2.1)

The Einstein tensor Gµν , constructed from the metric gµν and its first and second derivatives,
and the energy momentum tensor Tµν are symmetric, conserved tensors. The constant of
proportionality that links them is the square of the inverse, reduced Planck mass M−2

Pl = 8πG,
with G being Newton’s constant. Here and throughout this work natural units are used in
which the speed of light, the reduced Planck constant and Boltzmann’s constant are unity,
c = ~ = kB = 1. Furthermore, we take the signature of the metric to be (−+ ++) and Greek
indices run from 0 to 3, while Latin indices denote only the spatial degrees of freedom.

It should be noted that in contrast to e.g. Maxwell’s equations of electrodynamics the set of
six independent second-order differential equations for gµν resulting from Einstein’s equations
are non-linear. The reason is that the universality of gravity implies a coupling of the gravi-
tational field to itself which, however, is absent for the electromagnetic field. Accordingly, the
electromagnetic field does not carry charge, while the gravitational field both carries energy
and momentum and therefore must contribute to its own source.

However, owing to the non-linearity of Einstein’s equations, it is very difficult to solve them
in full generality. The most popular sort of simplifying assumptions is to ascribe a significant
degree of symmetries to the metric. We will follow this approach in Sec. 2.4 with the aim of
describing the large-scale dynamics of our universe.

2.3 Redshifts and Scales

Let us in this section briefly introduce the cosmic redshift and the cosmic scale factor a(t)
which play an essential role for the description of the dynamics of the expanding universe and
the interpretation of cosmological measurements.

In the beginning of the 20th century Hubble found the spectral redshifts of relatively nearby
galaxies to increase in proportion to their distance from the observer [94] implying that they
appear to be moving away from us. Interpreted as stretching of the wavelengths of photons
propagating through the expanding space, it provided the first evidence for the expansion of
the Universe, a key feature of the ‘Big Bang Theory’.

The cosmic redshift is usually described in terms of the ‘redshift parameter’ z (abbreviated as
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‘redshift’), defined as fractional increase in wavelength,

z ≡ λ0 − λem

λem

=
a(t0)

a(tem)
− 1, (2.2)

where λem and λ0 denote respectively, the wavelength of the photon at the time of emission,
tem, and at the time of detection, t0. Furthermore, a(t) is the cosmic scale factor which
represents the relative expansion of the universe and can measure how much bigger or smaller
the universe is today than it was at some other instant of time. For example, if the wavelength
of a photon is stretched by a factor of two on its way from a distant galaxy to us, the Universe
must have been half its current size when the corresponding photon was emitted. Note also,
that in cosmology, the redshift is commonly used as a time equivalent3 dz = dt(1+z)ȧ(t)/a(t),
where in natural units t = r is the time in which a photon travels the distance r.

Due to the last equality in Eq. (2.2), our most important information about the cosmic scale
factor a(t) is gained through the observation of the redshift of light emitted by distant sources
like galaxies, quasars, and intergalactic gas clouds.

It should be noted that since photons travel at a finite speed of ∼ 3×105 km/s, we are looking
into the past when we are observing distant objects. For example, a visible star in the sky
is typically 10 or 100 light years away, which means that we can see it as it was 10 or 100
years ago. Accordingly, the CMB (cf. the discussion in Sec. 2.5.2) – tracing its origin to about
∼ 3× 105 years after the Big Bang – gives us a glimpse on the very early universe. Thus from
studying its properties we can learn about conditions on the very largest cosmological scales.

In the next section we will provide the tools to study the large-scale dynamics of our universe
from Einstein’s equations and we will thus see how the scale factor a(t) evolves with time.
Furthermore, we will make contact with the energy components of the universe and their time
evolution relevant for our later analysis in the main part of the thesis.

2.4 The Homogeneous Expanding Universe

In the framework of the ‘Standard Cosmological Model’ in this section we briefly discuss
the evolution of the so-called cosmological background, defined as idealized homogeneous and
isotropic space-time. This approach allows to model the behavior of the universe as a whole,
when averaged over large scales (for very nice reviews and books on this subject see e.g.
Refs. [95–99] and Refs. [25,100], respectively).

Requiring the background to be homogeneous and isotropic implies that no point in space
should be distinguished. The metric which exhibits this maximal spatial symmetry is called
‘Friedmann-Lematre-Robertson-Walker metric’. In its most general form it reads,

ds2 = gµνdxµdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
(2.3)

3In this thesis, we will likewise parameterize cosmic time in terms of the cosmic redshift and the cosmic scale factor.

18



2.4 The Homogeneous Expanding Universe

with a(t) denoting the scale factor characterizing the relative size of spatial sections as a
function of time and K ∈ {−1, 0, 1} referring to constant negative curvature (‘open Universe’),
no curvature (‘flat Universe’) and positive curvature (‘closed universe’), respectively. It is often
convenient to express the metric in terms of the ‘conformal time’ τ , defined by dτ = dt/a(t)
such that the line element takes the form4

ds2 = gµνdxµdxν = a2(τ)

[
−dτ 2 +

dr2

1−Kr2
+ r2(dθ2 + sin2 θdφ2)

]
, where

gµν = a2(τ) diag(−1, 1, 1, 1) for K = 0. (2.4)

In order to determine from Einstein’s field equations how the scale factor a evolves with time,
we have to specify the stress-energy tensor T µ

ν of the large-scale energy and matter distribution
of the universe. In accordance with the symmetries of the metric, it is diagonal and in order to
comply with isotropy its spatial components are equal. As simplest realization, the universe’s
matter content is conventionally modeled by a perfect fluid with time-dependent density ρ(t)
and pressure p(t) and a stress-energy tensor T µ

ν of the form,

T µ
ν = pgµ

ν + (ρ + p)UµUν , (2.5)

where Uµ = dxµ/
√
−ds2 is the 4-velocity of a comoving observer at rest with the fluid at the

instant of the measurement. The nature of the fluid is completely specified, once the relation
between ρ(t) and p(t) is given in the form of an equation of state ω(t), where

w(t) =
p(t)

ρ(t)
. (2.6)

Finally, by plugging Eq. (2.3) and Eq. (2.5) into Einstein’s equations, we arrive at the time-
evolution of the scale factor a which is described by two independent equations, the ‘Friedmann
equation’ and the ‘acceleration equation’, respectively,

H2 ≡
(

ȧ

a

)2

=
8πG

3
ρ− K

a2
, (2.7)

ä

a
= −4π

3
(1 + 3 ω)ρ, (2.8)

where dots denote time derivatives and H = d log a/dt = ȧ/a is the Hubble parameter. Its
value today, H0 ≡ H(t0) is often expressed in terms of the dimensionless quantity h [6] 5,

h = H0/(100 km s−1 Mpc−1) = 0.710± 0.026, (2.9)

where here and in the following the subscript 0 denotes present day quantities. Furthermore,
in this work we will adhere to the convention of normalizing a such that a0 = 1.

Moreover, Einstein’s equations imply that the stress-energy tensor is locally conserved such
that its covariant derivative vanishes, T µ

ν;µ
= 0. Thus, the µ = 0 component yields the following

4Note that conformal time is the natural choice for the time variable to calculate the perturbation evolution in Sec. 4.
5This value is taken from combined data of WMAP3 and the Sloan Digital Sky Survey (SDSS).
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energy-conservation equation,
ρ̇ + 3H(1 + ω)ρ = 0, (2.10)

with ω as defined in Eq. (2.6). Accordingly, the energy density gets diluted as the Universe
expands,

ρ ∝ e−3
R

da
1+ω(a)

a . (2.11)

At present, the universe appears to be well described by a fluid which contains five independent
contributions,

T µ
ν =

∑
i

T µ
ν i (2.12)

where the summation index i comprises photons (γ), baryons (b), neutrinos (ν), Dark Matter
(DM) and Dark Energy (DE) whose properties we will briefly describe in the following.

For this purpose it is useful to realize that as long as a component T µ
ν i of the total stress-

energy tensor negligibly exchanges energy and momentum with the other components6, we
have T µ

ν i; µ = 0 for the component i. This turns out to be a fairly good approximation in the
present universe and thus we can assume Eq. (2.10) to be satisfied separately by each of the
components i. Consequently, inserting the respective equations of state ωi into Eq. (2.11), we
arrive at different evolutions of the energy densities with the scale factor a,

ωradiation =
1

3
→ ρradiation ∝ a−4 ∝ (1 + z)4, (2.13)

ωmatter = 0 → ρmatter ∝ a−3 ∝ (1 + z)3, (2.14)

ωΛ = −1 → ρΛ = const., (2.15)

ωDE(a) < −1

3
6= const. → ρDE ∝ e−3

R
da

1+ωDE(a)

a ∝ e3
R

dz
1+ωDE(z)

1+z . (2.16)

Let us in the following discuss which of the universe’s components contribute to the radiation
and matter, respectively.

The universe around us is filled with photons, whose energy density is dominated by the
photons of the CMB which have always contributed to the radiation content of the universe.
Note however, that the nature and thus the equation of state of particles can change with
time in an evolving universe as we will see in the following.

According to Big Bang theory, there is almost an equal number of relic neutrinos composing
the cosmic neutrino background (CνB) (cf. Secs. 2.5.1 – 2.5.2 for a discussion of the origin
of the CνB and CMB, respectively). In contrast to other particles of the standard model of
particle physics, the masses of neutrinos are sufficiently small in order for neutrinos to have
been relativistic at least up to very recent epoches of the universe (cf. Ref. [101]). Therefore,
the neutrinos have also contributed to the universe’s radiation content for most of its history
with an equation of state according to Eq. (2.13). However, after the non-relativistic transition,
the pressure pν in the neutrino gas drops (and thus also the kinetic energy) until pν ' 0. As a
consequence, weakly interacting non-relativistic neutrinos contribute together with electrons,

6Note that in the early universe this is not fulfilled for radiation and matter which where tightly coupled by Thompson
scattering.
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nucleons and atoms to the ordinary matter content of the universe characterized by an equation
of state according to Eq. (2.14) (cf. Secs. 3 – 4, where neutrinos are assumed to exchange
energy with the dark sector and as a consequence Eq. (2.10) gets modified for neutrinos).

In addition, consistent evidence for the existence of a large amount of so far unknown, non-
relativistic matter in the universe is provided by observations.7 This non-relativistic matter
gravitates just as ordinary matter does with an equation of state according to Eq. (2.14),
however, it does not emit or reflect enough electromagnetic radiation to be observed directly
and thus is dubbed dark matter.

Finally, let us comment on the cosmological constant and another possible form of dynamical
Dark Energy relevant for this thesis.

As can be read off Eq. (2.8), in order to obtain an accelerated universe with ä > 0, its dominant
energy component has to exhibit sufficiently negative pressure such that ω < −1

3
.

According to recent observations, the equation of state of Dark Energy is ωDE < −0.8 at
1σ [102]. Thus, as we will see in the following, it is consistent with a cosmological constant
Λ identified with the energy density of the vacuum. It can be thought of as a perfect fluid as
defined in Eq. (2.5) with,

ρΛ = −pΛ, (2.17)

where pΛ denotes its negative pressure and ρΛ its time-independent energy density,

ρΛ ' (2.3× 10−3 eV)4. (2.18)

Accordingly, this corresponds to an equation of state wΛ = −1 (cf. Eq. (2.13)).

However, as another observationally allowed possibility, the Dark Energy could be some com-
ponent whose energy density has dynamically evolved to the value stated in Eq. (2.18). Ac-
cordingly, its equation of state can be slowly varying with time, but has to be close to −1
today.

As a good candidate which plays a key role in the first and second main part of this thesis, in
the following we consider a spatially homogeneous scalar field φ [10–13]. Scalar matter fields
are special in the sense that they allow for the presence of a potential energy term V (φ). Their
stress-energy tensor reads,

T µ
ν = φ̇2 − δµ

ν

(
1

2
φ̇2 + V (φ)

)
. (2.19)

Accordingly, the energy density ρφ and pressure pφ are given by,

ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ). (2.20)

7It should be noted that at sufficiently early times even particles constituting the non-relativistic matter today were
relativistic and thus contributed to radiation.
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Thereby, an in general time-dependent equation of state is implied,

ωφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (2.21)

which apparently can take values −1 ≤ ωφ ≤ 1.

Consequently, as long as the scalar field is slowly-varying such that, 1
2
φ̇2 � V (φ), it has a

dynamical, but slowly-evolving equation of state whose value is close to −1.

After having described the matter and radiation content of our universe, let us briefly turn to
its geometry. For later reference, it is convenient to define the critical density ρcr ≡ 3H2/8πG
corresponding to a flat universe today as well as Ωi ≡ ρi(t0)/ρcr, where i again labels the
various components of the total stress-energy tensor. Recasting ‘Friedmann’s equation’ as,

1−
∑

i

Ωi = − K
a2H2

≡ ΩK, (2.22)

it becomes apparent that the universe is open if
∑
i

Ωi < 1, flat if
∑
i

Ωi = 1, closed if
∑
i

Ωi > 1.

For later reference, it is furthermore instructive to express the evolution of the Hubble pa-
rameter in terms of its value today as well as the universe’s present energy fraction provided
by radiation (ΩR), ordinary and Dark Matter (ΩM), curvature (ΩK) and Dark Energy (ΩDE),
respectively,

H2(z) = H2
0

[
ΩR(1 + z)4 + ΩM(1 + z)3 + ΩK(1 + z)2 + ΩDEf(z)

]
, (2.23)

where in general f(z) = e3
R

dz
1+ωDE(z)

1+z , which for a cosmological constant with ΩDE = ΩΛ and
ωDE ≡ ωΛ = −1 reduces to f(z) = f = 1.

According to the best fit values for the minimal cosmological model based on Friedmann
cosmology as well as a cosmological constant Λ as simplest realization of Dark Energy, the
universe is currently composed of [6]8,

ΩM = 0.265± 0.030,

Ωb = 0.0442± 0.001,

ΩK = −0.0053± 0.006,

ΩΛ = 0.707± 0.041, (2.24)

where ΩM denotes the total matter density which includes the baryon density Ωb. It should
be noted that this minimal ΛCDM model appears to fit all currently available cosmological
data from various independent sources with remarkably small discrepancies. Note also that
the curvature of space is very close to 0 and thus the universe appears to be flat and the
contribution of radiation to the current total energy density is negligible, ΩR ' 0. Therefore,
according to Eq. (2.22) and Eq. (2.24) the remaining energy densities approximately sum up

8These values result from combining WMAP3 and SDSS data.
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to one.

According to Eq. (2.24), we see that the Universe today is dominated by Dark Energy which
implies H(z) ∼ const. for an equation of state close to −1 as suggested by recent observa-
tions [6]. However, taking a closer look at Eq. (2.23), we observe that due to the different
scaling laws of the various energy components with redshift this has not always been the case.
For redshifts z & 0.5 [103], however smaller than z ' 4 × 103, the universe was in a matter-
dominated phase and thus H(0.5 . z . 4 × 103) ∝ (1 + z)3/2. Finally, for z & 4 × 103, the
universe was radiation-dominated and accordingly H(z & 4× 103) ∝ (1 + z)2.

After having defined the Hubble expansion rate, for later reference it is also very important
to mention its inverse, the Hubble radius, H−1(z). It defines a length scale which constitutes
the maximal distance that microphysics can act coherently over a Hubble expansion time. In
particular, it is the maximal distance on which any causal process could create fluctuations.

2.5 A Brief Thermal History of the Universe

In the last sections the tools were set up to analyze the kinematics and dynamics of the
idealized homogeneous and isotropic universe. In addition we have made contact with the
situation in our real, current Universe. This section will set the stage for an appropriate
description of the cosmic neutrino background CνB, the analog of the CMB of photons, which
is of essential relevance in the main part of this work. For this purpose, we have to turn back
in time and briefly discuss the physics of the very early Universe. Since it was characterized
by very high temperatures and densities, many particle species were kept in (approximate)
thermal equilibrium by rapid interactions. Thus we are led to extend the simple treatment
of matter and radiation as non-interacting fluids to a thermodynamical description in the
expanding universe.

In order to be in equilibrium with the surrounding thermal plasma in the very early universe,
the interaction rate Γ of a particle had to be faster than the expansion rate H. By this means,
the products of reactions involving this particle had the opportunity to recombine in the
reverse reaction. Conversely, a particle would fall out of equilibrium (freeze out or decouple)
as soon as

Γ > H, where typically

Γ = 〈σv〉n, (2.25)

with σ denoting the cross-section, v the particle velocity and n the number density. Accord-
ingly, as long as the universe was inhabited by ultra-relativistic particles of extremely high
densities, most of them (apart from very weakly coupled species) were in thermal equilibrium
with the thermal bath of temperature T . However, its temperature was continously cooled by
the expansion of the universe, T ∝ a−1, and the number density of the particles was diluted,
n ∝ a−3. As a consequence, today no particles are in thermal equilibrium anymore with the
background plasma (represented by the CMB).

Let us in the following briefly discuss how the appropriate thermodynamical description of the
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various particles occupying the universe depends on whether they are in thermal equilibrium
or decoupled, bosons or fermions or relativistic or non-relativistic. We will start by considering
particles in equilibrium.

In thermal equilibrium the density of a weakly-interacting gas of particles in a given momentum
bin can be characterized by a phase-space distribution function f(P ) with P denoting the
momentum. The number density n, energy density ρ and pressure p in terms of f(P ) read,

n =
g

(2π)3

∫
d3Pf(P ),

ρ =
g

(2π)3

∫
d3PE(P )f(P ),

p =
g

(2π)3

∫
d3P

P 2

3E(P )
f(P ), (2.26)

(2.27)

where g is the number of spin states. For fermions and bosons in thermal equilibrium at
temperature T the distribution function f(P ) is of Fermi-Dirac (+) or Bose-Einstein (−)
form, respectively,

f(P ) =
1

e(E(P )−µ)/T ± 1
, (2.28)

with E(P ) =
√

P 2 + m2 denoting the particle energy and µ the chemical potential which
arises in the presence of an asymmetry between the particle and its anti-particle.

If a particle species according to Eq. (2.25) is no longer maintained in thermal equilibrium
by its interactions, the subsequent evolution of its distribution function can be approximated
in the limit that the particle is either highly relativistic (T � m) or highly non-relativistic
(T � m) at decoupling. In the ultra-relativistic case it is,

fRel(P ) =
1

eP/TRel ± 1
, (2.29)

where the plus sign applies to fermions and the minus sign to bosons and TRel can be regarded
as an effective temperature of the distribution function. It depends on the temperature Td at
the decoupling time td,

TRel(a) = Td

(ad

a

)
, (2.30)

where ad = a(td). Note that P, TRel ∝ a−1 and thus P/TRel is a non-redshifting quantity.
Therefore, as long as the particle stays ultra-relativistic after decoupling, the form of f(P ) is
preserved even though the particle is not in equilibrium anymore.

In case the particle decoupled while being highly non-relativistic, its distribution function
reads,

fNR(P ) = e
−m−µ

Td e−
P2

2mTNR , (2.31)
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Relativistic Relativistic Non-relativistic
Bosons Fermions (Either)

n ζ(3)
π2 gT 3

(
3
4

) ζ(3)
π2 gT 3 g

(
mT
2π

)3/2
e−(m−µ)/T

ρ π2

30 gT 4
(

7
8

)
π2

30 gT 4 mn

p 1
3ρ 1

3ρ nT � ρ

Table 2.1: Number density n, energy density ρ, and pressure p, for species in thermal equilibrium.

while the effective temperature TNR scales as the kinetic energy ∝ a−2 of the particle,

TNR(a) = Td

(ad

a

)2

. (2.32)

In table 2.1 the resulting time evolution of n, ρ and p is summarized in the relativistic and
non-relativistic limit, respectively, in which ζ is the Riemann zeta function, and ζ(3) ≈ 1.202.
Note that in case a particle has frozen out while being relativistic, but subsequently turns
non-relativistic, its distribution function is distorted away from a thermal spectrum.

2.5.1 The Cosmic Neutrino Background

Having now at hand the appropriate thermodynamics to describe particles in the early uni-
verse, let us in the following briefly turn to the part of its thermal history relevant to under-
stand the origin of the cosmic neutrino background (CνB) and its characteristic temperature
Tν in comparison to the CMB temperature Tγ.

• T > 1 MeV, t > 1 sec : Neutrinos with interaction rate Γν ∝ G2
F T 5, where GF denotes

the Fermi constant, were kept in thermal equilibrium by weak interaction processes of
the sort

ν̄ν → e+e−, νe → νe, etc. with

Γν

H
' G2

F T 5

T 2/MPl

'
(

T

1MeV

)3

> 1

• T ' 1 MeV, t ' 1 sec : The number density of the weakly-coupled neutrinos had
been diluted sufficiently by the expansion of the universe to allow for Γν to drop below
H. Thus, the ultra-relativistic neutrinos and anti-neutrinos froze out, leaving electrons,
positrons and photons (and a few nucleons) in thermal equilibrium. Subsequently, as-
suming the absence of neutrino interactions, the neutrinos began a free expansion, dis-
tributed according to Eq. (2.29) with effective temperature Tν as in Eq. (2.30) cooled by
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the expansion9,

fν(P ) =
1

ePν/Tν + 1
. (2.33)

Note that we have neglected the contribution of a relic neutrino asymmetry µν to fν(P ) in
Eq. (2.33), which is justified, since current bounds on the common value of the degeneracy
parameter ξν = µν/Tν are as small as −0.05 < ξν < 0.07 at 2σ [101].

Thus, as a generic prediction of the hot Big Bang model, the cosmic neutrino back-
ground (CνB) (or equivalently the relic neutrino background) is assumed to permeate
our universe ever since neutrino decoupling.

• T ' 511 keV, t ' 1 sec : Shortly after neutrinos had decoupled, T dropped below
the electron mass me. Thus, electron-positron pairs annihilated into photons, while
the reverse reaction of e±-pair production was energetically disfavored. The e±-entropy
release was transferred to the thermal plasma, but not to the decoupled neutrinos (in
the limit of instantaneous freeze-out10). Consequently, only the temperature Tγ = T of
photons (still being in equilibrium) was raised by a factor (11/4)1/3,(

Tγ

Tν

)
T<me

=

(
11

4

)1/3

' 1.401, (2.34)

which according to precise measurements of the CMB temperature by the FIRAS instru-
ment on the COBE satellite [105] implies today,

Tν0 ≡ Tν(a = 1) =

(
11

4

)1/3

Tγ(a = 1) = 1.697× 10−4 eV. (2.35)

Since after e± decoupling the remaining protons, neutrons and few electrons were no
longer moving relativistically, subsequently, the energy density of the universe was dom-
inated by photons with a contribution from neutrinos.

Since the content of this section is of central relevance for this thesis, let us summarize the most
important facts. Since (anti-)neutrinos were ultra-relativistic at the time of their freeze-out,
their distribution still assumes the relativistic Fermi-Dirac form as stated in Eq. (2.33) [101] on
large cosmological scales11. Unaffected by the process of decoupling, Big Bang theory predicts
the CνB to have expanded freely ever since on these scales, only subject to the expansion
which cools its characteristic temperature Tν ∝ a−1. As neutrinos did not share the entropy
release of e± in opposition to photons, Tν is slightly smaller than the CMB temperature (cf.
the next section for a brief discussion of the origin of the CMB).

9Strictly speaking, the neutrino distribution is not an equilibrium one, since more precisely the Fermi factor in
Eq. (2.33) reads [exp(

p
(P/Tν)2 + (mν(Tνd)/Tνd)2) + 1]−1 [104] with Td the temperature at decoupling. However,

since Tνd ∼ 1 MeV and accordingly mν(Td)
Td

< 10−6 for mν(Td) < 1 eV, the bulk of the neutrino distribution with
P
Tν

> mν(Td)
Td

is not affected by the strongly suppressed mass correction and can thus well be characterized by an
effective equilibrium temperature Tν .

10See Ref. [101] for a recent review on this subject.
11Note that on small cosmological scales the relic neutrino spectrum is distorted as a result of the relic neutrino

clustering into the potential wells formed by cold dark matter [106,107].
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2.5.2 The Cosmic Microwave Background

As long as photons were sufficiently energetic to ionize hydrogen atoms, the universe was filled
with a charged plasma – photons where tightly coupled to matter through Thomson scattering.
However, roughly 3 × 105 years after the Big Bang, the photons where cooled sufficiently by
cosmic expansion to allow for protons and electrons to combine and to form neutral atoms such
that the universe was not opaque to photons anymore. Afterwards, the photons could travel
essentially freely to us, however, being subject to cosmic expansion. As we have learnt in the
last section, as a result, the form of their equilibrium Bose-Einstein distribution is retained,
but its effective temperature is cooled. Accordingly, today these relic photons permeate the
universe as Cosmic Microwave Background (CMB). It constitutes the exact analog of the CνB
predicted by Big Bang theory, however, with a slightly higher temperature and thus slightly
higher abundance today.

The minute anisotropies in the CMB spectrum allow to extract cosmological parameters with
high precision [6].

27



Cosmology and Neutrino Physics – Basics

2.6 Neutrinos

The historic discovery of neutrino flavor oscillations provided one of the most important sig-
natures for new physics beyond the Standard Model (SM). Namely, it implied that neutrinos
exhibit distinct, non-zero masses and that the propagating mass eigenstates in general are
different from the flavor eigenstates produced and detected in experiments. While by now
solar and atmospheric oscillation experiments have provided us with a fairly good knowledge
of both neutrino mass squared differences and mixing angles (for a recent review see [36]),
they are insensitive to one crucial, still outstanding input – the absolute neutrino mass scale.
So far, only upper limits exist which are derived from the non-observation of neutrinoless
beta-decay 0νββ and endpoint spectrum studies of (e.g. tritium) beta decay as well as from
cosmological measurements sensitive to neutrino masses.

This chapter provides the theoretical basics of neutrino physics. Furthermore, up-to-date
neutrino data – to be employed in the phenomenological parts of Secs. 3 – 4 – is presented,
including a summary of recent upper bounds on the absolute neutrino mass scale.

2.6.1 Neutrino Masses – The See-Saw Mechanism

In the framework of the SM of particle physics, right-handed neutrinos are not required by
electroweak theory and thus the left-handed chiral neutrinos, ν (with νT = (νT

eL, νT
µL, νT

τL)),
are the only fermions without right-handed partners in the SM. Accordingly, since Dirac mass
terms (generated by the Higgs-mechanism, see e.g. [108]) necessitate fields of opposite chirality,
neutrinos are massless in the SM as opposed to quarks and charged leptons.

However, experiments not only suggest that neutrinos are massive, but also that their masses
are in the (sub-) eV range and thus orders of magnitude smaller than any other SM masses.

Probably the most elegant and natural explanation beyond the SM description is provided by
the so-called see-saw mechanism [32–35]. In the following, it will be introduced in some detail
because it plays a central role in Sec. 3 (cf. also Sec. 4)12.

In the framework of the see-saw mechanism, the SM Lagrangian is augmented to include three
fermions which play the role of ‘right-handed neutrinos’ N (with NT = (νT

eR, νT
µR, νT

τR)), and
are singlets under the SM gauge group. Consequently, for them, unlike for their left-handed
partners, a lepton-number violating Majorana mass term is not protected by symmetries and
is thus permitted. In addition, they can have a Yukawa interaction λ allowing for a Dirac
mass term, possibly generated by the standard Higgs-mechanism [36],

L = LSM + N̄ii6∂Ni + (λijNiLjH − 1

2
MijNiNj + h.c.) (2.36)

where i, j = {1− 3} denote the family-number indices, Li are the SU(2) lepton doublets, and
H is the ordinary Higgs doublet and the Majorana mass matrix M and the Yukawa matrix λ

12For alternative approaches which, however, mostly lack a natural explanation for the relative smallness of neutrino
masses and thus appear less attractive, see e.g. Ref. [36] for a recent review.
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are 3× 3 flavor matrices13.

The new scale introduced by the elements of M in Eq. (2.36) is assumed to be related to
some ‘fundamental’ physics at ultra-high energies beyond the low-energy description of the
SM, e.g. to some symmetry breaking in the framework of grand unified theories. It thus seems
natural to expect the eigenvalues of M to be much larger than those of the Dirac mass matrix
MD ∝ λ, since it is not protected by the SM gauge symmetries. Under this assumption, after
integrating out the heavy right-handed neutrinos, one arrives at the effective Lagrangian [109],

L = LSM +
1

2

∑
k

(λT
ikM

−1
k λkj)(LiH)(LjH) + h.c. (2.37)

which only contains observable low-energy fields. Furthermore, it exhibits a (non-renormalizable)
dimension-five operator suppressed by a small matrix factor which violates lepton number by
two units ∆L = 2.14 At spontaneous electroweak symmetry breaking [108], the Higgs field
acquires a vacuum expectation value, 〈H〉 = v ∼ 246 GeV, which generates the following 3×3
Majorana mass matrix for light neutrinos,

(mν)ij ' −(MT
DM−1MD)ij with MDij = vλij. (2.38)

From naturalness arguments it should be expected that the Dirac mass for each generation of
neutrinos is of the same order of magnitude as the mass of the corresponding quark or charged
fermion. Accordingly, the see-saw mechanism naturally ascribes the relative smallness of
neutrino masses to the suppression of the Dirac mass matrix MD by the small matrix factor
MT

D(M)−1. In addition, the neutrinos νi with definite masses mνi (cf. the next section)
are predicted to be Majorana particles. This implies that they possess only half of the four
independent components of Dirac particles and are their own charge conjugates15,

νi = Cν̄T
i ≡ νc

i , (2.39)

with C denoting the charge conjugation matrix. Importantly, the predicted Majorana nature
of neutrino masses is a clear signature for the see-saw mechanism and implies the existence of a
new fundamental scale in nature Λ ' v2

mν
' 1014−1015 GeV for mν ∼ O(10−2)−O(10−1) eV. It

is mainly searched for by neutrinoless double β decay experiments to be discussed in Sec. 2.6.4.

2.6.2 Neutrino Mixing and Flavor Oscillations

Since the neutrino mass matrix is not diagonal when expressed in terms of the flavor eigen-
states, one is led to the concept of neutrino flavor oscillations. In other words, the flavor
eigenstates να participating in weak interactions are superpositions of the propagating neu-

13Without loss of generality we adopt a basis in which the matrix Mij is diagonal [109].
14Such an effective non-renormalizable operator can be regarded as low-energy manifestation of a renormalizable new

theory beyond the SM.
15It should be noted that a Majorana mass is unique for neutrinos, since for quarks and charged leptons it is forbidden

by electric charge conservation.
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trino states νi of definite mass mi,

να =
3∑

i=1

Uαiνi, (2.40)

where α = e, µ, τ and the 3×3 neutrino mixing matrix U [110] is determined by the condition

UT mνU = diag(m1, m2, m3). (2.41)

The most common parameterization of the mixing matrix in components, Uαi, is given by


ν1 ν2 ν3

νe c12c13 c13s12 s13e
−iϕ13

νµ −c23s12 − c12s13s23e
iϕ13 c12c23 − s12s13s23e

iϕ13 c13s23

ντ s23s12 − c12c23s13 −c12s23e
iϕ13 − c23s12s13e

iϕ13 c13c23



× diag(1, eiλ21 , eiλ31)

(2.42)

with cij ≡ cos ϑij, sij ≡ sin ϑij, where ϑ12, ϑ23,ϑ13 are the three mixing angles, ϕ13 is the Dirac
phase and λ21 and λ13 are the Majorana phases. The Dirac phase is the analog of the phase
in the quark mixing matrix. In case neutrinos are Dirac particles, the Majorana phases can
be eliminated by a rephrasing of the massive neutrino fields. All of the three complex phases
in the mixing matrix generate violations of the CP symmetry.

Let us in the following consider a neutrino produced and detected with definite flavor in weak
charged-current interactions after propagating a time T and a distance L in vacuum. The
normalized neutrino state at the production point,

|να〉 =
3∑

i=1

U∗
αi|νi〉, (2.43)

is related to the state |να(L, T )〉 at the detection point by the Schroedinger equation. Accord-
ingly, one arrives at,

|να(L, T )〉 =
∑

β=e,µ,τ

[
3∑

i=1

U∗
αie

−iEiT+ipiLUβi

]
|νβ〉, (2.44)

where Ei and pi, respectively, are the energy and momentum of the massive neutrino νi.
Consequently, at detection the state describes a superposition of different neutrino flavors
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giving rise to the possibility of flavor change Pνα→νβ,

Pνα→νβ(L) = |〈νβ|να(L)|2 =

∣∣∣∣∣
3∑

i=1

U∗
αie

−i
∆m2

ijL

2E Uβi

∣∣∣∣∣
=

3∑
i=1

|Uαi|2|Uβi|2 + 2Re
∑
i>j

U∗
αiUβiUαjU

∗
βje

−i
∆m2

ijL

2E ,

(2.45)

where ∆m2
ij = m2

i −m2
j and the dependence on T has been expressed in terms of the neutrino

masses and energy. Accordingly, the neutrino mass squared differences as well as the mixing
matrix are the fundamental inputs which determine neutrino oscillations. Neutrino oscillation
experiments are characterized by a different neutrino energy E and propagation distance L.

It should be noted that the vacuum transition probability Pνα→νβ in Eq. (2.45) gets modified
by neutrino interactions resulting from the propagation through matter. While neutral current
interactions are common to all neutrino flavors, only electron neutrinos can additionally have
charged current interactions with electrons composing the matter besides nucleons (or quarks).
As a result, with respect to the other flavors, the time development of electron neutrinos is
altered by a phase which is determined by the electron density of the medium of propagation.
Under favorable conditions, a resonant amplification of oscillations may occur known as the
Mikheyev-Smirnov-Wolfenstein (MSW) effect (see e.g. Ref. [36] for a recent review).

Neutrino Mixing Parameters

In this section we state the results of a global analysis of recent experimental data on the neu-
trino mixing parameters gained from neutrino oscillation experiments [36,111] to be employed
in Sec. 3.2.3. The central values are

• sin2 ϑ12 = 0.314(1+0.18
−0.15)

• sin2 ϑ23 = 0.44(1+0.41
−0.22)

• sin2 ϑ13 = 0.9+2.3
−0.9 × 10−2.

Note that the leptonic mixing matrix U has a different texture than the quark mixing matrix.
While the latter only exhibits small mixing angles, two of the mixing angles of the leptonic
mixing matrix are large.

2.6.3 Neutrino Mass Splittings

One of the key achievements of neutrino oscillation experiments is the provided knowledge
on the neutrino mass squared differences ∆m2

ij = m2
i − m2

j . Solar neutrino and reactor-
antineutrino experiments as well as atmospheric and long-baseline accelerator neutrino exper-
iments nicely allow to interpret the oscillation data in terms of three-neutrino mixing with,
respectively (see Ref. [36] for a recent review),
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• ∆m2
SOL = ∆m2

21 = (8.0± 0.3)× 10−5 eV2 from νe disappearance

• ∆m2
ATM ' |∆m2

31| ' |∆m2
32| = (2.5± 0.2)× 10−3 eV2 from νµ disappearance.

So far both the sign of ∆m2
31 and the absolute neutrino mass scale are not known, thus

leaving undetermined which of the following three possible neutrino mass schemes are realized
in nature:

• Degenerate spectrum:16 m1 ∼ m2 ∼ m3 � |mi −mj|

• Normal hierarchy: m3 � m2,1 (∆m2
31 > 0) in analogy to quarks and charged leptons

• Inverted hierarchy: m1 ∼ m2 � m3 (∆m2
31 < 0)

LSND Anomaly

The LSND experiment [112,113] claims an unconfirmed 3.8σ ν̄µ → ν̄e anomaly at the ∆m2 ∼
1eV2 scale which cannot be accommodated in an extension of the SM allowing for three neutri-
nos only (without adding extra sterile neutrino states). While MINIBOONE [114] measures a
presently unexplained discrepancy with data lying above background at low energy, it excludes
two neutrino appearance-only oscillations as an explanation for the LSND anomaly at 98%
confidence level. In case the LSND and MINIBOONE anomalies are caused by new physics,
some exotic explanation is needed. In the following, we will thus ignore their data.

2.6.4 Bounds on the Absolute Neutrino Mass Scale

Since neutrino oscillation experiments are only sensitive to neutrino mass squared differences
but not to the absolute neutrino mass scale, they can only provide lower limits,

√
∆m2

ATM '
0.05 eV and

√
∆m2

SOL ' 0.01, for two of the neutrino masses. In the following we will
summarize bounds on the absolute neutrino mass scale gained from beta decay and neutrinoless
double β decay (0ν2β) experiments as well as from cosmological measurements.

• β decay:

The neutrino mass mνe distorts the energy spectrum of electrons emitted in the β decay
of a nucleus (the most sensitive choice being tritium). The analysis of the electron
spectrum near the end-point thus allows a robust kinematical measurement of

m2
νe =

∑
i

|Uei|2m2
i . (2.46)

The most stringent upper bound on the electron neutrino mass derived from tritium beta
decay is mνe < 2.0 eV [115–117] at 95% confidence level. Assuming CPT-invariance,

16This possibility is excluded by the most stringent cosmological bounds on
P
i

mνi which, however, rely on possible

systematics and model assumptions, cf. the discussion in Sec. 2.6.4.
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combined with the observed oscillation frequencies this mass bound applies to all active
neutrinos.The approved experiment KATRIN will improve the sensitivity to mνe by one
order of magnitude down to about 0.2 eV [118–120].

• Neutrinoless Double β decay:

Less direct information on the absolute neutrino mass scale can be inferred from neutri-
noless double β decay which is, however, only allowed if neutrinos are Majorana particles.
Thus, the importance of its discovery would mainly lie in the establishment of lepton
number violation as well as the Majorana nature of neutrino masses.

The measured decay amplitude not only depends on |mee|2 with,

mee =
∑

i

U2
eimi, (2.47)

but also on the 0ν2β nuclear matrix elements, which are affected by sizeable theoretical
uncertainties.

Present limits on the effective electron neutrino mass are |mee| < (0.105 − 0.840) eV
[Heidelberg-Moscow(76Ge)] [121–123], |mee| < (0.114 − 0.912) eV [IGEX(76Ge)] [121,
122,124] and |mee| < (0.168− 1.134) eV [Cuoricino(130Te)] [121,125,126].

The controversial claim of part of the Heidelberg Moscow collaboration of a 4.2σ ev-
idence for 0ν2β (see [127] and Refs. therein) is still to be verified by the GERDA-
experiment [128] currently under construction. If confirmed, the signal would be inter-
preted in terms of quasi-degenerate neutrino masses of 0.1− 0.9 eV (

∑
mν > 1.2 eV at

2σ).

• Cosmology:

Various cosmological and astrophysical measurements are also sensitive to the absolute
neutrino mass scale. More precisely, to first order, they are influenced by the sum of
neutrino masses

∑
mν , which controls the present day energy fraction in neutrinos Ων .

Let us quote one of the current most stringent bounds,∑
i

mν < 0.17 eV at 95% confidence level. (2.48)

It was derived by combining various cosmological data sets [74] and already excludes
a degenerate neutrino mass spectrum (however, the latter is still allowed by more con-
servative bounds which constrain the sum of neutrino masses to be smaller than about
1 eV depending on the data sets taken into account, see e.g. [6, 74, 129–136]). However,
in general, one should be aware of possible systematic errors inherent in cosmological
measurements and of the strong dependence on the underlying theoretical assumptions
on the cosmological model. For the purposes of this work, in particular for the latter
reason the bound on

∑
mν in Eq. (2.48) has to be taken with care. It can be consid-

erably relaxed, when non-standard neutrino interactions are taken into account, which
modify both the neutrino properties and the cosmological model (see e.g. our Ref. [137]
or Refs. [46,101,138]).

33





Part I





3 Probing Neutrino Dark Energy with
Extremely-High Energy Cosmic Neutrinos

As argued in the introduction, relic neutrinos of the cosmic neutrinos background (CνB) are
promoted to a natural Dark Energy candidate, if they interact through a new non-standard
force mediated by a light scalar field of the dark sector [21, 22]. Intriguingly, as a further
consequence of this new interaction, time dependent, dynamical neutrino masses are predicted
to arise, providing a clear and testable signature for the Mass Varying Neutrino (MaVaN)
scenario, also known as Neutrino Dark Energy [21, 22]. How could the variation of relic
neutrino masses and thus the interpretation of the CνB as source of Neutrino Dark Energy
be tested?

The weakness of neutrino interactions so far has spoilt all attempts to directly probe the 1.95
K cosmic neutrino background (CνB), the analog of the 2.73 K cosmic microwave background
(CMB) of photons, in a laboratory setting [107,139–142]. At present, the only evidence for its
existence comes from other cosmological measurements, such as the light element abundance,
large scale structure (LSS) and the CMB anisotropies, being sensitive to the presence of the
CνB (see e.g. Ref. [143] for a review). However, according to Big Bang theory, in turn, the
feebleness of the weak interaction has caused an early decoupling of cosmic neutrinos and thus
guarantees a substantial relic abundance as we have learned in Sec. 2.5. An impressive number
of 1087 neutrinos per flavor are predicted to permeate the visible universe, corresponding to
an average number density nν0,i

= nν̄0,i
= 56 cm−3 per neutrino species i = 1, 2, 3 at present.

This turns out to open up the possibility to get a glimpse of the CνB by studying an astro-
physical high energy scattering process for which the neutrinos of the CνB serve as targets.
Accordingly, as we will see in the following, its characteristic fingerprints are sensitive to their
masses and if detected could trace a variation of neutrino masses and thus reveal the nature of
Dark Energy. In addition, the general importance of a (more) direct evidence for the existence
of the CνB lies in a confirmation of standard cosmology back to the first second after the Big
Bang.

Let us in the following set the stage for our later analysis which largely follows our Refs. [69,70].

While the current generation of man-made accelerators reaches center of mass energies of O(10)
TeV [144], these energies are easily surpassed by the cosmic laboratory from which the existence
of extremely high-energy cosmic neutrinos (EHECν’s) is predicted (see e.g. Refs. [145,146] for a
review). Such EHECν’s can annihilate with relic anti-neutrinos (and vice versa) into Z bosons,
if their energies coincide with the respective resonance energies Eres

i of the corresponding
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process νν̄ → Z [61–68]. These energies,

Eres
i =

M2
Z

2mνi

= 4.2× 1012

(
eV

mνi

)
GeV, (3.1)

in the rest system of the relic neutrinos, are entirely determined by the Z boson mass MZ as
well as the respective neutrino masses mνi

. An exceptional loss of transparency of the CνB
for cosmic neutrinos results from the fact that the corresponding annihilation cross-section on
resonance is enhanced by several orders of magnitude with respect to non-resonant scattering.
As a consequence, the diffuse EHECν flux arriving at earth is expected to exhibit sizeable
absorption dips whose locations in the spectrum are determined by the respective resonance
energies of the annihilation processes. Provided that the dips can be resolved on earth, they
could produce the most direct evidence for the existence of the CνB so far and possibly reveal
the nature of Dark Energy.

The goal of the following Secs. 3.2.2 – 3.2.4 is to carefully work out the characteristic differences
in the EHECν absorption features which result from treating the neutrino masses as time
varying dynamical quantities in comparison to constants.

This section is organized as follows. In Sec. 3.1 we introduce the MaVaN scenario focusing
on a viable, Supersymmetric version which we promote into a generic form and determine
the resulting neutrino mass variation with time. After discussing the current status and
next decade prospects for EHECν’s physics, in Sec. 3.2 we provide the tools for interpreting
absorption dips in the diffuse neutrino fluxes to be observed at earth extending the complete
analysis to also incorporate varying neutrino masses. Furthermore, we take account of the
Fermi motion arising from the thermal distribution of the relic-neutrino gas. In Sec. 3.2.2
we make contact to treatments in the literature [61, 62, 64, 66–68], by discussing common
approximations [64, 66, 67] which neglect part or all of the dependence of the damping on
the relic neutrino momenta. In order to gain more physical insight, the latter approximation
is employed on the level of the survival probabilities of EHECν’s which encode the physical
information on all possible annihilation processes in Sec. 3.2.3. This allows to disentangle
the characteristic features of the absorption dips caused by the neutrino mass variation. In
Sec. 3.2.4, both for astrophysical sources and for a topological defect scenario, we calculate
the expected observable EHECν flux arriving at earth which results from folding the survival
probabilities with the corresponding EHECν source emissivity distribution and interpret our
results, which are summarized in Sec. 3.3.

3.1 Neutrino Dark Energy – The Mass Varying Neutrino Scenario

In Ref. [21] a new non-Standard Model interaction between neutrinos and a light ‘dark’ scalar
field was introduced. In essence, it serves as possible origin of the apparent accelerated expan-
sion of the universe and promotes the CνB to a natural Dark Energy candidate. Furthermore,
as a very interesting and intriguing secondary effect, it causes a time evolution of neutrino
masses.

A follow-up publication [22] takes care of a possible stability problem of the model [57,59,60,71]
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(cf. Sec. 4) and furnishes a viable model of the whole scenario.

Largely following Refs. [21,22], in this section we discuss the details of the complex interplay
between the scalar field and the neutrinos which arises from a coupling between them. Thereby,
we will mainly focus on the determination of the resulting time variation of neutrino masses
to be implemented later on in our analysis on relic neutrino absorption in Sec. 3.2. For the
latter it will turn out that the results are largely independent of the details of the model, since
only a few generic features of the setting enter the investigation which are determined from
the effective Lagrangian in Eq. (3.6) to be discussed later on.

The new scalar-neutrino interaction has a twofold effect. On the one hand, as a direct conse-
quence, the neutrino masses mνi

are generated from the vacuum expectation value (VEV) φ of
the scalar field and become functions of φ, mνi

(φ), i = 1, 2, 3. On the other hand, the depen-
dence of mνi

on φ turns the neutrino energy densities ρνi
into implicit functions of φ, since the

energy densities ρνi
(mνi

(φ)) depend on the masses mνi
(φ), i = 1, 2, 3. In this way, the energy

density contained in a homogeneous background of neutrinos can stabilize the scalar field by
contributing to its effective potential V (φ). In other words, the dependence of the free energy
on the value of φ gets a contribution from the rest energy in neutrinos in addition to the
self-interaction scalar potential Vφ(φ). The total energy density of the system parameterized
by the effective scalar field potential V (φ) takes the following form1,

V (φ) =
3∑

i=1

ρνi
(mνi

(φ), z) + Vφ(φ). (3.2)

This is to be contrasted with the situation in empty space: if Vφ(φ) is a ‘run-away potential’,
the scalar field does not possess a stable vacuum state but unimpededly rolls to its state of
lowest energy given by the minimum of its pure potential Vφ(φ).

Taking now the expansion of the universe into account, the dilution of the neutrino energy
densities ρνi

(z) introduces a time dependence (here parameterized in terms of the cosmic
redshift z, introduced in Sec. 2.3) into the effective scalar field potential V .

Thus, importantly, due to the stabilizing effect on the scalar field achieved by the coupling to
the neutrinos, to accomplish late-time acceleration, the scalar field mass does not have to be as
small as the tiny Hubble scale sized mass of a quintessence field ∼ H ∼ 10−33 eV [10–13]. Note
that a larger scalar field mass m2

φ � H2 is more plausibly stable against radiative corrections
than the Hubble scale and as it turns out later on, can be of comparable size as the energy
scale associated with the Dark Energy density [21].

Accordingly, taking the curvature scale of the potential to be much larger than the expansion
rate, ∂2V (φ)/∂φ2 = m2

φ � H2, the adiabatic solution to the equations of motion of the scalar

field applies. In this case for |φ| < MPl ' 3 × 1018 GeV the effects of the kinetic energy
terms can be safely ignored [21] (cf. Sec. 4.1, where the scalar field evolution is discussed
in some more detail). Correspondingly, by choosing the two terms in Eq. (3.2) to compete
with a minimum at an intermediate value of φ with non-zero value for Vφ, the equilibrium

1As discussed in the following, the contribution of the kinetic energy of the scalar field to the total energy density is
negligible at late times.
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value φ instantaneously tracks this minimum2. As a crucial consequence, the scalar field is
slowly varying. More precisely, it cannot evolve faster than the neutrino density gets diluted.
Accordingly, the characteristic time scale governing its dynamics is determined by the cosmic
expansion which is naturally slow.

Finally, since the neutrino masses mνi
(φ) are directly affected by changes in the φ condensate,

as an intriguing consequence, they are promoted to dynamical, time dependent quantities
mνi

(z).

Note that Eq. (3.2) takes the neutrino energy density ρνi
to be spatially constant. To justify

this assumption, the φ condensate is not allowed to vary significantly on distances of the order
of the inter-neutrino spacing r of the relic neutrinos, with currently 1/r ' 3361/3cm−1, where
we have assumed a neutrino and anti-neutrino number density of nν0,i

= nν̄0,i
' 56 cm−3 per

species i = 1, 2, 3. Consequently, remembering that the range of the force mediated by a scalar
field is equal to its inverse mass, one arrives at an upper bound on the φ mass mφ given by
mφ < 1/r ∼ O(10−4 eV) at the present time. Accordingly, this mean-field approach allows for
a scalar field mass of about the same order of magnitude as the scale underlying the present
Dark Energy density as mentioned above.

Let us now determine the time evolution of the physical neutrino masses mνi
(z). Since the

neutrino masses arise from the instantaneous equilibrium value φ, we have to analyze the
minimum of the total energy density V (φ). In the left panel of fig. 3.1, schematically, the
time evolution of the self-interaction potential Vφ, the neutrino energy density ρ as well as
the effective potential V and its minimum are plotted as a function of the neutrino mass mν .

Assuming
∂mνi (φ)

∂φ
to be non-vanishing, one arrives at,

∂V (φ)

∂φ
=

3∑
i=1

∂ρνi
(mνi

, z)

∂mνi

∣∣∣∣∣
mνi=mνi (φ)

∂mνi
(φ)

∂φ
+

∂Vφ(φ)

∂φ
= 0, (3.3)

where according to our discussion in Sec. 2.5.1,

ρνi
(mνi

, z) =
T 4

ν0

π2
(1 + z)4

∞∫
0

dy y2
√

y2 + x2
i

ey + 1
, where y =

P

Tν

(3.4)

and xi =
mνi

Tν0 (1 + z)
,

with P being the modulus of the neutrino momentum and Tν denoting the neutrino tempera-
ture which takes the value Tν0 = 1.697× 10−4 eV today (as discussed in Sec. 2.5.1). Note that
the condition for the minimal energy density leads to a dependence of the neutrino masses on
the neutrino energy densities which evolve with z on cosmological time scales.

The smallness of the active neutrino masses mνi
can be explained by letting the neutrinos

only indirectly feel the scalar field mediated force through the see-saw mechanism [32–35]
which we discussed in Sec. 2.6.1. Therefore, following Refs. [21,22], we introduce three ‘right-

2Since therefore in the presence of the relic neutrinos the scalar field possesses a stable (time dependent) vacuum
state, in the literature both the scalar field and its VEV are referred to as φ.
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handed’ or ‘sterile’ neutrino Ni fields with no Standard Model charges, whose masses MNi
are

constructed to vary with φ due to a direct interaction. In the see-saw mechanism the active
neutrino masses mνi

are functions of the sterile neutrino masses MNi
(φ) as we discussed in

Sec 2.6.1. Consequently, the φ dependence of the MNi
(φ) is transmitted to the active neutrino

masses mνi
(φ) and causes them to change accordingly. Let us consider the interaction [21,22]

(cf. Eq. (2.37) in Sec. 2.6.1):

L ⊃ mDij
Niνlj + κijNiNjφ + h.c. + Vφ(φ). (3.5)

where i, j = 1, 2, 3 are the family-number indices and νli correspond to the left-handed active
neutrino fields. Furthermore, κφ corresponds to the φ dependent mass matrix of the sterile
neutrinos and mD is the Dirac type matrix originating from electroweak symmetry breaking as
discussed in Sec. 2.6.1. Assuming the eigenvalues of κφ to be much larger than the eigenvalues
of mD one can integrate out the sterile neutrinos Ni, arriving at the following effective low
energy Lagrangian [21,22] (cf. Eq. (2.38) in Sec. 2.6.1),

L ⊃ Mij(φ) νliνlj + h.c. + Vφ(φ), where (3.6)

Mij(φ) =
(mT

Dκ−1mD)ij

φ
(3.7)

represents the mass matrix of the active neutrinos.

In order to solve Eq. (3.3) for mνi
(z) and to explore the MaVaN phenomenology, the funda-

mental scalar potential Vφ(φ) has to be specified in an appropriate way. Namely, the coupled
scalar neutrino fluid has to act as a form of Dark Energy which is stable against the growth
of inhomogeneities [57] and, as suggested by observations, must redshift with an equation of
state ω ∼ −1 today.

An appealing possibility arises in the framework of so-called hybrid models [147]. Those
models were introduced to explain accelerated expansion in the context of inflation [76] (see
also [77–79]). In essence, two scalar fields interact in such a way that one of them stabilizes
the other one in a metastable minimum. The energy density stored in the potential associated
with the false minimum can drive accelerated expansion.

It turns out, that a straightforward supersymmetrization [22] of the MaVaN model naturally
sets the stage to apply the idea of the acceleration mechanism to Dark Energy. For the
reader not familiar with Supersymmetry, let us in the following briefly summarize the very
basics relevant for this work. Supersymmetric theories [148] predict a fundamental symmetry
between fermions and bosons. For example, within these theories, this implies the existence
of scalar sneutrinos of spin 0 which are the superpartners of the spin 1/2 neutrinos. Since in
accelerator searches we have not observed any superpartners of the standard model fermions
yet, Supersymmetry has to be broken at a scale > 1 TeV.

Identifying φ with the former of the two scalar fields, the hybrid model provides a microscopic
origin for a quadratic self-interaction potential Vφ(φ) ∼ φ2. The role of the residual scalar
field coupled to φ is attributed to the scalar partner N of a sterile neutrino naturally present
in a Supersymmetric theory. The scalar field is stabilized by the presence of the fermionic
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neutrino background which drives its VEV to larger values (cf. Eq. (3.2)). Accordingly,
acceleration lasts so long as the VEV of the φ field is sufficiently high to keep the sterile
sneutrino N in a false metastable minimum. As long as the energy density stored in the φ
condensate is sufficiently small, the combined scalar potential V (N , φ) will appear as Dark
Energy redshifting with an equation of state ω ∼ −1 [22]. Consequently, the neutrino Dark
Energy density ΩX ∼ const. cosmologically behaves very much like a cosmological constant.

According to Ref. [22] naturalness arguments require N ≡ N1, assigning the lightest sterile
sneutrino N1 to be responsible for Dark Energy. Furthermore, one can conclude that N1 has
to be at least moderately relativistic today, mν0,1 . Tν0 . Accordingly, in this Supersymmetric
MaVaN model probable instabilities [57, 59, 60] of highly non-relativistic MaVaN theories do
not occur (cf. the discussion in Sec. 4).

In the past, the heavier two sterile sneutrinos N2,N3 of the theory were stabilized by the scalar
field φ just as the lightest N1. However, by today they are assumed to have already reached
their state of lowest energy having acquired vacuum expectation values.3

The relevant contribution [22] to the superpotential is given in terms of couplings of the
superfield containing the scalar field φ to two superfields with generation indices i and j, with
i, j = 1, 2, 3, which comprise the sterile neutrinos Ni,Nj and their respective scalar partners Ni

and Nj. The coupling constant matrix has elements κij. This superfield interaction provides
the necessary couplings mentioned above, namely of the scalar field to the sterile sneutrino
fields as well as the coupling of scalar field to the sterile neutrinos in terms of κij. In Ref. [22]
the one loop radiative corrections were estimated and taken to give a lower bound on the
natural size for the magnitudes of the soft susy breaking masses squared of the φ and the Ni.

Given the exploratory nature of this investigation and following largely Ref. [22] it is reasonable
to exploit the rough proportionality δm2

Ni
∼ −m2

Di
to get an estimate of the φ mass squared

m2
φ; here δm2

Ni
represent the one loop radiative corrections to the mass of a sterile sneutrino

Ni and mDi
label the respective eigenvalues of the Dirac type matrix mD. For simplicity, we

assume no off-diagonal elements for the coupling constant matrix κ and denote the diagonal
matrix elements by κi. Finally, one arrives at an estimate for the square of the scalar field
mass m2

φ [22],

m2
φ ∼

3∑
i=1

κ2
i m

2
Di

, (3.8)

such that the quadratic self-interaction potential can be expressed in terms of neutrino mass
parameters according to

Vφ(φ) ∼ m2
φφ

2 =
3∑

i=1

κ2
i m

2
Di

φ2. (3.9)

Now we are in a position to determine the respective mass-redshift relations mνi
(z) of the

active MaVaNs whose mass squared differences today have to be compatible with neutrino
oscillation experiments. Taking the matrix κ as well as the Dirac type mass matrix mD in

3We refer to the mechanism proposed in [22] to evade large N2,3 VEV contributions to the φ mass conflicting with
the upper mass bound set by the current inter-neutrino spacing O(10−4) eV.
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Eq. (3.7) to be diagonal, one arrives at the approximate see-saw formula for the physical
neutrino masses:

mνi
(φ) =

m2
Di

κiφ
, where i = 1, 2, 3. (3.10)

Accordingly, the instantaneous minimum of V in Eq. (3.3) is determined by

∂V (φ)

∂φ
=

3∑
i=1

∂ρνi
(mνi

, z)

∂mνi

∣∣∣∣∣
mνi=

m2
Di

κiφ

(−m2
Di

κiφ2

)
+ 2

3∑
i=1

κ2
i m

2
Di

φ = 0. (3.11)

Since this equation has to hold for all z, the scalar field VEV becomes a function of z. As a
direct consequence, it generates redshift dependent neutrino masses mνi

(z),

mνi
(z) =

m2
Di

κiφ(z)
with mνi

(0) = mνi0
=

m2
Di

κiφ(0)
, (3.12)

which implies

mνi
(z) = mν0,i

φ(0)

φ(z)
. (3.13)

Note that in general a MaVaN mass with subscript 0 has to be identified with the present day
neutrino mass. Consequently, the mν0,i

have to be consistent with the mass squared differences
measured in neutrino oscillation experiments which we discussed in Sec. 2.6.3.

Accordingly, inserting Eq. (3.13) and Eq. (3.9) into Eq. (3.3) yields,

3∑
i=1

mν0,i

∂ρνi
(mνi

, z)

∂mνi

∣∣∣∣∣
mνi=mν0,i

φ(0)
φ(z)

−
(

φ(z)

φ(0)

)3

2
3∑

i=1

m6
Di

m2
ν0,i

= 0. (3.14)

Evaluating Eq. (3.14) at z = 0,

2
3∑

i=1

m6
Di

m2
ν0,i

=
3∑

i=1

mν0,i

∂ρνi
(mν0, i)

∂mνi

∣∣∣∣∣
mνi=mν0,i

, (3.15)

allows to eliminate 2
3∑

i=1

m6
Di

m2
ν0,i

from Eq. (3.14) leading to

3∑
i=1

mν0,i

(∂ρνi
(mνi

, z)

∂mνi

∣∣∣∣∣
mνi=mν0,i

φ(0)
φ(z)

−
(

φ(z)

φ(0)

)3
∂ρνi

(mνi
, 0)

∂mνi

∣∣∣∣∣
mνi=mν0,i

)
= 0. (3.16)

Finally, the solution for
(

φ(z)
φ(0)

)3

, which can only be determined numerically, fixes the neutrino

mass evolution according to Eq. (3.13) in terms of the present day neutrino masses mν0,i
.

However, the mass behavior in the low as well as in the high redshift regime can be ap-

proximated analytically by using the respective limits for
∂ρνi

∂mνi
. As mentioned before, in the
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Supersymmetric MaVaN model [22] the lightest neutrino is at least moderately relativistic
today such that its mass is required to be small, mν0,1 . Tν0 = 1.697× 10−4 eV. Furthermore,
it can be deduced from the mass squared differences measured at neutrino oscillation experi-
ments (see [36] for a recent review) that the heavier two neutrinos are non-relativistic today
(mν0,i

� Tν0 for i = 2, 3).

Accordingly, in the low redshift regime it is a good approximation to neglect the contribution

of the lightest neutrino species to V and solely employ the non-relativistic limit of
∂ρνi

∂mνi
with

i = 2, 3 and xi =
mνi

Tν0 (1+z)
� 1,

∂ρνi
(mνi

, z)

∂mνi

≈
T 3

ν0

π2
(1 + z)3

∞∫
0

y2

ey + 1
dy. (3.17)

where Eq. (3.4) has been used. Accordingly, in the low redshift regime Eq. (3.16) is solved by

φlow(z) = φ(0) (1 + z) (3.18)

→ mνi,low
(z) = mν0,i

(1 + z)−1, i=1,2,3, (3.19)

where Eq. (3.13) was used.

Once in the past all neutrinos were relativistic. In this regime, xi � 1, such that according

to Eq. (3.4)
∂ρνi

∂mνi
can be approximated by,

∂ρνi
(mνi

, z)

∂mνi

≈
T 2

ν0

π2
(1 + z)2mνi

∞∫
0

y

ey + 1
dy. (3.20)

By taking the appropriate approximations Eq. (3.17) and Eq. (3.20) for the two terms in
Eq. (3.16), V is minimized for,

φhigh(z) ∝ (1 + z)1/2 (3.21)

→ mνi,high
(z) ∝ (1 + z)−1/2, i=1,2,3, (3.22)

where the factor of proportionality is a function of the present day neutrino masses and the
integrals in Eq. (3.17) and Eq. (3.20).

In our analysis on cosmic neutrino absorption later on, these approximations will help towards
a better understanding of the numerical calculations since the corresponding results agree very
well in the respective regimes.

As becomes apparent from the approximations in Eq. (3.19) and Eq. (3.22) the MaVaN masses
mνi

(z) are decreasing functions of redshift. Correspondingly, in the standard scenario [21,22,
57,59,104], MaVaNs can be regarded as practically massless in the past whereas in the present
epoch they have reached their maximal mass values mν0,i

. In the following we will assume a
normal neutrino mass hierarchy and take the mass of the lightest neutrino to be

mν0,1 = 10−5 eV, (3.23)
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Figure 3.1: Left: Schematic time evolution of the effective potential V (mν , z) and the neutrino mass mν(z)
due to changes in the neutrino energy density ρν(z). Right: In this log-log plot the exact mass-redshift relations
mνi

(z) are plotted as solid lines. In the low as well as in the high redshift regime they are well approximated
by simple power laws, mνi

(z) ∝ (1 + z)−1 and mνi
(z) ∝ (1 + z)−1/2, respectively (dashed and dotted lines).

The lightest MaVaN is assumed to have a mass of mν0,1 = 10−5 eV today. Consequently, for a normal neutrino
mass hierarchy, solar and atmospheric mass splittings fix the present time neutrino masses of the heavier
neutrinos to be mν0,2 = 8.3× 10−3 eV and mν0,3 = 5.17× 10−2 eV.

such that it is still relativistic today (i.e. mν0,1 ≤ Tν0). According to the solar and atmospheric
neutrino mass splittings the corresponding present time masses of the heavier non-relativistic
neutrinos are fixed to be (according to the mass splittings stated in Sec. 2.6.3),

mν0,2 = 8.30× 10−3 eV � Tν0 , (3.24)

mν0,3 = 5.17× 10−2 eV � Tν0 . (3.25)

Figure 3.1 shows that the exact mass-redshift relations mνi
(z), i = 1, 2, 3, as numerically

determined from Eq. (3.16) in combination with Eq. (3.13), are very well approximated in
the low as well as in the high redshift regime by simple power laws stated in Eq. (3.19)
and in Eq. (3.22), respectively. These results have to be contrasted with the standard time-
independent neutrino masses mν0,i

for i = 1, 2, 3. Let us summarize the essential features of
the presented viable MaVaN model which will enter the analysis on relic neutrino absorption
later on. Firstly, the lightest neutrino is required to be still moderately relativistic today
(mν0,1 ≤ Tν0 = 1.697×10−4 eV) and therefore fixes the neutrino mass scale to be low. Secondly,
the specific mass-redshift evolution mνi

(z) is determined by the model dependent quadratic
form of the potential Vφ ∼ φ2 in Eq. (3.9) which enters Eq. (3.15). In this case, we found the
masses to behave like ∝ (1+z)−1 and ∝ (1+z)−1/2 in the low and in the high redshift regime,
respectively (cf. Eq. (3.19) and Eq. (3.22)). However, the generically important feature (of
any standard MaVaN model) is that the MaVaN masses mνi

(z) are decreasing functions of
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redshift which is easily achieved within the framework of the see-saw mechanism (see above).
As will turn out in our investigation later on, for decreasing mνi

(z) the results do not strongly
dependent on the actual functional dependence mνi

(z). Furthermore, since the considered
mass scale essentially corresponds to the minimal neutrino mass hierarchy4, our results for
the discovery potential of Neutrino Dark Energy will be independent of the actual neutrino
mass scale realized in nature. Note also that the characteristic differences in the absorption
features of MaVaNs with respect to constant mass neutrinos (cf. Sec.3.2.3 and Sec.3.2.4) are
independent of the supersymmetrization of the MaVaN scenario.

3.2 Signatures of Ultra-Energetic Mass Varying Neutrinos in the Sky?

3.2.1 Extremely High-Energy Cosmic Neutrinos

Before we discuss in detail in the following sections the diagnostic potential of extremely high-
energy cosmic neutrinos (EHECν’s) by means of relic neutrino absorption spectroscopy, let
us in this section comment on the current status and next generation prospects for EHECν
physics and let us add some general remarks on EHECν’s.

As a start, the existence of EHECν’s is theoretically well motivated and is substantiated by
numerous works on possible EHECν sources of astrophysical nature (bottom-up) (see e.g. [145]
for a review) or so-called top-down sources (see e.g. Ref. [146] for a review). In the latter case,
EHECν’s with energies well above 1011 GeV are assumed to be produced in the decomposition
of topological defects (TD’s) which originate from symmetry breaking phase transitions in the
very early universe. In Sec. 3.2.4 we will discuss these plausible sources in some more detail.

As demonstrated by Fig. 3.2, we are actually living in exciting times for EHECν’s. De-
pending on the underlying EHECν sources, the EHECν fluxes could be close to the current
observational bounds set by existing EHECν observatories such as AMANDA [149] (see also
Ref. [150,151]), ANITA-lite [152], BAIKAL [165], FORTE [153], GLUE [154] and RICE [155]
which cover an energy range of 107 GeV < E0 < 1017 GeV (cf. Fig. 3.2). Promisingly, the sen-
sitivity in this energy range will be improved by orders of magnitude (cf. Fig. 3.2) by larger
EHECν detectors such as ANITA, EUSO [156], IceCube [157], LOFAR [158], OWL [159],
SalSA [161] and WRST [158] which are planned to start operating within the next decade (cf.
Fig. 3.2). Accordingly, the prospects of confirming the existence of the CνB by tracking its
interaction with EHECν’s have substantially improved since the original proposal in 1982 [61].
Moreover, in the likely case of appreciable event samples the valuable information encoded
in the absorption features of the EHECν spectra could be revealed within the next decade
(cf. Fig. 3.2), rendering the theoretical exploration of relic neutrino absorption spectroscopy
a timely enterprise.

Note that the scenario introduced in the beginning of Sec. 3 has also attracted attention for
another reason than the possible detection of the CνB– namely for the controversial possibility

4In principle, in the minimally allowed neutrino mass scheme, according to oscillation experiments the lightest neutrino
could be massless, while in this case the masses of the heavier neutrinos, compared to the values employed in this
analysis, would hardly be smaller. Since it turns out that due to thermal wash out only the heavier neutrinos
produce characteristic signatures, our analysis is representative for the testability of the MaVaN scenario.
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Figure 3.2: Current status and next decade prospects for EHECν physics, expressed in terms of diffuse
neutrino fluxes per flavor, F = Fνα

+ Fν̄α
, α = e, µ, τ . The upper limits from AMANDA [149], see also

Ref. [150, 151], ANITA-lite [152], FORTE [153], GLUE [154], and RICE [155] are plotted. Also shown are
projected sensitivities of ANITA [152], EUSO [156], IceCube [157], LOFAR [158], OWL [159], the Pierre
Auger Observatory in νe, νµ modes and in ντ mode (bottom swath) [160], SalSA [161], and WSRT [158],
corresponding to one event per energy decade and indicated duration. Also shown are predictions from
astrophysical Cosmic Ray (CR) sources [162], from inelastic interactions of CR’s with the cosmic microwave
background (CMB) photons (cosmogenic neutrinos) [162,163], and from topological defects [164].

of solving the so-called GZK-puzzle to be discussed briefly in the following. Beyond the
Greisen-Zatsepin-Kuzmin (GZK) energy, EGZK = 4 × 1010 GeV, ultra-high energy nucleons
rapidly lose energy due to the effective interaction with CMB photons (predominantly through
resonant photo-pion production) [166, 167]. In the so-called Z-burst scenario, the observed
mysterious cosmic rays above EGZK were associated with the secondary cosmic ray particles
produced in the decays of Z bosons. The latter were assumed to originate from the neutrino
annihilation process outlined above [168–173].

However, recently, ANITA-lite [152] appears to have entirely excluded the Z-burst explanation
for the GZK-puzzle at a level required to account for the observed fluxes of the highest energy
cosmic rays. Moreover, recent data by the Pierre Auger Collaboration indicates that there is
no GZK-puzzle after all [174]. However, in any case, this neither restricts the possible success
of producing evidence for the CνB by means of detecting absorption dips in the EHECν
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spectra nor does it spoil the possibility of gaining valuable information from performing relic
neutrino absorption spectroscopy.

In the next section we will discuss in detail the propagation of EHECν’s through the ther-
mal bath of relic neutrinos and the resulting damping of EHECν’s which governs their sur-
vival probability on their way from their source to us. We will incorporate the full ther-
mal background effects on the absorption process whose impact grows for smaller neutrino
masses [67, 68]. This means, in general relic neutrinos have to be treated as moving targets
with a momentum distribution, if their mean momenta turn out to be of the order of the relic
neutrino masses.

3.2.2 The Damping Factor

Due to the feebleness of the weak interaction cosmic neutrinos can propagate cosmological
distances through the cosmic microwave and neutrino background (CMB and CνB) without
a significant probability of interacting.

As outlined in the beginning of Sec. 3, an interesting exception arises under the assumption
that EHECν’s with energies of order Eres

i = M2
Z/2mνi

= 4.2 × 1014 GeV (0.01eV/mνi
) in the

rest system of the target ν̄ exist, where MZ is the Z mass and mνi
the respective neutrino

mass. The Z resonance in the s channel for the process νν̄ → X, characterized by the energy
Eres

i , enhances the cross-section for the annihilation of such an EHECν on a big-bang relic
anti-neutrino (and vice versa) by orders of magnitude. As a consequence, the corresponding
interaction probability significantly increases with respect to non-resonant scattering. Accord-
ingly, the annihilation processes would reduce the survival probability of EHECν’s traveling
through the CνB to us and could therefore be detectable as sizeable absorption dips in the
EHECν spectra.

In this section we consider EHECν’s (on whose plausible sources we will comment in Sec. 3.2.4)
propagating through a thermal bath of relic neutrinos in the expanding universe. Following
Ref. [68], we discuss the corresponding damping rate of the EHECν’s which governs their
survival probability (cf. Sec. 3.2.3). Furthermore, we will summarize common approximations
for the damping which result from averaging over the neutrino momenta [67] or from completely
neglecting the relic neutrino motion [61,62,64,66].

The investigation applies to both constant mass neutrinos as well as to MaVaNs. In the latter
case, the neutrino masses mνi

are not constant but – as discussed in Sec. 3.1 – complicated
functions of the neutrino densities and thus functions of z (cf. Eq. (3.16) in combination with
Eq. (3.13) in Sec. 3.1).

For simplicity, throughout this section we drop the indices i = 1, 2, 3 labeling the mass,
energy or momentum of the neutrino mass eigenstates, since the discussion applies to all three
neutrinos likewise (mν corresponds to mνi

, E to Ei etc.).

The crucial quantity which describes the attenuation of an ultra-relativistic EHECν neutrino
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traversing the CνB is the damping rate γνν̄ . It can be expressed in the following form,5

γνν̄(E) =

∫ ∞

0

dP

2π2
P 2 fν̄(P, Tν) σνν̄(P, E), (3.26)

and is governed by the Z-formation cross-section σνν̄(P, E) weighted by the momentum dis-
tribution fν̄(P, Tν) of the relic anti-neutrinos, both to be discussed in the following. Here, P
denotes the modulus of the relic anti-neutrino momentum, whereas E represents the EHECν
energy and Tν is the CνB temperature. Note that in the expanding universe these quantities
are subject to cosmic redshift. They can be expressed in terms of their present day values,
labeled by a subscript 0, in the following way,

P = P0(1 + z), E = E0(1 + z), Tν = Tν0(1 + z), (3.27)

where the second equality assumes E '
√

E2 −m2
ν for an ultra-relativistic EHECν. Further-

more, throughout this paper we take the CνB temperature at present to be Tν0 = 1.697×10−4

eV as discussed in Sec. 2.5.1.

Let us first recall from Sec. 2.5, that according to Big Bang theory, ever since neutrino de-
coupling the momentum distribution of the relic neutrinos is frozen into a freely expanding,
ultra-relativistic Fermi Dirac form [101].

In order to express the cross-section σνν̄(P, E) of the νν̄ annihilation process it is convenient
to introduce the parameter ξ = Γ2

Z/M2
Z � 1. It describes the square of the quotient of the

total width for Z decaying to fermion pairs, ΓZ = 2.4952 GeV [175], and the mass of the Z,
MZ = 91.1876 GeV [175]. Accordingly, σνν̄(P, E) can be written in the following form [68],

σνν̄(P, E) =
GF√

2

ΓZMZ

2E2

1

PEP

∫ s+

s−

ds
s(s− 2m2

ν)

(s−M2
Z)

2
+ ξs2

, (3.28)

where GF = 1.166 37 × 10−5 GeV−2 is the Fermi coupling constant and Ep =
√

P 2 + m2
ν is

the energy of the relic neutrino. Furthermore, s is the square of the center-of-mass energy of
the neutrino-anti-neutrino system. Using

√
E2 + m2

ν ' E for an ultra-relativistic EHECν one
arrives at the following expression for s,

s = 2m2
ν + 2E(Ep − P cos θ), (3.29)

where θ characterizes the direction of the relic anti-neutrino with respect to the line of flight
of the incident EHECν in the center-of-mass system. Accordingly, for fixed P and E the
integration over s corresponds to the angular integration. As a consequence, the limits of the
integral in Eq. (3.28) take the values,

s± = 2m2
ν + 2E(Ep ± P ), (3.30)

corresponding to cos θ = ∓1.

5The formula for the cross-section as well as the damping rate in Eq. (3.26) apply likewise if both of the interacting
particles are replaced by their anti-particles.
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Note that, following Ref. [68], in Eq. (3.28) the energy dependence of the Z boson width Γ(s)
in the Z propagator due to higher order corrections [176,177] has been taken into account. In
the region of the resonance where the s dependence is crucial, Γ(s) can well be approximated
by the linear relation [176,177]

Γ(s) =
ΓZ

M2
Z

s =
√

ξ
s

MZ

, where ΓZ = const.. (3.31)

The integral in Eq. (3.28) for the cross-section can be solved analytically. Since the MaVaN
mass mν(z) is a decreasing function of redshift, it has its maximal value today which corre-
sponds to the mass of a constant mass neutrino. Accordingly, for both constant mass neutrinos
and MaVaNs one can exploit that mν � Mz, E for all redshifts such that one finally gets the
following expression for the cross-section [68]6

σνν̄(P, E) =
2
√

2GF ΓZMZ

2EEp

{
1

1 + ξ

+
M2

Z

4EP (1 + ξ)2
ln

(
(1 + ξ)4E2(Ep + P )2 − 4M2

ZE(Ep + P ) + M4
Z

(1 + ξ)4E2(Ep − P )2 − 4M2
ZE(Ep − P ) + M4

Z

)
+

1− ξ

(1 + ξ)2

M3
Z

4EPΓZ

[
arctan

(
2E(1 + ξ)(Ep + P )−M2

Z

ΓZMZ

)
− arctan

(
2E(1 + ξ)(Ep − P )−M2

Z

ΓZMZ

)]}
.

(3.32)

The calculation of the damping defined by Eq. (3.26) in combination with Eq. (3.32) includes
the full thermal background effects. To allow for a comparison of our findings to published
results, in the following, we will summarize two common approximations used in the literature.
They result from averaging over the neutrino momenta [67] or from completely neglecting
the relic neutrino motion [61, 62, 64, 66]. As will become apparent in the next section, in
the neutrino mass range favored by the supersymmetric MaVaN model (cf. Sec. 3.1) their
applicability is quite limited. However, the assumption of relic neutrinos at rest will later on
remove the thermal distortion of the absorption dips and thus allow a deeper insight into the
characteristic features caused by the mass variation mνi

(z) described in Sec. 3.1.

The weaker approximation for σνν̄(P, E) commonly used in the literature is obtained by ap-
proximating the mean value theorem. The factor (s − 2m2

ν) in the integrand of Eq. (3.28)
takes the role of the weight function and is integrated over, whereas the residual part of the
integrand is – as an approximation – evaluated at the midpoint of the integration interval

6The neglect of the neutrino mass in Eq. (3.32) leads to a spurious singularity in the integrand of Eq. (3.26) in a region
of the relic neutrino momenta where the integral is supposed to be negligible. This can be cured by an appropriate
limitation of the integration interval.
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s̄ ' 2EEp = 2E
√

P 2 + m2
ν . Accordingly, the cross-section takes the following form

σ̄νν̄(E, P ) = σ̄νν̄(s̄) = 2
√

2GF ΓZMZ
s̄

(s̄−M2
Z)

2
+ ξs̄2

, (3.33)

with ξ = Γ2
Z/M2

Z . Let us point out again that due to higher order corrections a precise
handling of the Z propagator near the resonance [176, 177] leads to an energy dependence of
the Z boson width Γ(s̄) (cf. Eq. (3.31)). Note that in earlier work on neutrino-absorption
(e.g. [61, 62, 64, 66]) this correction has not been made but the lowest order (simple Breit-
Wigner) form for the cross-section σ̄νν̄(E, P ) has been used. We would like to stress that by
the averaging procedure, which leads to the approximation for σνν̄ in Eq. (3.33), part of the
angular information gets lost. This results in an underestimation of the thermal spread of the
absorption dips [68].

Let us now come to the second, more radical approximation: In earlier work on cosmic neutrino
absorption (e.g. [64, 66]) it was assumed that the relic neutrinos are at rest [64, 66], thereby
switching off all thermal background effects. The corresponding cross-section can be recovered
from the full expression in Eq. (3.28) by taking the limit P → 0 or from Eq. (3.33) by setting
P = 0 such that s̄ = s0 = 2Emν . In this case, the remaining integral over P in Eq. (3.26)
reduces to the neutrino number density nν(z) = nν̄(z) = nν0(1+z)3. Accordingly, the damping
γνν̄ takes the following form

γ0
νν̄(E) = σ̄νν̄(s0) nν(z) = 2

√
2GF ΓZMZ

2Emν

4(1 + ξ)E2m2
ν − 4M2

ZEmν + M4
Z

nν . (3.34)

As will become apparent in the next section, by assuming the neutrinos to be at rest one
neglects two conspiring effects on the damping which become more important with decreasing
ratio mν/Tν [68]:

On the one hand, the full cross-section σνν̄(P, E) in Eq. (3.32), which governs the damping,

depends on Ep =
√

P 2 + m2
ν . As a consequence, the peak of the cross-section for a thermal

bath of relic anti-neutrinos at Eres
i [67],

Eres
i =

M2
Z

2(
√

P 2
i + m2

νi
− Pi cos θ)

, (3.35)

actually lies at lower energies than the one of σ̄νν̄(s0) for relic anti-neutrinos at rest: the energy
E0,i reduces to

Eres
i =

M2
Z

2mνi

. (3.36)

Note that in the case of MaVaNs the masses mνi
are functions of redshift, mνi

(z), and therefore
introduce a z dependence into the resonance energies. Thus, they only coincide with the
respective constant mass ones for z = 0 and mν(0) = mν0. We will discuss the consequences
for the absorption features in detail in the next section.

As indicated by Eq. (3.35), the effect of the relic neutrino momenta P becomes significant
for small neutrino masses, according to Ref. [68] for mν ≤ 0.01 eV. Furthermore, σ̄νν̄(s0)
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overestimates the peak height of the full expression and cannot account for the broadening of
σνν̄(P, E) for increasing relic neutrino momentum P .

On the other hand, the thermal distribution of the relic neutrinos which gives rise to a
Fermi momentum smearing of the cross-section is totally neglected. In the full expression the
damping γνν̄ results from the integration over all neutrino momenta, where the weight factor
P 2fν̄(P, Tν) selects relic neutrino momenta P of the order of Tν . Accordingly, Eq. (3.34) over-
estimates the damping efficiency with respect to the full expression defined by Eq. (3.32) and
Eq. (3.26). As we will see in the next section the realistic description of neutrino-absorption
leads to less well defined absorption features spread over a larger range of EHECν energies
than in the idealized scenario which neglects any thermal effects. These discrepancies increase
with decreasing neutrino mass.

3.2.3 The Survival Probability

The relevant quantity to be discussed in this section is the survival probability Pνα of extremely
high-energy cosmic neutrinos να of flavor α = e, µ, τ traveling through the CνB to us. It is
governed by the damping rate γνν̄ introduced in the last section and it determines, folded with
the respective EHECν source emissivity distribution Lνi

, the resulting neutrino spectra to be
observed on earth, which are treated in Sec. 3.2.4.

The main goal of this section is to work out the characteristic differences in the shape of the
absorption dips in the EHECν survival probabilities which arise from considering the neutrino
masses to be dynamical quantities mνi

(z) instead of constant parameters. After presenting
our results and pointing out the generic differences, we will have a closer look at the MaVaN
absorption features. As motivated in the last section, for the purpose of gaining more physical
insight, we will disentangle the different influences which define their shape. First of all, we
will study the impact of the mass variation mνi

(z) as well as of the cosmic redshift caused by
the expansion of the universe. To this end, we will initially switch off any thermal background
effects by assuming the relic neutrinos to be at rest and compare the results for MaVaNs to
those of constant mass neutrinos.

Nonetheless, we would like to stress again that due to the low neutrino mass scale required in
the MaVaN model under consideration (cf. Sec. 3.1) only the full treatment of the background
effects can serve as a test for Neutrino Dark Energy.

In our calculation we make the standard simplifying assumption that the EHECν source
switched on at a distinct redshift zs in the past. As concerns plausible EHECν sources, in
the following we would like to mention the most relevant classes as well as the corresponding
typical EHECν emission redshifts zs.

As a first possibility, EHECν are assumed to originate from pion decays, where the latter either
are produced in inelastic pp or pγ interactions. Those astrophysical acceleration sites (bottom-
up mechanism), notably active galactic nuclei (AGN) and gamma-ray bursts, have source
positions zs of a few (e.g. [145, 178]). The conjectured energies of cosmic neutrinos produced
by these astrophysical acceleration sites in the case of shock acceleration are Emax . 1011−1012

GeV [145,178]. However, even higher energies are possible in proposed non-shock acceleration
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mechanisms, such as unipolar induction, acceleration in strong magnetic waves in plasma
(wakefields) [179], or by magnetic recombination in the vicinity of massive black holes [180,181]
(see [178] for a recent review).

As a second possibility, extremely energetic cosmic neutrinos with energies above 1012 GeV
may be generated in the decomposition of so-called topological defects (top-down scenarios)
into their constituent particles. Topological defects are predicted to originate from symmetry
breaking phase transitions immediately after (hybrid) inflation (see [182] for a recent review).
In particular, cosmic string formation is highly generic in Supersymmetric Grand Unified
Theories (SUSY GUTs) (see [183] and references therein). Those topological defects produce
super-heavy quanta generically denoted as X particles (often heavy Higgs or gauge bosons)
with masses mX ∼ 1012 − 1016 GeV. Those X particles rapidly decay into stable Standard
Model (SM) particles, also releasing extremely energetic neutrinos [146,184] with energies up
to ∼ 0.5 mX [185]. For those exotic, non-accelerator sources, zs can be as high as the epoch
of light neutrino decoupling, zs ∼ O(1010) [63].

In our analysis we take resonant Z-production caused by the interaction with the CνB as the
only source of attenuation of the propagating EHECν. This approximation is well justified in
the energy regions of the absorption dips which we are focusing on in our investigation [66].
Accordingly, the survival probability of an extremely high-energy cosmic neutrino νi with
i = 1, 2, 3 injected at redshift zs is given by,

Pνi
(E0, zs) = exp

[
−
∫ zs

0

dz

H(z)(1 + z)
γνν̄

(
E0(1 + z)

)]
, i = 1, 2, 3, (3.37)

where the integral in the exponential, which governs the survival probability, is called the
optical depth (or the opacity). It contains the product of the propagation distance dr =
dz/[(1 + z)H(z)] and the damping rate γνν̄(E) defined in Eq. (3.26) with E = E0 (1 + z),
which is integrated over all redshifts from the present time up to the emission redshift zs.
Moreover, the evolving Hubble factor is given by Eq. (2.23) in Sec. 2.4, as corresponds to a Λ
Cold Dark Matter (ΛCDM) universe (for numerical values see Eq. (2.9) and Eq. (2.24)).

Note that this specific form for H(z) also applies to the MaVaN scenario under consideration:
according to Sec. 3.1, the Neutrino Dark Energy density ΩDE redshifts with an equation of
state ω ∼ −1 [22] and therefore behaves very much like a cosmological constant Λ, ΩDE ∼
ΩΛ ∼ const..

We will express our results for the survival probabilities in terms of the propagating neutrino
flavors να according to,

Pνα =
∑

i

|Uαi|2Pνi
, with (3.38)

i = 1, 2, 3 and α = e, µ, τ,

where the absolute square of the leptonic mixing matrix elements Uαi relates the neutrino
flavor components να to the mass eigenstates νi. Note that since the mixing matrix element
|Ue3| � 1, the absorption dip produced by the heaviest mass eigenstate will not be visible
in the case of Pνe . However, apart from this exception, the flavor survival probabilities to be
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Figure 3.3: Flavor survival probability Pνα
, α = e, µ, τ with all thermal background effects included and

integrated back to zs = 5 (left panel) and zs = 20 (right panel), respectively, for a normal neutrino mass
hierarchy with mν0,1 = 10−5 eV and varying neutrino masses (solid lines) as well as constant neutrino masses
(dotted lines).

discussed in the following exhibit absorption dips at the respective resonance energies of the
mass eigenstates νi, for i = 1, 2, 3.

Let us begin our analysis by comparing our results for the flavor survival probabilities defined
in Eq. (3.37) and Eq. (3.38), each with varying and constant mass, including all thermal
background effects according to Eq. (3.26) and Eq. (3.32). Throughout this section we assume
a normal neutrino mass hierarchy, where the masses take values according to Eq. (3.23) –
Eq. (3.25) and the mass variation is given in Fig. 3.1 (cf. Sec. 3.1). Furthermore, the best fit
values for the mixing angles which determine the mixing matrix |Uαi| in Eq. (2.42) in Sec. 2.6.2
are stated in Sec. 2.6.2.

Let us start by considering the flavor survival probabilities Pνα for an emission redshift of
zs = 5 which are plotted in Fig. 3.3 on the left hand side. Apparently, both in the case of
varying and constant neutrino masses, the absorption features produced by the lighter two
neutrino mass eigenstates are merged together. However, for MaVaNs, the absorption dips
produced by the heavier two neutrino mass eigenstates exhibit sharp spikes at the respective

resonance energies Eres
0,i =

M2
Z

2mν0,i
with i = 2, 3 instead of being washed out and distorted to

lower energies as in the constant mass case. In principle, by this means, the neutrino masses
mν0,i

for i = 2, 3 could be directly inferred from the respective spike positions of the MaVaNs
dips in the low redshift regime.

Altogether, the MaVaN absorption dips are much deeper and narrower in comparison to the
constant mass features. In addition, the respective minimum positions are shifted to higher
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energies by almost an order of magnitude with respect to the corresponding constant mass
dips.

As demonstrated by Fig. 3.3 on the right hand side, for an increased emission redshift zs = 20,
the absorption features are considerably deeper than for zs = 5. In addition, for each neutrino
flavor the dips have merged, both in the case of varying and constant neutrino mass. As we
learned in the last section, this effect of the thermal motion has increased with z, since the
thermal bath of relic neutrinos was hotter at earlier times.

For MaVaNs, the characteristic narrow spikes at the resonance energies Eres
0,i with i = 2, 3 are

less pronounced than for zs = 5 and also suffer a distortion towards lower energies. Neverthe-
less, for νµ and ντ , they remain well distinguishable from the respective constant mass dips.
As in the case of zs = 5 the absorption features are clearly shifted to higher energies and
exhibit substantially deeper dips.

The characteristic absorption features produced by the mass variation can be worked out by
separating the different influences on the MaVaN absorption dips. Let us for this purpose
assume the relic neutrinos to be at rest, in order to eliminate any thermal background effects
on the MaVaN survival probabilities. By doing so, we are left with the combined effects of the
cosmic redshift and the mass variation. Let us first of all consider the former effect which is
present both for MaVaNs as well as for constant mass neutrinos. It originates in the expansion
of the universe and manifests itself in an energy loss of EHECν’s of energy E according to
E0 = E/(1 + z), where E0 is the EHECν energy to be measured at earth. Accordingly,
the survival probability Pνi

of an EHECν is reduced, as long as somewhere on its way to us
(zs ≥ z ≥ 0) it has the right amount of energy,

Eres
0,i

(1 + zs)
≤ E0 ≤ Eres

0,i , (3.39)

to annihilate resonantly with a relic anti-neutrino (whereas for all other energies the CνB is
transparent for the EHECν such that Pνα = 1). As a consequence, the effect of cosmic redshift
is observable in a broadening of the EHECν absorption dips.

Let us stress that in addition to this cosmological effect in the case of MaVaNs, the variation of
the neutrino masses mνi

(z) causes a redshift dependence of the respective resonance energies
Eres

i (z) as already mentioned in the last section. To be more concrete, the masses mνi
(z) at

redshift z determine the corresponding resonance energies to be Eres
i (z) = M2

Z/2mνi
(z) in the

rest system of the relic neutrinos which only coincide with Eres
0,i = M2

Z/2mν0,i
for z = 0.

In Fig. 3.4 we plot the respective survival probabilities of the neutrino flavors with varying and
constant masses, neglecting the relic neutrino momenta and integrating back to zs = 5. As
expected from the discussion in the last section, the thermal spread of the absorption features
provoked by the relic neutrino motion is removed such that the dips do not merge. Instead, for
constant mass neutrinos, the absorption features in Fig. 3.4 are only subject to the broadening
caused by the cosmic redshift and span the energy interval specified in Eq. (3.39).

In striking contrast, the absorption dips produced by the MaVaN mass eigenstates exhibit

sharp minima at the resonance energies Eres
0,i =

M2
Z

2mν0,i
with i = 1, 2, 3 showing no spread
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Figure 3.4: Approximated flavor survival probability for Pνα
, α = e, µ, τ , which assumes the target relic-

neutrinos to be at rest, P = 0, after an integration back to zs = 5, for a normal neutrino mass hierarchy with
mν0,1 = 10−5 eV and varying neutrino masses (solid lines) as well as constant neutrino masses (dotted lines)
plotted as a function of their energy E0 at earth.

towards lower energies. Thus, interestingly, these MaVaN dips look like those of constant
mass neutrinos in a non-expanding universe. Actually, it turns out that the mass induced

redshift dependence of the resonance energies Eres
i (z) =

M2
Z

2mνi (z)
, i = 1, 2, 3, compensates for

the energy loss of the EHECν due to cosmic redshift in the limit of low redshifts. This can be
understood by remembering that the approximation in Eq. (3.19) gives a good estimate for
the redshift dependence of the neutrino masses mνi

(z) in the low redshift regime (cf. Fig. 3.1).
In this limit one arrives at the following functional dependence of the resonance energies on z,

Eres
i (z) =

M2
Z

2mνi
(z)

= Eres
0,i (1 + z). (3.40)

In turn, the resonance energy Eres
i (z) = Eres

0,i (1 + z) of an EHECν at redshift z corresponds to
the redshifted energy measured at earth,

Eres
i (z)

(1 + z)
= Eres

0,i , with i = 2, 3, (3.41)

Accordingly, the annihilation of an EHECν on the CνB at any given redshift zs ≥ z ≥ 0
always leads to an absorption peak at Eres

0,i . In other words, in this approximation the square
of the center-of-mass energy, s0,i = 2mνi

(z)E0(1 + z) = 2mν0,i
E0, i = 1, 2, 3, becomes redshift

independent. Correspondingly, the undistorted shape of the annihilation cross-section σ̄νν̄(s0,i)
(weighted with the neutrino density per unit redshift and integrated over z) gets projected on
the sky.

56



3.2 Signatures of Ultra-Energetic Mass Varying Neutrinos in the Sky?

Note that even for higher redshifts the appropriate mass-redshift approximation from Eq. (3.22)
leads to the following redshift dependence of Eres

i (z),

Eres
i (z) =

M2
Z

2mνi
(z)

∝ (1 + z)1/2 with i = 1, 2, 3. (3.42)

Apparently, the neutrino mass variation still partially counterbalances the effect of the cosmic
redshift at high redshifts.

In summary, all of the respective MaVaN absorption lines can be distinguished from those of
constant mass neutrinos, since the redshift distortion is much less pronounced in any case. We
would like to point out that this is a generic feature of any standard MaVaN scenario where
the neutrino mass is a decreasing function of redshift.

We are now in a position to complete the interpretation of the MaVaN features in Fig. 3.3
which result from combining all effects on the absorption features including the thermal ones.
As already mentioned in the last section, the Fermi-weight factor P 2fν̄(P, T ) entering the
damping integral in Eq. (3.26) selects momenta P of the order of the CνB temperature Tν(z).
Accordingly, the ratio mνi

/Tν(z) is a measure for the relevance of the mass and its probable
evolution with respect to the temperature effects. Let us in the following discuss the absorption
features which are completely determined by the thermal effects. In these cases the absorption
lines were produced by relativistic neutrinos, since mνi

(z)/Tν(z) � 1. Firstly, for νe the
absorption lines of MaVaNs and constant mass neutrinos are similar (cf. Fig. 3.3). This can
be understood by recalling that νe is mostly composed of the lightest mass eigenstate for
which mass effects neither today nor in the past have played any role, since (mν0,1/Tν0 � 1).
Secondly, as opposed to the case of zs = 5, the MaVaN absorption features for zs = 20 are
distorted to much lower energies (cf. Fig. 3.3). In addition, for MaVaNs, the low energy ends of
the dips for νµ and ντ have the same shape as the one of νe. The reason is, that the absorption
lines in this energy region stem from absorptions at high z < zs (as indicated by Eq. (3.39) in
absence of any thermal effects), where all neutrino masses still were negligible with respect to
the temperature. As a consequence, they are clearly distinguishable from the corresponding
ones of constant mass neutrinos, which apparently are already non-relativistic in the same
energy region. This is due to the fact that while the temperature rises with increasing z, only
the MaVaN masses mνi

(z) evolve and become lighter. Thus, MaVaNs generically turn non-
relativistic much later than constant mass neutrinos. At energies above this transition from
the non-relativistic to the relativistic regime, the variation of the heavier two neutrino masses
is not washed out by the temperature effects. Therefore, it leads to sharp and thus deep
absorption minima at the respective resonance energies according to Eq. (3.41) (cf. Fig. 3.3),
without and with transition of the regimes, respectively).

As a conclusion we have learned that the characteristic effects of the neutrino mass variations
in the case of the heavier two MaVaNs become apparent in the higher energy regions of the
absorption dips, where the MaVaNs are still non-relativistic. However, also the low energy
end of the absorption dips differs as long as the MaVaNs are relativistic and the constant mass
neutrinos have already turned non-relativistic.

The next section will deal with realistic neutrino fluxes to be measured by neutrino obser-
vatories. In general, a flavor tagging at extremely high energies seems unlikely apart from
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Figure 3.5: The normalized sum of the survival probabilities, 1
3

∑
Pνi , and the flavor survival probability Pντ ,

respectively, including all thermal background effects, for a normal neutrino mass hierarchy with mν0,1 = 10−5

eV and varying neutrino masses (solid lines) as well as constant neutrino masses (dotted lines) plotted as a
function of their energy E0 at earth for zs = 5, zs = 20 and zs = 50.

exceptions (e.g. for particular flavors), whereas all observatories will be sensitive to the flavor
summed EHECν fluxes

∑
Fνα with α = e, µ, τ . Accordingly, we will base our final discus-

sion on the totalized fluxes
∑

Fνα . In addition, we will include our results for the ντ whose
identification will at best be feasible by the LOFAR radio telescope [186]. For this purpose,
for emission redshifts zs = 5, zs = 20 and zs = 50 in Fig. 3.5 we collect both the resulting
normalized sum of the survival probabilities, 1

3

∑
Pνi

which governs the
∑

Fνα as well as the
respective Pντ . Note that emission redshifts of zs = 50 (and much higher) will contribute
to the EHECν fluxes which result from the decomposition of super-heavy particles produced
by topological defects (top-down sources). Apparently, also for emission redshifts of this or-
der, the characteristic differences between the respective absorption features of varying and
constant mass neutrinos, which we have discussed above, are still visible. Furthermore, the
absorption dips get considerably deeper with increasing emission redshift zs.

3.2.4 Absorption Dips in Realistic Neutrino Spectra

So far, in our analysis we have concentrated on the determination and the comparison of the
survival probabilities Pνα of mass varying and constant mass EHECν’s traversing the CνB,
where the Pνα contain the physical information on the annihilation process ναν̄α → Z. In the
following we will outline how our results can be employed to perform relic neutrino absorption
spectroscopy and to what extend the latter can serve as a test for the MaVaN scenario. For
this purpose, we will firstly consider astrophysical EHECν acceleration sites and, secondly,
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topological defect sources both introduced in the last section. In the latter case, we will not
approximate the EHECν injection spectrum by a standard power-law, but go through the
appropriate calculation involving fragmentation functions as discussed below.

As a starting point, we require both the detection of EHECν fluxes in the energy region of
interest as well as the observation of absorption lines in these spectra. The EHECν flux
Fνα(E0) for a neutrino of flavor α = e, µ, τ to be measured at earth is given by [66]

Fνα(E0) =
1

4π

∞∫
0

dzs

H(zs)
×
∑
β,j

|Uαj|2Pνj
(E0 (1 + zs), zs) |Uβj|2Lνβ

(E0 (1 + zs), zs). (3.43)

The flux integral is governed by the survival probability Pνj
defined in Eq. (3.37) weighted by

the EHECν source emissivity distribution Lνβ
, which depends on the properties of the source

as described in the following. On the one hand, the diffuse source emissivity Lνβ
(E0 (1+z), zs)

takes into account the distribution of the sources in the universe (the activity η) and on the
other hand it considers the number of neutrinos of flavor β = e, µ, τ emitted by each of the
sources (the injection spectrum Jνβ

). Under the standard assumption of identical injection
spectra for all sources, one can factorize the z and E dependence,

Lνβ
(zs, E) = η(zs)Jνβ

(E), with E = E0(1 + zs). (3.44)

As already stated in the last section, a flavor tagging at extremely high-energies cannot be
expected at all neutrino observatories. However, we can hope for the identification of the
ντ absorption lines at LOFAR [186], which we will therefore consider according to Eq. (3.43).
Furthermore, in our analysis, we will consider the total flux of all neutrino flavors

∑
Fνα which

can well be approximated by [66],

∑
Fνα(E0) '

1

4π

∞∫
0

dzs

H(zs)

1

3
Ltot

ν (E0 (1 + zs), zs)
3∑

j=1

Pνj
(E0 (1 + zs), zs), (3.45)

where Ltot
ν denotes the total, flavor-summed neutrino emissivity at the source and the formula

holds as long as Lνµ +Lντ = 2Lνe . The latter is fulfilled for hadronic sources like astrophysical
accelerator bottom-up sources or non-accelerator top-down sources, since in both cases the
neutrinos emerge from charged pion decays such that

Lνe : Lνµ : Lντ = 1 : 2 : 0. (3.46)

However, Eq. (3.45) also holds in the case of equal flavor source emissivities,

Lνe : Lνµ : Lντ = 1 : 1 : 1, (3.47)

as could arise in the decays of topological defects not directly coupled to matter (e.g. mirror-
matter ‘necklaces’) [187,188].

Note that the dependence on the leptonic mixing matric elements |Uαj|, present in Eq. (3.43),
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Figure 3.6: Projected sensitivity of LOFAR [158] expressed in terms of the diffuse neutrino flux per flavor,
corresponding to one event per energy decade and indicated duration, together with E2

0F with F =
∑

Fνα
+∑

Fν̄α (left column) and E2
0Fτ with Fτ = Fντ +Fν̄τ (right column) for varying (solid lines) and constant (dashed

lines) neutrino masses and for zmax = 20, assuming a normal neutrino mass hierarchy with mν0,1 = 10−5 eV,
n = 4 and α = 2 as well as Emax = 4× 1016 GeV.

has dropped out in the expression for
∑

Fνα in Eq. (3.45) due to unitarity7.

In the next section we start our investigation by considering astrophysical (bottom-up) EHECν
sources. In the subsequent section we continue our analysis for the case of topological defect
(top-down) EHECν sources.

Astrophysical Neutrino Sources

In the following we will discuss EHECν fluxes which are assumed to originate from astro-
physical EHECν sources. In order to parameterize their source emissivity distribution Lνβ

we
employ the following standard ansatz (e.g. [66,189,190]) in combination with Eq. (3.44),

η(zs) = η0(1 + zs)
nθ(zs − zmin)θ(zmax − zs), (3.48)

Jνβ
(E) = jνβ

E−αθ(E − Emin)θ(Emax − E). (3.49)

Throughout our analysis, we will take zmin = 0 and Emin = 0 as default values and suppose
that Emax > Eres

0,i (1 + zmax) for i = 2, 3. Furthermore, we will not examine the possibility of
broken power-law injection spectra, but assume the spectral index α to be constant in the
whole energy region of interest.

7The factor of 1/3 in Eq. (3.45) guarantees that the flavor summed flux in the case
3P

j=1

Pνj = 3 reduces to the total

flux for no absorption; for its derivation see the appendix of Ref. [66].
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For the purpose of illustrating our results, we consider Eq. (3.48) and Eq. (3.49) for n = 4
and α = 2 as often used in the literature to mimic astrophysical sources and take Emax =
4× 1016 GeV. As in the last sections, we assume a normal neutrino mass hierarchy according
to Eq. (3.23) – Eq. (3.25) and for the MaVaNs a neutrino mass variation according to Fig. 3.1.
We present our results in Fig. 3.6, on the left hand side we plot the EHECν energy squared
times the flavor summed flux E2

0F with F =
∑

Fνα +
∑

Fν̄α according to Eq. (3.45) and on
the right hand side E2

0Fτ with Fτ = Fντ + Fν̄τ as defined in Eq. (3.43). In Fig. 3.6 we plot our
results both for varying (solid lines) and constant (dotted lines) neutrino masses for zmax = 20,
together with the projected sensitivity of LOFAR [158] to be in operation by 2008 expressed
in terms of diffuse fluxes per neutrino flavor, respectively. We would like to point out that
Monte Carlo simulations promise even better sensitivities in the relevant energy region for a
proposed Moon-orbiting satellite using radio methods [191,192].

In our calculation we have assumed the EHECν flux to be close to the so-called cascade
limit [193, 194]. It applies to sources where the neutrinos emerge from pion decays or even
from electroweak jets [195] and are thus accompanied by photons and electrons which escape
the source. Consequently, the measurements of diffuse gamma-ray fluxes, which are of the
same origin but have cascaded down in energy during the propagation through the universe,
restrict the neutrino flux to lie below the cascade limit. Apparently, the predicted sensitivity
of LOFAR [158], corresponding to one event per neutrino flavor per energy decade, lies below
the cascade limit by several orders of magnitude. Accordingly, at best 3500 neutrinos (plus
anti-neutrinos) in the energy interval 1012 − 1013 GeV can be expected to be detected by the
radio telescope.

The large event numbers N result in tiny error bars (σ =
√

3N/3N). In a blow-up of the
absorption features in Fig. 3.7, we have adjusted them to the curves with no absorption for
emission redshifts zmax = 20, zmax = 10 and zmax = 5 from top to bottom. Thereby, we
have assumed a conservative and therefore rather poor energy resolution corresponding to
one energy bin per energy decade, whereas at best LOFAR is predicted to achieve an energy
resolution of ∆E/E ∼ 30% [186]. The latter would correspond to ∼ 4 energy bins per energy
decade. Apparently, the dips become considerably deeper with increasing zmax. Despite the
underlying low neutrino mass scale, both for varying and constant neutrino masses, LOFAR
can be expected to produce significant evidence for absorption dips in the EHECν spectra for
emission redshifts zmax = 20 and zmax = 10 – even for a bad energy resolution. In the case
of zmax = 5, in the interval 1014 − 1015 GeV, the considerably higher dip depth for MaVaNs
leads to a more than 5σ deviation from the curve with no absorption whereas for constant
mass neutrinos the departure is not significant (both for the flavor summed flux F and for
Fτ ). Even if the underlying EHECν fluxes are much lower, at least for EHECν sources at
zmax = 20, a detection of absorption features produced by varying, light neutrino masses
could well be feasible. Correspondingly, if such EHECν fluxes of astrophysical origin exist,
the most direct detection of the CνB so far seems to be in reach within the next decade.
From the experimental point of view, the prospects are even better for scenarios with time
varying neutrino masses, which in general produce deeper absorption dips in the regime of
astrophysical emission redshifts.

Let us now turn in more detail to the prospects of probing scenarios of Neutrino Dark Energy
by identifying the characteristic absorption signatures of a possible neutrino mass evolution.
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Figure 3.7: The energy squared times the flavor summed neutrino flux E2
0F with F =

∑
Fνα +

∑
Fν̄α (left

column) and E2
0Fτ with Fτ = Fντ

+ Fν̄τ
(right column) for varying (solid lines) and constant (dotted lines)

neutrino masses for zmax = 20, zmax = 10 and zmax = 5 from top to bottom, respectively. All curves assume
a normal neutrino mass hierarchy with mν0,1 = 10−5 eV, n = 4 and α = 2 as well as Emax = 4× 1016 GeV.
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3.2 Signatures of Ultra-Energetic Mass Varying Neutrinos in the Sky?

Since the EHECν fluxes are governed by the respective survival probabilities discussed in the
last section, the characteristic differences in the absorption features for varying instead of
constant neutrino masses are maintained. Namely, for MaVaNs one observes a clear shift of
the dips to higher energies as well as considerably deeper absorption minima with respect to
constant mass neutrinos. Accordingly, given a decent energy resolution of ∆E/E ∼ 30% [186]
for LOFAR, relic neutrino absorption spectroscopy could serve as a test for the nature of
neutrino masses and therefore for Neutrino Dark Energy. However, certainly, the feasibility
strongly depends on the energy resolution achieved by the EHECν observatory.

Topological Defect Neutrino Sources

In the following we will discuss neutrino fluxes expected to result from exotic top-down EHECν
sources like topological defects. As already mentioned, EHECν’s might be produced among
other Standard Model particles in the decays of super-heavy X quanta which constitute the
topological defects. Accordingly, the corresponding EHECν injection spectra J in Eq. (3.44)
are fragmentation functions which can reliably be predicted by the help of Monte Carlo
generators [196, 197] or via the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolu-
tion [198–200] from experimentally determined initial distributions at a scale MZ to the ones
at mX . The corresponding injection rate (the activity η in Eq. (3.44)), which in particular
determines the overall normalization of the neutrino flux, in terms of cosmic time t is given
by,

∂nX

∂t
=

Q0

mX

(
t

t0

)−4+b

, (3.50)

where Q0 is the energy emitted per unit volume per unit time at present and b is a dimensionless
constant. Both Q0 and b depend on the specific topological defect scenario [184].

In the following, we will illustrate the prospects for performing relic neutrino absorption spec-
troscopy for top-down sources considering as example superconducting strings whose evolution
is characterized by b = 0 in Eq. (3.50). In our analysis, we calculate the absorption features in
the EHECν spectra by the help of fragmentation functions as well as by Eq. (3.50) according
to Eq. (3.44).8 Note that in the energy region of the absorption dips the Standard Model
and SUSY fragmentation functions (which we have taken from [199]) have practically the
same shape. Accordingly, all our results on relic neutrino absorption are independent of the
supersymmetrization of the MaVaN scenario (cf. Sec. 3.1). In Fig. 3.8 we plot the expected
absorption features for varying (dashed lines) and constant (dotted lines) neutrino masses as
defined in Eq. (3.23) – Eq. (3.25), where for the MaVaNs we assume a mass variation according
to Fig.3.1. Again, we present our results for the energy squared times the flavor summed flux
E2

0F according to Eq. (3.45) in the left column of Fig. 3.8 and E2
0Fτ as defined in Eq. (3.43)

in the right column of Fig. 3.8. As in the case of astrophysical sources, in the first panel of
each column we have plotted the projected sensitivities of ANITA and LOFAR as well as the
predicted EHECν flux for mX = 1016 GeV with and without absorption (where the latter by
design scratches the cascade limit). In the second panel of Fig. 3.8, we again show a blow-up

8In the literature on absorption dips so far the injection spectra of top-down sources had been approximated by
Eq. (3.48) and Eq. (3.49). Cf. e.g. Refs. [66,68] for the appropriate values for n and α.
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Figure 3.8: The energy squared times the neutrino flux E2
0F with F =

∑
Fνα

+
∑

Fν̄α
(left column) and

E2
0Fτ with Fτ = Fντ

+ Fν̄τ
(right column) for varying (dashed lines) and constant (dotted lines) neutrino

masses expected from the decomposition of a superconducting string with b = 0 and mX = 1016 GeV, in the
first panel together with the projected sensitivities for ANITA [152] and LOFAR [158], which correspond to
one event per flavor, energy decade and indicated duration, respectively.

of the absorption features. Apparently, with respect to the astrophysical sources (cf. Fig. 3.7),
the dips are broader by almost an order of magnitude in energy. This is due to the fact that
the constituents of topological defects have started to decay and therefore to release neutrinos
at z � 1. As a further consequence, the dips for top-down sources are much deeper than for
bottom-up sources, since the survival probability of a neutrino traveling to us is much lower (as
discussed in the last section and as illustrated by the comparison of the flavor summed survival
probability for zs = 50 and zs = 20 in Fig. 3.5). Consequently, both of these features facilitate
a detection of the absorption dips in the EHECν spectra. Accordingly, top-down sources with
the same underlying fluxes as astrophysical sources are even better suited to provide evidence
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for the existence of the CνB. By this means valuable information on the topological defect
scenario, on cosmological parameters as well as the neutrino mass scale could be gained both
for varying and constant neutrino masses. Furthermore, for the first time in cosmic particle
physics, the GUT energy scale O(mX) ∼ 1016 GeV could be probed.

In the second panel of Fig. 3.8, we have also included the expected error bars, again assuming
one energy bin per energy decade, both for the MaVaN and constant mass neutrino absorption
lines. Clearly, the discrepancy between the two curves is larger for E2

0Fτ than for E2
0F , whereby

in contrast to EHECν’s of astrophysical origin, constant neutrino masses produce somewhat
deeper dips than time dependent masses. These features can be understood by realizing that
ντ is dominantly composed of the heaviest mass eigenstate mν3 , whereas E2

0F by definition
gets equal contributions from all mass eigenstates. Furthermore, for constant mass neutrinos,
mν3 is the only mass eigenstate for which the ratio mν3/Tν(z) ∼ (1 + z) � 1 up to z ∼ 1000.
In other words, it produces much deeper absorption dips than the lighter mass eigenstates
(even when integrating back to z � 1) and their characteristic shape is not dominated by
the temperature effects (cf. the discussion in the last section). In contrast, for MaVaNs, the
ratio mνi

(z)/Tν(z) with i = 1, 2, 3 for all mass eigenstates drops much faster with increasing
z and takes values mνi

(z)/Tν(z) � 1 for z � 1. As a result, the low energy end of the dip
(which corresponds to higher annihilation redshifts z) has the same shape both for all MaVaN
mass eigenstates and the lighter two constant ones and is totally determined by the thermal
background effects.

In summary, promisingly, we found that a resolution of absorption features for either mass
behavior seems to be possible both for ANITA and for LOFAR. Yet, a differentiation of the
MaVaN and constant mass neutrino absorption features seems only feasible, if tau flavor
tagging and a good energy resolution are achieved.

3.3 Summary and Conclusions – Part I

In light of the number of extremely high-energy neutrino (EHECν) observatories in operation
and under construction with a combined sensitivity ranging up to 1017 GeV, the prospects
for establishing the existence of EHECν fluxes appear to be very promising. As a next step,
the exciting possibility opens up to trace the annihilation of EHECν’s and relic anti-neutrinos
(and vice versa) into Z bosons by localizing absorption dips in the EHECν spectra at energies
set by the neutrino masses. On the one hand, their detection could furnish the most direct
evidence for the CνB so far and thereby confirm standard cosmology back to the time of light
neutrino decoupling. On the other hand, the shape of the absorption lines could reveal a
variation of neutrino masses with time and thus verify the interpretation of the CνB as source
of Neutrino Dark Energy.

We therefore considered a viable Mass Varying Neutrino (MaVaN) model with the following
features entering our analysis on relic neutrino absorption. By the requirement that the
lightest neutrino still has to be moderately relativistic today the neutrino mass scale is set to
be low. This leads to very conservative predictions and in the end renders our results for the
discovery potential of Neutrino Dark Energy independent of the neutrino mass scale realized in
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nature. Furthermore, the evolving neutrino masses mνi
(z), which we determined numerically

as functions of redshift assuming mν0,1 = 10−5 eV, turned out to be well approximated by

simple power laws (1 + z)−1 and (1 + z)−1/2 in the low and in the high redshift regime,
respectively. Accordingly, as a generically important feature, they are decreasing functions of
redshift as in all standard MaVaN scenarios.

In order to provide all technical tools to interpret EHECν absorption dips for a given injection
spectrum and to extract valuable information on neutrino physics, cosmology and possibly
physics beyond the Standard Model, we proceeded in the following way. We considered in
parallel the neutrino masses to be functions of cosmic time as well as to be constants. In our
analysis we took into account the full thermal background effects which result from the relic
neutrino motion according to their phase space distribution. In order to compare our results to
the literature, we included in our discussion common approximations [64,66,67] which neglect
part or all of the dependence of the damping on the relic neutrino momenta.

On the level of the survival probabilities which govern the EHECν fluxes, we found the fol-
lowing results: For low emission redshifts (z ∼ O(5)), the absorption dips produced by the
varying neutrino masses mνi

(z) for i = 2, 3 exhibit narrow absorption minima, which do not
suffer a distortion to lower energies as the corresponding dips of constant mass neutrinos. As
a consequence, for MaVaNs, the absorption dips of the flavor components νµ and ντ (which
are mostly composed of the heavier two mass eigenstates) are clearly deeper and shifted to
higher energies by almost an order of magnitude with respect to the corresponding constant
mass minima. For an increased emission redshift z � 5, these features become somewhat less
pronounced but essentially prevail.

A better understanding of the characteristic signatures caused by the mass evolution was
obtained by switching off the superposing thermal wash-out caused by the relic neutrino
motion. After neglecting the relic neutrino momenta for this purpose, we found that the
crucial deviations result from the dependence of the corresponding resonance energies on the
neutrino masses Eres

i ∼ 1/mνi
for i = 1, 2, 3. In the case of MaVaNs, the mass variation mνi

(z)
induces a dependence on the annihilation redshift z according to Eres

i (z) ∼ Eres
0,i (1 + z) for all

neutrino species i = 1, 2, 3 in the low redshift regime. Accordingly, as a main result, we found
this z dependence of the resonance energies to compensate for the energy loss of the EHECν
due to cosmic redshift proportional to (1+ z)−1. This was found to lead to narrow absorption
spikes at constant energies Eres

i (z)/(1+ z) = Eres
0,i (like one would expect for constant neutrino

masses in a non-expanding universe). In contrast, for constant neutrino masses mνi
= mν0,i

the absorption dips are broadened, since the redshifted resonance energies to be measured on
earth are given by Eres

i /(1 + z) = Eres
0,i /(1 + z), for z taking values between 0 and the EHECν

emission redshift.

Thus, since in the standard MaVaN scenario the neutrino masses are decreasing functions of
redshift, they generically reduce the effect of cosmic redshift on the EHECν survival proba-
bilities. As a result, they always produce deeper absorption minima, which, in addition, are
shifted to higher energies in comparison to the dips caused by constant neutrino masses.

In order to illustrate the discovery potential for absorption dips in the EHECν spectra to be
observed at earth and to estimate the prospects of testing scenarios of Neutrino Dark Energy,
we considered plausible EHECν fluxes originating from astrophysical acceleration sites or from
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topological defect sources. We presented our results both for the energy squared times the
flavor summed EHECν flux E2

0F with F =
∑

Fνα +
∑

Fν̄α and for E2
0Fτ with Fτ = Fντ +Fν̄τ ,

where the latter can at best be identified by LOFAR [186]. Despite the adopted low neutrino
mass scale, we found both for varying and constant neutrino masses that for topological defect
and for astrophysical EHECν sources at zmax > 5, LOFAR and ANITA promise a statistically
significant evidence for absorption dips (even if the underlying fluxes are well below the cascade
limit). Accordingly, the most direct detection of the CνB so far seems to be in reach within
the next decade.

Furthermore, the flux dips of varying and constant mass EHECν’s expected from astrophysical
sources retain the characteristic differences induced by the survival probabilities. Besides being
clearly shifted to higher energies, the MaVaN dips are deeper and therefore even facilitate
a resolution of absorption features in the EHECν spectra in comparison to constant mass
neutrinos both in the case of E2

0F and of E2
0Fτ . As a main result of our analysis, these

deviations of the MaVaN and constant mass absorption curves for astrophysical sources turned
out to be statistically significant, yet a decent energy resolution seems necessary for their
detection. Given an energy resolution of ∆E/E ∼ 30% as at best achievable for LOFAR [186],
relic neutrino absorption spectroscopy could reveal a variation of neutrino masses and therefore
possibly the nature of Dark Energy. Let us note again that this result is representative for
the testability of the Mass Varying Neutrino Scenario, since it holds independent of the actual
neutrino mass scale realized in nature.

As concerns topological defect sources, the absorption lines in the EHECν fluxes for time
dependent and constant neutrino masses altogether are more similar in shape, however, some-
what deeper for constant neutrino masses. Furthermore, they extend to much lower energies
than for astrophysical EHECν sources and their minima are considerably deeper. All of these
features are a result of the much higher annihilation redshifts zs � 1 possible for EHECν’s
originating from the decomposition of topological defects in comparison to EHECν’s from as-
trophysical acceleration sites. At high redshifts, the EHECν’s are absorbed by a hotter bath
of relic neutrinos. Consequently, in the energy region spanned by the absorption dips where
mνi

/Tν � 1, thermal background effects wash out any features produced by the neutrino
mass or its possible variation. Since the MaVaN masses are decreasing functions of redshift,
they reach this limit for much smaller redshifts than the corresponding constant masses. Only
the mass of the heaviest constant mass eigenstate is sufficiently large, mν3/Tν(z) � 1, in the
relevant energy region, leading to a deeper absorption curve than the one produced by all of
the other MaVaN and constant mass eigenstates. Since ντ is mostly composed of the heavi-
est mass eigenstate, Fτ exhibits deeper constant mass dips than F . Accordingly, for Fτ the
signatures of varying neutrino masses can more easily be distinguished from those of constant
masses than in the case of F . However, in order to reveal a neutrino mass variation, it seems
necessary both to identify the tau neutrino flavor and to have a good energy resolution.

Let us in the following comment on how our results can be generalized to other MaVaN
scenarios, whose viability does not rely on a low neutrino mass scale (cf. Sec. 4). As we
pointed out, the characteristic absorption signatures of any standard MaVaN scenario (cf.
Sec. 3.2.3 and Sec. 3.2.4) are essentially generic apart from details. Yet, a higher neutrino
mass scale would even increase the overall dip depth in comparison to our rather conservative
predictions and also reduce the importance of the thermal background effects on the absorption
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features. Accordingly, we would expect the features produced by a possible mass evolution
not to be washed out by the temperature effects for a wider energy range of the dips. Thus
the deviations with respect to the corresponding constant mass curves would even be more
prominent.
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4 On the Stability of Neutrino Dark Energy

As we have discussed in detail in Sec. 3 and mentioned in the introduction, if neutrinos interact
through a new non-standard force mediated by a light scalar field of the dark sector, the
combined energy density in the coupled fluid naturally evolves slowly and as a consequence can
possibly drive late-time acceleration. However, recently, it has been pointed out by Afshordi,
Zaldarriaga and Kohri in Ref. [57] that in the non-relativistic neutrino regime this newly
proposed attraction felt between neutrinos can provoke the strong growth of hydrodynamic
perturbations in the neutrino density and thus can threaten the stability of the scenario. Let
us in the following briefly outline how instabilities in general can occur as well as what the
possible outcome is. For a better understanding, we will also draw an analogy to the well-
known phenomenon of gravitational instabilities on which the theory of galaxy formation is
based (see e.g. [86]).

To this end, let us first recall from Secs. 2.1 – 2.4 that the universe at early times on all cos-
mological scales and today on the very largest scales is remarkably homogeneous. However,
according to the standard picture, about this homogeneous background there are small pri-
mordial perturbations in the matter densities inherited from inflation [76]. Generally speaking,
an attractive force felt between matter causes these small inhomogeneities to produce a force
on the surrounding matter. Accordingly, unless they are stabilized in some way, for example
by the presence of relativistic pressure support, these initially small fluctuations can grow in
amplitude to finally form non-linear structure bound by the attractive force. For instance,
identifying the attractive force with gravity, in a nutshell, this is the standard picture of how
self-bound structure like galaxies and clusters of galaxies have formed, after the universe was
dominated by non-relativistic matter with negligible pressure. Note that the universe appears
less and less lumpy, the larger the scales one looks at. In numbers, matter perturbations
on scales less than about 10 Mpc have grown non-linear (note that galaxies have densities a
million times the average density), while large-scale perturbations are still small. This is the
regime where linear theory (cf. Sec. 4.2) is the right tool at hand to study the early stages of
structure formation.

Coming back to Mass Varying Neutrinos, as a conclusion by analogy, MaVaN instabilities can
be stabilized by the pressure support (and the random motions) of a relativistic neutrino (cf.
the scenario discussed in Sec. 3) [22, 57, 59]. Therefore, only in the non-relativistic neutrino
regime they can possibly grow by the attractive force mediated by the scalar field.

The stage is now set for the question to be followed up in this chapter: Can mass varying
neutrino perturbations be stabilized in some other way also in the highly non-relativistic
neutrino regime?
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In order to motivate the strategy to be pursued to tackle this question, let us summarize the
findings of the pioneering work of Afshordi, Zaldarriaga and Kohri in Ref. [57] concerning the
issue of stability possibly arising in models of Neutrino Dark Energy.

In the kinetic theory picture, the authors derived an analytical formula for the adiabtic sound
speed squared of the scalar-neutrino fluid, which was found to take negative values in the
non-relativistic regime of any MaVaNs scenario with m2

φ � H2 > 01. From this result, the
authors concluded that any adiabatic MaVaNs scenario becomes unstable to exponentially
growing hydrodynamic perturbations as soon as they are not stabilized anymore by the pres-
sure support and the random motions of a relativistic neutrino. Furthermore, based on the
assumption of thermal equilibrium, the authors quantitatively confirmed that as an outcome
of the instability most of the neutrinos end up in dense ’nuggets’ or lumps (cf. also Ref. [58])2.

Let us remark that in Ref. [60] it has been shown that the generic assertion of a negative
sound speed squared can be relaxed, if finite temperature effects are taken into account.

Our approach will be, to revisit the stability issue challenged by Ref. [57] in the appropriate
framework provided by linear cosmological perturbation theory in a model-independent way.
As it will turn out this naturally leads us to consider the influence of other important cosmic
components on the dynamics of the MaVaN perturbations which have not been taken into
account in Ref. [57].

In our investigation we will pay particular attention to the question whether a negative adi-
abatic sound speed squared indeed is a sufficient condition for MaVaN instabilities to occur.
In addition, following Ref. [60], in Sec. 4.3 we further pursue the conditions leading to a pos-
itive sound speed squared. Moreover, in Sec. 4.6.1, we will comment on whether the viability
of a MaVaN scenario is necessarily threatened if indeed neutrino lumps should form. The
investigation is based on our Ref. [71] and also goes beyond it.

To this end, after setting the stage for a model-independent analysis in the next section, we
provide an introduction to linear perturbation theory in Sec. 4.2 and briefly introduce the
matter power spectrum for later reference in Sec. 4.2.1. Thereafter, we consider as a simple
instructive example gravitational instabilities in Newtonian theory. This will both allow to gain
an intuition for the main physical effects leading to instabilities and in addition clarify, under
which conditions the sound speed squared can uniquely determine the perturbation dynamics.
After discussing the relation between the nature of the sound speed squared and the scales
and regimes where possible instabilities can occur, we derive the evolution equations for the
MaVaN perturbations in Sec. 4.4 from linearizing Einstein’s equations about an expanding
background. By applying justified approximations to the analytical results, we will be able
to identify an analytical stability condition which will allow to classify the behavior of the
perturbations in dependance on the scalar-neutrino coupling function. We will illustrate our
results by discussing representative examples both for stable and unstable scenarios in Sec. 4.5
and present our numerical findings from the full evolution equations in Sec. 4.5.2. Based on
our results, in Sec. 4.6 and Sec. 4.6.1, we will state to what extent the no-go theorem set up
in Ref. [57] for adiabatic models of Neutrino Dark Energy can be relaxed. Finally, in Sec. 4.7,

1Note that models of Neutrino Dark Energy which couple a quintessence scalar field with mass ∼ H to neutrinos [43,44]
do not suffer from instabilities even in the highly non-relativistic neutrino regime (cf. Sec. 4.3 for an explanation).

2Since the outcome of the instabilities is an inherently non-linear process as such it is difficult to study analytically.
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we will summarize our results and provide an outlook.

4.1 Setting the Stage for the Stability Analysis

Let us in this section briefly summarize the ingredients which characterize a general MaVaN
model to set the stage for our subsequent model-independent stability analysis. This section
is based on our Ref. [71].

First of all, let us note that cosmology is in leading order sensitive to the sum of neutrino
masses [43] which we will for simplicity represent by mν . Since a MaVaN set-up can only
possibly become unstable in the (highly) non-relativistic neutrino regime, we furthermore
take a conservative approach in assuming a degenerate neutrino mass spectrum corresponding
to three degenerate neutrinos, being highly non-relativistic today (cf. Sec. 3.1 where the
stability problem is evaded since a relativistic neutrino is responsible for Dark Energy until
today [22, 57, 59, 60]). In Sec. 4.5.2 we will comment on how this conservative assumption
influences the stability of a MaVaN scenario.

Accordingly, we will consider the class of MaVaN models whose Lagrangian takes the form,

L ⊃ Lφ + Lνkin
+ Lνmass , where

Lφ = −
[
1

2
∂µφ∂µφ + Vφ(φ)

]
,

Lνmass = −mν(φ)ν̄ν + h.c., (4.1)

besides a standard kinetic term both for the neutrinos and the scalar field it contains a self-
interaction potential Vφ for φ and, importantly, a mass term for the neutrinos. It is generated
from the value of the scalar field and thus becomed linked to its dynamics (cf. the discussion
in Sec. 3.1). Note that for our purposes it does not matter whether neutrinos are Majorana or
Dirac particles. As can be read off Eq. (4.1), a MaVaN model is fully specified by the choice
of Vφ(φ) as well as by the dependence of the neutrino mass on the VEV of the scalar field,
mν(φ). The latter defines the coupling β between the neutrinos and the scalar field to be [43],

β ≡ d log mν

dφ
=

m′
ν

mν

, (4.2)

where here and in the following primes denote derivatives with respect to φ (′ = ∂/∂φ).
Furthermore, since we intend to analyze the growth of cosmological perturabtions, the natural
choice of the time variable is given by the conformal time τ as introduced in Sec. 2.4. This
implies that the Hubble parameter takes the form, H = d log a/dτ = H/a, where H =
d log a/dt as introduced in Sec. 2.4.

Let us note that accordingly in the presence of a scalar field the Friedmann equation takes
the form,

3H2 =
a2

M2
pl

(
φ̇2

2a2
+ Vφ(φ) + ρm

)
, (4.3)

73



On the Stability of Neutrino Dark Energy

with Mpl ≡ (
√

8πG)−1 denoting the reduced Planck mass and the subscript m comprising all
matter species.

With these conventions, in the non-relativistic neutrino regime one arrives at the following
modified Klein-Gordon equation for the scalar field,

φ̈ + 2Hφ̇ + a2V ′ = 0, where (4.4)

V ′ = (Vφ + ρν)
′ = V ′

φ + βρν . (4.5)

As argued before, in Sec. 1 and Sec. 3.1, as opposed to a quintessence field the scalar field
evolves naturally slow due to the stabilizing influence exerted by the neutrinos and thus we
can assume the scalar field mass to be much larger than the expansion rate H,

m2
φ = V ′′ = ρν

(
β′ + β2

)
+ V ′′

φ � H2. (4.6)

Accordingly, we see explicitly from Eq. (4.4) that in this limit the dynamics of the scalar field
are determined by the condition,

V ′(φ) = 0, (4.7)

which means that φ adiabatically tracks its effective minimum as described in Sec. 3.1.

Let us in the following discuss which requirements have to be fulfilled by the functions Vφ(φ)
and mν(φ) characterizing a MaVaN model in order to accomplish the correct cosmology today.
For this purpose, we define w = pDE/ρDE to be the equation of state of the coupled neutrino-
scalar fluid with,

pDE ' pφ =
1

2a2
φ̇2 − Vφ(φ), (4.8)

ρDE = ρν + ρφ ' mνnν +
1

2a2
φ̇2 + Vφ(φ), (4.9)

where pφ and ρφ respectively denote the scalar field pressure and energy density as defined
in Eq. (4.24) and we have used that pν ' 0 and ρν ' mνnν in the non-relativistic neutrino
regime. We must now demand that the equation of state parameter w of the coupled scalar-
neutrino fluid today roughly satisfies w ∼ −1 as suggested by observations [102]. By noting
that for constant w at late times (cf. Sec. 2.4),

ρDE ∼ V ∝ a−3(1+w), (4.10)

and by requiring energy conservation, one arrives at [21]

1 + w = −1

3

∂ log V

∂ log a
. (4.11)

In the non-relativistic limit mν � Tν this is equivalent to,

1 + w = − a

3V

(
mν

∂nν

∂a
+ nν

∂mν

∂a
+

V ′
φ

a′

)
= −

mνV
′
φ

m′
νV

, (4.12)

where in the last equality it has been used that V ′ = 0 according to Eq. (4.7). To allow for
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an equation of state close to w ∼ −1 today one can conclude that either the scalar potential
Vφ has to be fairly flat3 or the dependence of the neutrino mass on the scalar field has to be
quite steep.

Furthermore, the combined present energy density of the scalar field and of the neutrinos has
to be identified with the Dark Energy density as measured today (cf. Sec. [201]), ΩDE ∼ 0.7.

In the next section we will set the stage for our stability analysis in Sec. 4.2 by introducing
the concept of linear cosmological perturbation theory.

4.2 Linear Cosmological Perturbation Theory

In section Sec. 2.4 the tools were provided to study the large-scale dynamics of our universe
by the help of the idealized Friedmann-Robertson-Walker (FRW) background model which
relies on the assumption of homogeneity and isotropy. Let us now model the universe more
realistically by allowing for small deviations from the smooth FRW-background, which we
call ‘perturbations’ (for pioneering work see [81–84] and for comprehensive reviews see [85–
91]). This approach will set the stage for our analysis of the coupled neutrino-scalar field
perturbations in Sec. 4.4 to investigate the possible growth of MaVaN structure.

In order to describe the evolution of small cosmological perturbations in the framework of
linear theory, our task at hand reduces to solving Einstein’s equations linearized about an
expanding background. Accordingly, small perturbations have to satisfy,

δGµν = 8πGδTµν , (4.13)

where δGµν and δTµν denote the perturbed Einstein tensor and perturbed stress-energy tensor,
respectively.

The perturbed quantities δgµν and δTµν , which enter the perturbed Einstein equations in
Eq. (4.13), expressed in terms of the full metric gµν and the full stress-energy tensor Tµν as
well as their background parts, are given by

δgµν(~x, τ) = gµν(~x, τ)− gµν(τ), (4.14)

δT µ
ν (~x, τ) = T µ

ν (~x, τ)− T µ
ν (τ). (4.15)

Note that the background quantities of the smooth universe introduced in Sec. 2.4 are only
functions of conformal time τ . Thus, they can be distinguished from the full quantities (even
though they are conventionally labeled by the same symbol), since these as well as the per-
turbed quantities depend on all comoving coordinates xµ = (~x, τ).

For the purpose of solving the perturbed part of Einstein’s equations for the evolution of
perturbations, let us successively provide a concrete parameterization for δgµν and δT µ

ν .

The form of δgµν depends on the nature of the perturbations (scalar, vector or tensor) under
consideration as well as on the choice of the gauge. Since we are interested in the growth of

3However, the self-interaction potential does not have to be as flat as in the case of a quintessence scalar field [21].
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inhomogeneities, we restrict the following discussion to scalar metric perturbations4 which are
independent from vector and scalar perturbations to linear order. In addition, in this thesis,
we choose to work in synchronous gauge5, in which the publicly available computer code
CMBFAST [202], to be used in our numerical studies presented in Sec. 4.5.2, is implemented.
By definition, in this gauge the components g00 and g0i of the full metric are unperturbed.
Accordingly, the perturbed metric δgµν takes the form (see e.g. [86,89]),

δgµν = a2(τ) diag(0, hij), (4.16)

where hij is a small metric perturbation.

For simplicity, in this thesis we will assume the universe to be flat (ΩK = 0) as predicted by
inflation [76] and as supported by observational data (see e.g. [75]). Accordingly, the full line
element is given by,

ds2 = gµνdxµdxν = a2(τ){−dτ 2 + (δij + hij)dxidxj}, (4.17)

where Eq. (4.14) has been used in combination with Eq. (4.16) and the FRW-line element of
the background stated in Eq. 2.4 in Sec. 2.4. For vanishing curvature K = 0, it is conveniently
expressed in terms of Cartesian coordinates for space-like hyper-surfaces rather than polar
coordinates.

Since for convenience we will be working in Fourier space in the following, let us define the

scalar mode of hij as Fourier integral by introducing two fields h(~k, τ) and η(~k, τ) in k-space,

hij(~x, τ) =

∫
d3kei~k~x{k̂ik̂jh(~k, τ) + (k̂ik̂j −

1

3
δij6η(~k, τ))}, ~k = kk̂, (4.18)

where h denotes the trace of hij both in real and Fourier space. Let us note for later reference
that in terms of h and η the longitudinal traceless space-space parts of the linearized Einstein
equations in Eq. (4.13) define the shear σ by the relation,

ḧ + 6η̈ + 2
ȧ

a
(ḣ + 6η̇)− 2k2η = −24Ga2(ρ(τ) + p(τ))σ, where

(ρ(τ) + p(τ))σ ≡ −(k̂ik̂j −
1

3
δij)Σ

i
j,

Σi
j ≡ T i

j −
δi
j

3
T k

k , (4.19)

and the anisotropic stress Σi
j denotes the traceless component of T i

j (cf. Eq. (4.22). Note that
here and in the following the pure background quantities can be identified, since we explicitly
state their time dependence (cf. the discussion above).

Let us stress that the Fourier decomposition has to be performed with respect to the comoving

4For a review including tensor and vector perturbations we refer the interested reader to Ref. [86].
5Despite its wide-spread use one has to be aware of the residual gauge freedom in this gauge manifested in the

occurrence of spurious gauge modes contained in the solutions to the equations for the density perturbations on
super-horizon scales. However, this is not relevant for this thesis which is only concerned with sub-horizon modes.
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coordinate system. Accordingly, the ‘comoving wavelength λcom is defined as,

λcom =
2π

k
, (4.20)

while the ‘physical wavelength’ λphys is given by

λphys = a(τ)
2π

k
. (4.21)

Note also that as a nice feature of linear perturbation theory different Fourier modes evolve
independently. This is due to the fact that a coupling between them would involve products
of perturbations which are of second order and thus negligible in linear theory. Hence, in the
evolution equations for the perturbations it will not be necessary to keep the integration over
the Fourier modes explicitly as we will make use of later on.

Having defined the perturbed metric entering Eq. (4.13), let us now specify the perturbed
stress-energy tensor of the different particle species which compose the total δT µ

ν . As we
have learned in Sec. 2.5, photons and (ultra-)relativistic neutrinos can only appropriately be
described by their full distribution function in phase space and thus in this case the stress-
energy tensor involves integrals over momenta and the distribution functions. However, we
are interested in the evolution of the universe at late times where photons play a completely
subdominant role and their contribution can therefore be neglected as discussed in Sec. 2.4.
Furthermore, since it turns out that the neutrino perturbations can only possibly become
unstable in the non-relativistic neutrino regime (cf. the discussion in Sec. 4.3), it is convenient
to define certain moments of the distributions as fluid perturbations, just as for CDM and
baryons (cf. Eq. (4.30) and Eq. (4.31)). Therefore, we will in the following discuss the
perturbed stress-energy tensor for a general fluid. Finally, we will discuss the case of a scalar
field relevant for our investigation of the MaVaN perturbations in Sec. 4.4.

The most general first-order perturbation of the stress-energy tensor in fluid notation can be
expressed in terms of four functions all of which depend on the comoving coordinates: the
perturbed energy density δρ, the perturbed pressure δp, the small coordinate three-velocity of
the fluid ui ≡ dxi/dτ (usually assumed to be a first-order perturbation) and the anisotropic
stress Σij (see also Eq. (4.19)). The perturbed stress-energy tensor has the form (see e.g. [86,
89]),

δT µ
ν =

(
−δρ (ρ(τ) + p(τ))ui

−(ρ(τ) + p(τ))ui δp δij + Σij

)
, with Σii=0, (4.22)

where Σij is related to σ as stated in Eq. (4.19). Note that δT µ
ν denotes the perturbed stress-

energy tensor of a perfect fluid in case the anisotropic stress in Eq. (4.22) vanishes.

Since we are interested in the evolution of the coupled neutrino and scalar field perturbations,
let us in the following specify the components of the perturbed stress-energy tensor for a scalar
field,

δT 0
0 = − 1

a2
φ̇δφ̇− V ′

φ(φ)δφ, δT 0
i =

1

a2
φ̇δφ,i, δT i

j =

[
1

a2
φ̇δφ̇− V ′

φ(φ)δφ

]
δi
j, (4.23)
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where primes denote derivatives with respect to φ (′ ≡ ∂/∂φ), and the comma with space
index means differentiation with respect to the corresponding coordinate (,i ≡ ∂/∂xi). For
completeness and for later reference, let us also quote the background part of the stress-energy
tensor of the scalar field in terms of conformal time6,

T 0
0 (τ) =

1

2a2
φ̇2(τ) + V (φ(τ)) = ρφ(τ), (4.24)

T 0
i (τ) = 0, (4.25)

T i
j (τ) =

[
1

2a2
φ̇2(τ)− V (φ(τ))

]
δi
j = pφ(τ)δi

j. (4.26)

After having the metric and the stress-energy tensor at hand, let us now see how the evo-
lution equations for the matter perturbations can be derived. As we have discussed already
in the introductory section, through the Bianchi identities, Einstein’s equations implies the
conservation of the total stress-energy tensor [89],

T µ
ν;µ

(~x, τ) = 0. (4.27)

Furthermore, the stress-energy tensor of each individual uncoupled fluid is separately con-
served7. After plugging in the full stress-energy tensor T µ

ν in k-space and then linearizing
the equations, this implies for the ν = 0 and ν = i component of the perturbed part of the
stress-energy tensor, respectively,

δ̇ = −(1 + ω)

(
θ +

ḣ

2

)
− 3

ȧ

a

(
δp

δρ
− ω

)
δ, (4.28)

θ̇ = − ȧ

a
(1− 3ω)θ − ω̇

1 + ω
θ +

δp/δρ

1 + ω
k2δ − k2σ, (4.29)

with σ as defined in Eq. (4.19) and Eq. (4.22). Furthermore, δ denotes the ‘density contrast’,
which is the fractional departure of the density from the mean,

δ(~x, τ) ≡ ρ(~x, τ)− ρ(τ)

ρ(τ)
=

δρ(~x, τ)

ρ(τ)
, (4.30)

and vi is the ‘divergence of the fluid velocity’

θ ≡ ikivi. (4.31)

As we will see in Sec. 4.4, the requirement of energy-momentum conservation between the
neutrinos and the scalar field demands a modification of the form of the equations in Eqs. (4.28)
– (4.29) which accounts for their interaction.

6See also Sec. 2.4, which assumes cosmic time as a time variable.
7For the unperturbed part of the stress-energy tensor see Sec. 2.4
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4.2 Linear Cosmological Perturbation Theory

Figure 4.1: The measured power spectrum of L∗ galaxies. The red curve is the best fit linear concordance
model introduced in Sec. 2.4.

4.2.1 The Matter Power Spectrum

After having defined the evolution equation for matter perturbations in the last section, let us
in the following briefly introduce the matter power spectrum for later reference in Sec. 4.5.2.

The matter power spectrum P (k) is defined as the Fourier transform of the two-point corre-
lation function ξ(r) of non-relativistic matter density fluctuations δ = δρ

ρ
,

ξ(r) = 〈δ(r′ + r), δ(r)〉 =

∫
d3k

(2π)3
P (k)ei(k/a)·r, (4.32)

where the average is taken over all r′. This gives a measure for the likelihood of finding a
density access at a physical distance r from a given density access. Accordingly, it is

P (k) ∝ |δ(k)|2. (4.33)

The present linear power spectrum is plotted in Fig. 4.1 (the plot is taken from [203]). Obser-
vationally, according to a simple analytical model of structure formation the power spectrum
can be related to the galaxy-galaxy correlation function (cf. e.g. [5]).

4.2.2 Simple Example in Newtonian Theory

For the purpose of developing an intuition for the main physical effects leading to matter insta-
bilities, let us start in this section by sketching the dynamics of hydrodynamic perturbations
in Newtonian theory8 (for references on this subject see e.g. [25, 98, 204]). In addition, this
consideration will help to clarify under which conditions the adiabatic sound speed squared

8It should be noted that the validity of the Newtonian description in general is restricted to sub-Hubble scales at late
times.
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can fully determine the dynamics of hydrodynamic perturbations. In Sec. 4.4 it will turn out
that in a more realistic treatment in the framework of General Relativity, along the lines of
Sec. 4.2, for MaVaNs these conditions are not generally fulfilled.

Let us in the following assume for a moment the universe to be static, meaning non-expanding,
solely filled with a perfect fluid, as introduced in Sec. 2.4. This approach will allow us to
disentangle the different influences on the dynamics of hydrodynamic fluctuations in a matter
species such as of the sound speed, the expansion of the universe and importantly, of other
cosmic energy components emerging in the full treatment in Sec. 4.4. Afterwards it will be
straightforward to understand the evolution equations for the MaVaN density contrast derived
in Sec. 4.4 by linearizing Einstein’s equations about an expanding background.

In the following, we describe gravity by the Newtonian gravitational potential Φ and the matter
content of the universe by a single perfect fluid. As mentioned in Sec. 2.4, it is characterized
by its density ρ, pressure p and velocity ~v (where the latter vanishes in the background).
Furthermore, it is described by the continuity equation, Eulers’s equations as well as the
Possion equation of Newtonian gravity,

ρ̇ +∇(ρ~v) = 0,

~̇v + (~v∇)~v +
1

ρ
∇p +∇Φ = 0,

∇Φ = 4πGρ. (4.34)

Perturbing the fluid variables about the (static) background (ρ(~x, t) = ρ(t)+δρ(~x, t), p(~x, t) =
p(t)+δp(~x, t), ~v = δ~v(~x, t), Φ(~x, t) = Φ(t)+δΦ(~x, t)) and linearizing and combining the hydro-
dynamical equations in Eq. (4.34), for the kth Fourier component of the matter perturbation,

δ(~x, t) =

∫
d3k

(2π)3
ei~k~xδk(t), (4.35)

one arrives at the following simple second order differential evolution equation9,

δ̈k + ( c2
ak

2︸︷︷︸
pressure

− 4πGρ︸ ︷︷ ︸
gravity

) δk = 0, where ωk =
√

c2
ak

2 − 4πGρ. (4.36)

Here, c2
a ≡ ṗ/ρ̇ denotes the adiabatic sound speed squared of the perturbations.

Let us in the following see, which basic conclusions we can draw from Eq. (4.36). Clearly,
the evolution of the matter density contrast depends on the competition of the second and
third term on the left hand side. Taking a closer look at them, we find that the third term
represents the force due to gravity. According to Newton’s second law it is,

δ̈ρk ∝ Gδk, (4.37)

since a density excess δk, localized at some spacetime point ~x, exerts a force ∝ δk which
attracts the surrounding matter towards ~x. Due to the purely attractive nature of gravity, this

9As explained in the last section, in linear theory it is not necessary to keep the integration over the Fourier modes
explicitly.
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corresponds to an instability of flat-space time to the development of density perturbations.
However, the second term on the left represents the counteracting force due to the fluid’s
pressure which in contrast tends to set up acoustic oscillations and inhibits the growth of
instabilities. It should be noted that since we are considering a perfect fluid, the sound speed
squared c2

a and accordingly the perturbations are purely adiabatic and thus p = p(ρ). In the
next section, we will extend the discussion to general fluids and will see how their perturbations
can possibly be stabilized by non-adiabatic pressure10.

Restricting our attention again to adiabatic perturbations we find that their evolution accord-
ing to Eq. (4.36) depends on the sign of ω2

k. One can define a critical scale, the Jeans scale

kJeans =
√

4πGρ/c2
a, marking its sign change which depends on the magnitude of the sound

speed squared and of the matter density. We can thus discriminate between perturbations
with wavenumber

• k � kJeans (ω2
k � 0), whose dynamics are governed by gravity, δk ∝ e±|ωk|t with an

exponentially growing solution (+)

• k � kJeans (ω2
k � 0), where pressure overcomes gravity and the modes oscillate δk ∝

e±iωkt with ωk ∼ cak.

Let us summarize what we have learned from the considered example of hydrodynamics matter
perturbations of a single fluid in Newtonian theory in a static universe. We have seen that
perfect fluids can only exhibit adiabatic perturbations characterized by an adiabatic sound
speed squared. Furthermore, for a given background density of the fluid, the perturbation
evolution can be directly inferred from the value of the fluid’s sound speed squared. The
larger it is, the shorter is the time scale, τpressure ' (kca)

−1, associated with the response of
the fluid’s pressure which has to be compared with the dynamical time scale for gravitational
collapse τgrav = (=(ω))−1 ' (4πGρ)−1/2. Therefore, gravitational instabilities can only occur,
if the time scale for gravitational collapse is shorter then the time scale for the ’pressure
response’. Accordingly, the fluctuations in a single, non-interacting perfect fluid can only be
stabilized against gravitational instability on scales, where the effects of the fluid’s pressure
can respond to the gravitational attraction and thus restore hydrostatic equilibrium.

In Sec. 4.4 we will perform a more realistic investigation of the evolution of cosmological per-
turbations by taking into account the effects of the expansion, the gravitational backreaction
to metric perturbations and the stabilizing effect of the presence of non-adiabatic pressure.
Our ultimate goal is to identify conditions for a stabilization of MaVaN perturbations on all
physical scales due to a combination of these additional effects. Of particular relevance will
be the gravitational backreaction effect which will turn out to allow other cosmic components
to govern (and thus to stabilize) the dynamics of MaVaN perturbations, largely independent
of the value of the MaVaN sound speed squared.

10Since it turns out that in general the pressure is not a unique function of the energy density, the general fluid’s
equation of state can exhibit spatial variations (in contrast to the adiabatic fluid).

81



On the Stability of Neutrino Dark Energy

4.3 The Nature of the Sound Speed Squared

In the last section, we have seen that in the case of an uncoupled perfect fluid the only
growth slowing effect is provided by the fluid’s pressure. Its relative influence is encoded in
the sound speed squared which is thus a good quantity to fully characterize the dynamics of
the perturbations.

Let us in this section discuss alternative processes which influence the nature of the sound
speed squared and generally tend to inhibit the growth of perturbations. By these means we
can already see that the occurrence of MaVaN instabilities depends on the nature of the sound
speed squared and in accordance identify scales k and regimes where instabilities are generally
precluded. For this purpose, we will proceed by defining the sound speed squared for a general
fluid component labeled by i. It takes the following form,

c2
si =

δpi

δρi

, (4.38)

where pi and ρi denote the fluid’s pressure and energy density, respectively. The sound speed
c2
si can be expressed in terms of the sound speed c2

ai arising from purely adiabatic perturbations
as well as from an additional entropy perturbation Γi and the density contrast δi = δρi/ρi in
the rest frame of the perturbations [205–207]11,

wiΓi = (c2
si − c2

ai) δi, (4.39)

=
ṗi

ρi

(
δpi

ṗi

− δρi

ρ̇i

)
. (4.40)

Here wi denotes the equation of state parameter and Γi is a measure for the relative dis-
placement between hyper-surfaces of uniform pressure and uniform energy density. For most
Dark Energy candidates (like quintessence or k-essence) dissipative processes evoke entropy
perturbations and thus Γi 6= 0.

However, in contrast to adiabatic perturbations, entropy perturbations do not grow [98]. In
general, the presence of dissipative processes stabilizes the perturbations in MaVaN and thus
prevents the possible formation of non-linear structure in the neutrino density. Consequently,
in the relativistic neutrino regime, on all sub-Hubble scales MaVaN perturbations are stabi-
lized by the combined effects of the (non-adiabatic) pressure in neutrinos and the neutrino
free-streaming [101] in the background spacetime arising from the large momentum of (sub-)
eV mass neutrinos [208, 209]. However, when neutrinos turn non-relativistic, both the neu-
trino pressure and the free-streaming scale12 of neutrinos drops. Accordingly, in this regime,
the effective mass of the scalar field ∼ mφ � H turns out to set the scales where MaVaN
perturbations can possibly become unstable. More precisely, on scales a/k & m−1

φ the gradient
terms in Eq. (4.39) become unimportant and thus the sound speed becomes adiabatic [57,210]
(for an analytical derivation see [211,212]).

11Note that for c2
si > 0 non-adiabatic pressure support is obtained, which can apparently stabilize the perturbations,

since wiΓi ∝ δi [205].
12It corresponds to the typical distance neutrinos can propagate in a Hubble time in the background space-time due

to their mean thermal velocity [208,209].
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As an important difference to a quintessence field with finely-tuned mass . H and long range
& H−1, the Compton wavelength of the scalar field m−1

φ in the MaVaN scenario is much
smaller than the Hubble radius. While this certainly is desirable to make the scalar field
more plausibly stable against radiative corrections, as a direct consequence, on sub-Hubble
scales a/k > m−1

φ all dynamical properties of (non-relativistic) MaVaNs are set by the local
neutrino energy density [57]. In particular, for small deviations away from the minimum of
its effective potential, the scalar field re-adjusts to its new minimum on time scales ∼ m−1

φ

small compared to the characteristic cosmological time scale H−1. Accordingly, on these scales
m−1

φ < a/k < H−1, the hydrodynamic perturbations in MaVaNs are adiabatic and can thus
possibly grow (cf. the discussion in the last section, the pressure is a unique function of the
energy density). Therefore, to analyze the stability of a given model, in the following, we will
concentrate on the adiabatic regime of perturbations in the non-relativistic neutrino regime.
This implies that the system of non-relativistic neutrinos and the scalar field can be treated
as a unified fluid with pressure pDE = pν + pφ and energy density ρDE = ρν + ρφ without
intrinsic entropy, ΓDE = 0.

As it will turn out later on, the influence of the cosmic expansion in combination with the
gravitational drag exerted by CDM on the neutrinos can have a major influence on the sta-
bility of a MaVaN model. However, let us inquire in the following whether in the absence
of any growth-slowing effects there is still the possibility that the MaVaN scenario does not
become unstable in the adiabatic regime of perturbations. Let us for this purpose see how
the requirement can be met that the perturbations are characterized by a positive adiabatic
sound speed squared,

c2
a =

ṖDE

ρ̇DE

=
ẇρDE + wρ̇DE

ρ̇DE

= w − ẇ

3H(1 + w)
> 0, (4.41)

which follows from the requirement of energy conservation and from Eq. (4.40). In the case
c2
a > 0 the attractive scalar force will be offset by pressure forces and the fluctuations will thus

oscillate as sound waves and therefore not grow (cf. the discussion in the last section).

After generalizing the above treatment to include three neutrino generations, it can be shown [60]
that the requirement of positive sound speed squared in Eq. (4.41) leads to the following sta-
bility condition on the mass evolution for mνi

(a) � Tν(a) with i = 1, 2, 3,

3∑
i=1

∂mνi
(a)

∂a
a2

(
5αT 2

ν0
(a)

3m2
νi

(a)
− 1

)
+

3∑
i=1

25αT 2
ν0

(a)

3amνi
(a)

> 0, with

α ≡

∞∫
0

dy y4

ey+1

2
∞∫
0

dy y2

ey+1

' 6.47. (4.42)

We would like to point out that under the assumption of a degenerate neutrino mass spectrum
with mνi

(z) ∼ mν(z), we can solve the resulting first order differential equation in mν(z) for
the maximally allowed mass evolution in an adiabatic MaVaN model with positive sound speed
squared. In Fig. 4.2 the solution mν(z) is plotted for mνi

(0) ∼ mν(0) = 0.312 eV. We find that
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Figure 4.2: Maximally allowed mass evolution in a model with positive sound speed squared for a degenerate
neutrino mass spectrum with mνi(0) ∼ mν(0) = 0.312 eV, where i = 1, 2, 3.

in case the perturbations are not stabilized by growth-slowing effects to be discussed later on,
the condition of positive sound speed squared severely constrains the allowed neutrino mass
variation at late times, where finite temperature effects become less important. This can also
be understood from an intuitive argument. Namely, in order to achieve a large neutrino mass
variation, the scalar field has to transfer a substantial amount of energy to the neutrinos.
However, as a consequence of the increase in the mass of the neutrinos, also the attraction
felt between neutrinos rises. This favors the growth of instabilities as reflected by a negative
sound speed squared.

In the following we will argue that this result remains valid in the case of a hierarchical neutrino
mass spectrum independent of the absolute neutrino mass scale. Therefore, let us consider
two different scenarios possibly realized in nature. Either all neutrinos are (highly) non-
relativistic today such that Eq. (4.42) is applicable which requires that all the neutrino masses
are essentially constant at late times. Or, as allowed by neutrino oscillation experiments,
one neutrino mass eigenstate is still relativistic today. It has been shown for a large class of
MaVaN models that this case can only be realized if the heaviest, non-relativistic neutrino
is stable [59]. Otherwise, the scalar field VEV and thus the neutrino masses are driven to a
new scale such that none of the neutrinos remains relativistic until today. This results in a
cascaded instability of the system because all components become unstable at nearly the same
time.

Possible alternative scenarios are so-called hybrid MaVaN models which involve a second light
scalar field [22, 59]. Since they allow for a steeper scalar potential, while accomplishing late-
time acceleration, they can be stable even in the presence of an unstable component until the
present time. One such stable and thus viable example was discussed in Sec. 3.1, where the
lightest neutrino was assumed to be still relativistic today.
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Consequently, at least in the class of models possibly subject to a cascaded instability, the
stability condition requires the mass of the heaviest, non-relativistic neutrino to be essentially
constant at late times. Therefore, in the case that all neutrino masses have the same de-
pendence on the scalar field value and thus on cosmic time, their mass variation is likewise
restricted.

Let us note again, for simplicity, in the following stability analysis we will assume a degenerate
neutrino mass spectrum corresponding to three highly non-relativistic neutrinos today. How-
ever, largely independent of the absolute scale and spectrum of neutrino masses our results
can be generalized to apply for all standard MaVaN models possibly subject to a cascaded
instability.

4.4 How to Stabilize Mass Varying Neutrino Instabilities

In this section we will analyze the linear MaVaN perturbations in k-space in the synchronous
gauge as introduced in Sec. 4.2, which is characterized by a perturbed line element of the form
stated in Eq. (4.17) in Sec. 4.2. Let us note, that for simplicity, here and in the following we
will suppress the time dependence of ρ and other background quantities (cf. the discussion in
Sec. 4.2).

As mentioned in Sec. 2.4 and Sec. 4.2, in contrast to essentially uncoupled cosmic components,
the stress-energy tensor T µ

γ of neutrinos is not separately conserved in the presence of an
interaction with a scalar field [44,213]. One finds,

T µ
γ;µ

=
d log mν

dφ
φ,γ T µ

µ , (4.43)

where the term on the right hand side takes account of the non-standard interaction with φ.
Accordingly, the fluid perturbation equations stated in Eqs. (4.28) – (4.29) in Sec. 4.2 are
augmented by terms which depend on the scalar field perturbations δφ. Namely, from the
γ = 0 component of Eq. (4.43) it follows,

δ̇ν = 3
(
H + βφ̇

) (
wν − c2

ν

)
δν − (1 + wν)

(
θν +

ḣ

2

)
+ β (1− 3wν) δφ̇ + β′φ̇δφ (1− 3wν) , (4.44)

where β = d log mν

dφ
and cν = δpν/δρν is the neutrino sound speed (cf. Eq. (4.38)). Note that

it can directly be calculated from the sound speed of the combined fluid and the scalar field
perturbations.

Furthermore, the trace of the metric perturbation, h ≡ δijhij, according to the linearized
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Einstein equations satisfies [89],

ḧ +Hḣ =
a2

M2
pl

[δT 0
0 − δT i

i ], where (4.45)

δT 0
0 = − 1

a2
φ̇δφ̇− V ′

φ(φ)δφ−
∑
m

ρmδm, (4.46)

δT i
i =

3

a2
φ̇δφ̇− 3V ′

φ(φ)δφ +
∑

r

ρrδr + 3c2
bρbδb + 3c2

νρνδν , (4.47)

where the last two equations can be derived by taking Eq. (4.23) in Sec. 4.2 into account.
Note that δT µ

ν denotes the total perturbed stress-energy tensor and the subscripts m and r
collect neutrinos, radiation, CDM and baryons (with sound speed cb) as well as (relativistic)
neutrinos and radiation, respectively.

The evolution equation for the neutrino velocity perturbation θν ≡ ikiv
i
ν with vi

ν ≡ dxi/dτ
reads,

θ̇ν = −H(1− 3wν)θν −
ẇν

1 + wν

θν +
c2
ν

1 + wν

k2δν

+ β
1− 3wν

1 + wν

k2δφ− β(1− 3wν) φ̇ θν − k2σν , (4.48)

where σν denotes the neutrino shear introduced in the last section, which is suppressed in the
non-relativistic neutrino regime [89].

Finally, the perturbed Klein-Gordon equation for the coupled scalar field is given by [44]

δ̈φ + 2H ˙δφ +
[
k2 + a2

{
V ′′

φ + β′(ρν − 3pν)
}]

δφ +
1

2
ḣφ̇ = −a2βδνρν(1− 3c2

ν). (4.49)

We note that instead of proceeding via the fluid equations, Eqs. (4.44) and (4.48), the evolution
of the neutrino density contrast can be calculated from the Boltzmann equation [89]. We have
verified analytically and numerically that the two methods yield the same results provided that
the scalar-neutrino coupling is appropriately taken account of in the Boltzmann hierarchy [214].

As discussed in Sec. 4.3, MaVaNs models can only possibly become unstable on sub-Hubble
scales m−1

φ < a/k < H−1 in the non-relativistic regime of the neutrinos, where the perturba-
tions evolve adiabatically. For our numerical results in the next section we solve the coupled
Eqs. (4.44) – (4.49) in the (quasi-)adiabatic regime by neglecting the neutrino shear σν . As we
have checked by the help of the Boltzmann treatment mentioned above, this approximation is
justified, since the shear is generally suppressed in the non-relativistic neutrino regime, where
mν is much larger than the mean momentum of the neutrino distribution. In addition, this
effect is amplified by the presence of a strong coupling [89].

For the purpose of gaining further analytical insight into the evolution of the neutrino density
contrast, it is instructive to apply additional approximations to Eqs. (4.44) – (4.49) to be
justified in the following.
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Since the minimum of the effective potential tracked by the scalar field evolves only slowly
due to changes in the neutrino energy density, we can safely ignore terms proportional to φ̇.
Moreover, in the non-relativistic regime of the neutrinos on scales m−1

φ < a/k < H−1, as a

consequence of pν ∼ 0 it follows that σν ∼ 0 and wν ∼ 0 as well as ρr ∼ c2
b ∼ 0. In addition,

in the following we substitute δφ by its average value corresponding to the forcing term on
the right hand side of Eq. (4.49) in the above limits,

δφ̄ = − βρνδν(1− 3c2
ν)

(V ′′
φ + ρνβ′) + k2

a2

, (4.50)

which solves the perturbed Klein-Gordon equation reasonably well on all scales [213, 215].
Finally, by combining the derivative of Eq. (4.44) with Eqs. (4.45) – (4.48) and Eq. (4.50) in
the non-relativistic limit, we arrive at the equation of motion for the neutrino density contrast
valid at late times on length scales m−1

φ < a/k < H−1 for cν � 1,

δ̈ν +Hδ̇ν +

(
c2
νk

2 − 3

2
H2Ων

Geff

G

)
δν =

3

2
H2

[
ΩCDM + Ωb

]
δCDM

(4.51)

where,

Geff = G

(
1 +

2β2M2
pl

1 + a2{V ′′
φ + ρνβ′}/k2

)
and (4.52)

Ωi =
a2ρi

3H2M2
pl

. (4.53)

Since deep in the matter dominated regime the baryon density contrast has caught up with
that of CDM, we have used δb = δCDM. Note that this equation is of a similar form as Eq. (4.36)
in Sec. 4.2.2 (taking into account that 4πGρa2 = 3/2H2), however, it is amended by two terms.
Firstly, there is a friction term ∝ H due to cosmic expansion which would moderate an expo-
nential growth of perturbations to take a power law form. Secondly, most importantly, as we
will see in the following, an additional source term is present which describes the gravitational
effect on the MaVaN perturbations exerted by other important cosmic components, namely
CDM and baryons.

Let us also note that since neutrinos not only interact through gravity, but also through the
force mediated by the scalar field, they feel an effective Newton’s constant Geff as defined in
Eq. (4.52). The force depends upon the MaVaN model specific functions β and Vφ and takes
values between G and G(1 + 2β2M2

pl) on very large and small length scales, respectively. The

scale dependence of Geff is due to the finite interaction range of the scalar field (V ′′
φ + ρνβ

′)−
1
2 .

Accordingly, in a MaVaN model both, the scalar potential Vφ and the coupling β influence
the range of the scalar field force felt by neutrinos, whereas its strength is determined by the
coupling β.

Let us now have a closer look at the right hand side of the Eq. (4.51). The forcing term encodes
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the effect of the perturbations in other cosmic components on the dynamics of the neutrino
density contrast and apparently competes with the scalar field dependent term ∝ Geff

G
Ωνδν

on the left hand side of Eq. (4.51). Correspondingly, apart from the scalar field mediated
force the neutrinos feel the gravitational drag exerted by the potential wells formed by CDM.
Consequently, as long as the coupling function β does not compensate for the relative smallness
of Ων and thus enlarges the influence of the term ∝ Geff

G
Ωνδν , the neutrinos will follow CDM

(like baryons) just as in the standard cosmological model, since the influence of the scalar field
is subdominant | − 3/2H2Geff/GΩν | � 3/2H2(ΩCDM + Ωb).

Accordingly, as the central result of this section, the stability condition is found to translate
into an upper bound on the scalar-neutrino coupling,

β <

√
ΩCDM + Ωb − Ων

2M2
plΩν

. (4.54)

Accordingly, we find that as a direct consequence of the relative smallness of the neutrino
masses, due to which neutrinos provide a much smaller fraction to the total energy density than
CDM and baryons, Ων � (ΩCDM + Ωb), in principle the coupling can be much stronger than
of gravitational strength β � 1/Mpl. More precisely, whereas ΩCDM ∼ 0.22 and Ωb ∼ 0.044
at present (cf. Sec. 2.4), Ων depends on the so far not known absolute neutrino mass scale
realized in nature (cf. the discussion in Sec. 2.6.4). Taking as a lower bound the mass splitting
deduced from atmospheric neutrino flavor oscillation experiments (stated in Sec. 2.6.3) and
the upper bound derived from tritium beta-decay experiments (as stated in Sec. 2.6.4), we get
7× 10−4 . Ων . 0.12 today 13.

Consequently, depending on the actual neutrino mass scale realized in nature, according to
current experimental data the scalar-neutrino coupling in principle could take values14,

1M−1
pl . β . 14M−1

pl . (4.55)

It is important to note that since in the standard MaVaN scenario the neutrino mass is an
increasing function of time, at earlier times the ratio Ων/(ΩCDM+Ωb) was even more suppressed
than today. In general, it follows that the smaller this ratio is, the larger becomes the relative
influence of the forcing term on the right hand side of Eq. (4.51) and therefore its stabilizing
effect on the perturbations.

However, let us stress again that independent of the absolute neutrino mass scale realized
in nature, we found that the coupling can be at least of gravitational strength O(1/Mpl). It
should be noted for comparison that the evolution of perturbations in cold dark matter (CDM)
coupled to a light scalar field in coupled quintessence [215] and chameleon cosmologies [216]
is governed by an equation similar to Eq. (4.51). However, we would like to point out that

13Note that if the upper limit from the Mainz experiment is saturated, the requirement Ων � ΩCDM is formally not
satisfied. However, this case should be viewed as very extreme and is most likely excluded based on structure
formation arguments.

14It should be noted that in case a very low neutrino mass scale is realized in nature, models not possibly subject to a
cascaded instability (as defined in Sec. 4.3) can be stabilized by the pressure in a relativistic neutrino and therefore
are not required to fulfill the following condition in order to be stable, see Sec. 3.1.
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for the same coupling functions the dynamics of the perturbations in neutrinos can be quite
different from those in coupled CDM as a direct consequence of the relative smallness of
neutrino masses.

Based on the result in Eq. (4.54), in the following we classify the behavior of the neutrino
density contrast in models of neutrino Dark Energy subject to all relevant kinds of coupling
functions β. In the small-scale limit we distinguish the following three cases

a) For β <
√

ΩCDM+Ωb−Ων

2M2
plΩν

until the present time, GeffΩνδν < GΩCDMδCDM, the neutrino

density contrast is stabilized by the CDM source term which dominates its dynamics.
In this case the influence of the scalar field on the perturbations is subdominant and
the density contrast in MaVaNs grows moderately just like gravitational instabilities in
standard uncoupled neutrinos.

b) For β ∼ const. and much larger than all other parameters at late times, Geff � G,

the damping term Hδ̇ν in Eq. (4.51) as well as the terms proportional to δCDM can be
neglected, leading to exponentially growing solutions.

c) For β 6= const. and growing faster than all other parameters at late times, Geff � G, δν

is growing faster than exponentially15.

In contrast, on scales (V ′′
φ + ρνβ

′)−1/2 � a/k < H−1 much larger than the range of the φ-
mediated force,

d) For β ∼ const. and of moderate strength, Geff ∼ G and the perturbations behave effec-
tively like perturbations for uncoupled fluids in General Relativity.

e) For β growing faster than all other quantities at late times, Geff � G, instabilities develop
on all sub-Hubble scales a/k > (V ′′

φ + ρνβ
′)−1/2 according to c). However, on large length

scales their growth rate is suppressed due to the corresponding small wave number k.

We note that we can directly compare our results with the findings stated in Ref. [57] by
recasting Eq. (4.51) for c2

ν � 1 and m−1
φ . a/k . H−1 into the simple form,

δ̈ν +Hδ̇ν +

[
c2
a

c2
a + 1

k2 − 3

2
H2Ων

]
δν =

3

2
H2

[
ΩCDM + Ωb

]
δCDM. (4.56)

Apparently, as a consequence, all the effects of the scalar-neutrino coupling on the evolution of
δν are encoded in the term governed by the total adiabatic sound speed squared c2

a as defined
in Eq. (4.41) in the last section and in addition, one recovers an ordinary gravitational term
for neutrinos ∝ δν . Clearly, as soon as c2

a turns negative (but > −1), the term ∝ k2 will
change its sign and thus also its nature. Namely, it will amplify the effect of the gravitational

15In the limit β(τ) → ∞ for τ → ∞, Eq. (4.51) takes the form δ̈ν − 3H2Ων
β2(τ)M2

pl
1+a2(V ′′

φ
+ρνβ′)/k2 δν = 0, and it can be

shown that | δ̇ν
δν
| → ∞ for τ →∞ [217]. Since this ratio is constant and thus not large enough for an exponentially

growing δν , the solution is required to grow faster than exponentially.
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term for neutrinos ∝ δν , which tends to drive instabilities to grow (cf. also the discussion in
Sec. 4.2.2). However, by approximating δν ∼ δCDM, we find that as long as on a scale k < mφ

at present the following relation holds16,

|ca|√
ca + 1

.

√
3

2

H
k

√
ΩCDM + Ωb + Ων (4.57)

until today the MaVaN perturbations will be stabilized by CDM which governs the dynamics
(cf. a)), largely independent of the sign of the sound speed squared. Therefore, only in case the
stabilizing effect of CDM on the neutrino perturbations becomes negligible, i.e. if Eq. (4.57)
does not hold anymore, the negative sign of the sound speed squared can indicate a strong
growth of the neutrino density contrast (cf. b),c)), which was not noted in Ref. [57]. Note
also that the stability condition in Eq. (4.57) becomes easier to fulfill, the larger the scale k is.
This again demonstrates that if instabilities occur, the phenomenon is of a rather local nature
(cf. the discussion in Sec. 4.6.1).

4.5 Representative Examples

4.5.1 Significant Potentials and Couplings

In the following, we consider two combinations of scalar potentials Vφ(φ) and of scalar-neutrino
couplings β which define representative MaVaN models and comply with the requirements
discussed in Sec. 4.1. The potentials are chosen to accomplish the correct cosmology and for
the time dependence of the couplings we take meaningful limiting cases.

Firstly, we consider a MaVaN model suggested by [21] which we will refer to as the log-linear
model. The scalar field has a Coleman-Weinberg type [218] logarithmic potential,

Vφ(φ) = V0 log(1 + κφ), (4.58)

where the constants V0 and κ are chosen appropriately to yield ΩDE ∼ 0.7 and mφ � H today.

Furthermore, the neutrino mass mν is assumed to be inversely proportional to φ,

mν(φ) =
m̄2

φ
. (4.59)

Such a dependence naturally emerges in the framework of the see-saw mechanism [32–35]. As
discussed in Sec. 3.1, in this case the light neutrino mass mν arises from integrating out a
heavier sterile state, whose mass varies linearly with the value of the scalar field (as employed
e.g. in Refs. [21,57,59]).

According to Eq. (4.4) in Sec. 4.1 the combined potential Vφ, composed of the neutrino density
ρν and Vφ, determines the evolution of φ as plotted in the left panel of Fig. 4.3. It is illustrated

16Note that in order for a model to be stable on all scales, the relation has to be satisfied for k = mφ. Note also that
for a given ca, the following equation expressed as equality defines a sort of Jeans scale kJeans which separates the
stable and unstable regime of perturbations (cf. the discussion in Sec. 4.2.2).
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Figure 4.3: The effective potential V (thick lines), composed of the scalar potential Vφ (dashed) and the
neutrino energy density ρν . Left: Logarithmic potential of Eq. (4.58) plotted for three different redshifts, z = 5
(solid), z = 4 (dashed-dotted), z = 3 (dotted). The VEV of φ tracks the minimum of V (marked by X) and
evolves to smaller values for decreasing redshift. Right: Power law potential of stated in Eq. (4.61) plotted for
two different redshifts, z = 1 (solid), z = 0 (dotted), φ evolves to larger values for decreasing redshift.

that the competition of the two terms results in a minimum of V at an intermediate value
of φ, which slowly evolves due to changes in the neutrino energy density. As the universe
expands and ρν dilutes, both the minimum and the scalar field are driven to smaller values
towards zero.

According to Eq. (4.59) this model is characterized by a field dependent coupling,

β(φ) =
1

m

∂m

∂φ
= −1

φ
. (4.60)

Since the value of φ decreases with time (cf. Fig. 4.3) this means that the rate of energy transfer
between the scalar field and the neutrinos and also the attraction felt between neutrinos
increases with time. Consequently, both the neutrino mass mν in Eq. (4.59) and thus also the
energy density in the non-relativistic neutrinos, ρν ' mνnν , blow up when φ approaches zero.
Thus, from these qualitative considerations it can already be expected that the model will run
into stability problems in the non-relativistic neutrino regime.

Let us now consider a second set-up proposed in the context of chameleon cosmologies [216,
219], which we will refer to as the power-model. The scalar field has an exponential potential
which at late times reduces to an inverse power-law potential,

Vφ = M4 exp
Mn

φn
∼ M4

(
1 +

Mn

φn

)
, (4.61)
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since then φ � M . Furthermore, the mass parameter M is fixed by the requirements ΩDE ∼
0.7 and mφ � H. In the right panel of Fig. 4.3 the evolution of φ is plotted. In contrast to the
first model, the expectation value of φ is increasing with time. Note that the scalar potential
Vφ thus at late times very weakly depends on changes in the VEV of φ, since Vφ ∼ M4 = const.
for φ � M .

In this model the dependence of the neutrino mass on the scalar field is taken to be,

mν = m̄eβφ, (4.62)

which is of a form expected in a special type of scalar-tensor theory, in which the scalar degree
of freedom only couples to neutrinos in a conformal way (as e.g.. in [44]). It is important to
note that for this model the coupling is constant,

β =
1

mν

∂mν

∂φ
= const. (4.63)

Since according to Fig. 4.3 φ � 1 until the present time, even for β � 1
Mpl

the exponential

function in Eq. (4.63) takes values close to 1. Accordingly, the neutrino mass in Eq. (4.62)
depends only weakly on changes in the scalar field VEV and thus hardly evolves with time.
In contrast to the log-linear model the effective potential V in Fig. 4.3 only evolves due to
the dilution of the neutrino energy density and not additionally due to the mass variation.
Furthermore, unlike the log-linear model, the attractive force between neutrinos is essentially
time independent in favor of the stability of the scenario.

4.5.2 Stable and Unstable Scenarios – Numerical Results

In this section we present the numerical results of our stability analysis for the two MaVaN
models introduced in the last section. They are obtained from modifying the CMBFAST
code [202] to include a light scalar field coupled to neutrinos and were checked by altering
the CAMB code [220] accordingly. We assume a neutrino energy density of Ων ∼ 0.02, which
corresponds to the energy density in three neutrino species with degenerate mass mνi

(z =
0) ∼ 0.312 eV � Tν0 being highly non-relativistic today. It should be noted that this roughly
corresponds to the current conservative upper limit on the sum of neutrino masses (∼ 1 eV,
cf. Sec. 2.6.4) from CMB and Large Scale Structure data [6, 129,134] 17.

Log-Linear Model

The log-linear model is defined by Eq. (4.58) and Eq. (4.59). By adjusting the parameter V0

for a fixed value of κ = 1020M−1
pl in Eq. (4.58), standard cosmology (cf. Sec. 1) at present can

be accomplished, where ΩDE = Ων + Ωφ. This model will serve to illustrate the occurrence of
instabilities.

17Note that those constraints were obtained assuming non-interacting neutrino models. Hence this assumption could
be relaxed.
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Figure 4.4: Left: a) Neutrino mass mν (solid) and temperature Tν (dotted) as a function of redshift. b)
Adiabatic Dark Energy sound speed squared c2

a as a function of redshift. c) (Unnormalized) density contrast
in neutrinos (solid) δ̃ν and for comparison in CDM δ̃CDM (dash-dotted) as a function of redshift on a scale k =
0.1 Mpc−1. Right: a) Scalar-neutrino coupling which increases for decreasing redshift. b) Comparison of the
scalar field dependent term Geff/GΩνδν and the CDM term ∝ ΩCDMδCDM from Eq. (4.51). c) (Unnormalized)
density contrast in neutrinos (solid) δ̃ν and in CDM δ̃CDM (dash-dotted) (cf. left panel)

The mass of φ at present determined from Eq. (4.6) is mφ � H. Consequently, as discussed
in Sec. 4.3, the Compton wavelength of the scalar field, m−1

φ , sets the scales on which the
perturbations in (non-relativistic) MaVaNs are adiabatic and thus can possibly become un-
stable at present, H � k . 0.1 Mpc−1 (cf. the discussion in Sec. 4.3). In Fig. 4.4 we present
our results for the evolution of the neutrino mass, the adiabatic sound speed squared and the
density contrast to be discussed in the following.

a) The evolution of the neutrino mass mν(z) and the neutrino temperature Tν(z) = Tν0(1+
z) is plotted as a function of redshift. As long as mν(z) � Tν(z), the neutrinos are
relativistic, whereas for mν(z) � Tν(z) they have turned non-relativistic. The transition
takes place at roughly z + 1 ∼ 7, i.e. when mν(z) ' Tν(z)/3. One interesting feature is
that for z → 0 the neutrino mass grows as mν(z) ∝ a3 so that ρν → const..

b) A plot of the total adiabatic sound speed squared of the coupled fluid c2
a. It decreases

when the neutrinos approach the non-relativistic regime mν(z) � Tν(z)(cf. a)). This is
due to the drop in the neutrino pressure from initially pν ∼ 1/3 to pν ∼ 0 well after the
transition of regimes.

c) A plot of the (unnormalized) density contrast in neutrinos δ̃ν , and for reference in cold

dark matter (CDM) δ̃CDM on a scale of k = 0.1 Mpc−1. As long as the neutrinos are
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still relativistic (mν(z) � Tν(z) cf. a)), the perturbations in the strongly coupled scalar-
neutrino fluid oscillate like sound waves. However, after the non-relativistic transition,
mν(z) > Tν(z)/3, the neutrino pressure support drops and cannot offset the attractive
force anymore to stabilize the perturbations. At the same time, the neutrino mass
rises rapidly, thus as a result of both, the total sound speed squared is quickly driven to
negative values as demonstrated in the left panel of Fig. 4.4 b). Finally, after the effective
sound speed squared has turned negative, the neutrino density contrast grows at a much
faster rate than the density contrast in CDM.

A deeper insight into the perturbation evolution can be gained from considering the
evolution of the scalar neutrino coupling β for this model as plotted in a) of the right panel
of Fig. 4.4. Since our choice of a large κ corresponds to φ � Mpl at late times, β is driven
to larger and larger values, while the VEV of φ approaches zero (cf. the discussion in the
last section). Accordingly the effective Newton’s constant Geff felt by neutrinos increases
rapidly with time, and the scalar field transfers more and more energy to the neutrinos
causing mν to increase (cf. a)). Finally, when β is almost three orders of magnitude larger
than the gravitational coupling, it clearly over-compensates for the relative smallness of
the neutrino energy density and starts to dominate the dynamics. Namely, the scalar
field mediated force causes δ̃ν to grow faster than exponentially (cf. also the discussion in
Sec. 4.4) as shown in c) Fig. 4.4 c), since the stabilizing effect on the MaVaN perturbations
achieved by the gravitational drag exerted by CDM becomes negligible. To further
illustrate this, for comparison we have plotted the relative magnitudes of the scalar-field-
induced term Geff/GΩνδν and the CDM forcing term ∝ ΩCDMδCDM from Eq. (4.51), the
evolution equation of the neutrino density contrast in Sec. 4.4.

In the following, we will argue that as a result the neutrino density contrast has already
turned non-linear in the past. Therefore, we take into account the normalization of the
CDM density contrast which gives us a rough estimate for the normalization of δ̃ν . As
long as the dimensionless power spectrum ∆2(k) = k3P (k)/(2π2) < 1, due to the rough
proportional to ∝ δ2

CDM, CDM perturbations on a scale k are linear (cf. Sec. 4.2.1 and
Fig. 4.1, where we have introduced the power spectrum P (k)). Since on the considered
scale of k = 0.1 Mpc−1 we have ∆2(k) ∼ 0.3 − 0.4 [5] for CDM, we can infer that for

neutrinos ∆2(k) ∝ δ2
ν > 1, when δ̃ν exceeds δ̃CDM by more than a factor of

√
2. This is the

case at roughly 1 + z ∼ 5, while afterwards linear perturbation theory cannot be trusted
anymore. It is thus likely that neutrinos in this model are subject to the formation of
non-linear structure in the neutrino energy density [57,58] before the present time.

Our numerical results presented in Fig. 4.4 demonstrate that the total sound speed squared in
the log-linear model is negative at late times and since any growth-slowing effects by CDM are
rendered negligible, this corresponds to a fast growth of perturbations. Thus, inevitably, the
neutrino density contrast is driven into the non-linear regime and the model becomes unstable
with the possible outcome of the formation of neutrino bound states [57].

It should, however, be noted that in case the neutrino mass scale realized in nature is lower
than assumed in our analysis, the stabilizing effect of CDM in combination with the pressure
support in (quasi)-relativistic neutrinos could prevent a clumping of neutrinos until the present
time (cf. Sec. 3 where a relativistic neutrino for the same coupling function prevents the
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occurrence of instabilities).

Power-Law Potential

The inverse power-law potential is defined by Eq. (4.61) and Eq. (4.62). We assume n = 0.3
in Eq. (4.61) and adjusted the mass parameter M to accomplish the correct cosmology at
present. Furthermore, we take β = 1/Mpl in Eq. (4.62). With these choices of parameters
the mass of the scalar field at present is mφ ∼ 0.1 Mpc−1 � H and accordingly the MaVaN
perturbations are adiabatic on sub-Hubble scales k . mφ. This model will serve as an example
for a stable model.

We perform our perturbation analysis on a scale k = 0.1 Mpc−1 where possible instabilities
would grow fastest and illustrate our results in Fig. 4.5 to be described in the following.

a) The evolution of the neutrino mass mν(z) and the neutrino temperature Tν(z) in the
non-relativistic regime mν(z) � Tν(z) is plotted as a function of redshift. Since the
neutrino mass depends only weakly on changes in the scalar field VEV, it hardly evolves
with time (cf. Sec. 4.5.1).

b) The evolution of the total sound speed squared c2
a of the coupled Dark Energy fluid is

plotted as a function of redshift. We observe that c2
a takes positive values even in the

highly non-relativistic regime of the neutrinos.

c) The evolution of the density contrast in neutrinos δ̃ν , and cold dark matter δ̃CDM is
plotted as a function of redshift. It is found that the density contrast in MaVaNs grows
just as in uncoupled neutrinos in General Relativity. How can this be understood? In
contrast to the log-linear model, the coupling between the scalar field and the neutrinos is
constant and the neutrino mass very weakly depends on changes in the scalar field VEV.
Accordingly, both the energy transfer of the scalar field to the neutrinos as well as the
attraction felt between neutrinos hardly increase with time but essentially stay constant.
As a result, the effects of the scalar field on the neutrino perturbations is subdominant
with respect to the gravitational influence of CDM which thus governs the dynamics just
as in the absence of the scalar field. In other words, the analytical stability condition
stated in Eq. (4.54) in Sec. 4.4 is fulfilled until the present time.

As a result, the growth of δ̃ν (as well as of mν(z)) with time remains moderate and δ̃ν

turns out to be of comparable size as δ̃CDM today (cf. our analytical results in Sec. 4.4).

Accordingly, as argued in Sec. 4.5.2, the CDM perturbations are known to be linear at
the considered scale and therefore also the neutrinos perturbations are linear until the
present time.

Let us furthermore point out that we checked that the behavior of the neutrino density
contrast is retained on the same scale for an increased value of the coupling β = 100/Mpl.
It should be noted that in this case the range of the scalar field and thus the scales, where
possible instabilities grow fastest, have dropped below the physical scales accessible with
CMBFAST/CAMB. We thus ascribe the unaltered behavior of the perturbations to the
suppression of the effective Newton’s constant Geff felt by neutrinos with increasing
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Figure 4.5: a) Neutrino mass mν (solid) and temperature Tν (dotted) as a function of redshift. b) Adiabatic
Dark Energy sound speed squared c2

a (solid) as a function of redshift. c) (Unnormalized) density contrast in
neutrinos (solid) δ̃ν and in CDM δ̃CDM (dash-dotted) as a function of redshift on a scale k = 0.1 Mpc−1.

scale a/k (cf. the discussion at the end of Sec. 4.4) in combination with the stabilizing
effect achieved by CDM and baryons. This result demonstrates that a possible enhanced
growth of MaVaN perturbations can only take place on scales not much larger than the
scalar field range, i.e. it is a rather local phenomenon. This result is important for our
considerations in Sec. 4.6.1.

In conclusion, Fig. 4.5 demonstrates that the adiabatic power-law model is characterized by a
positive sound speed squared18 and the neutrino density contrast on small scales is still in the
linear regime today. Accordingly, the model can be viewed as stable until the present time.

We note that the stability traces back to the stabilizing effect on the perturbations achieved by
CDM. In addition, it is supported by the behavior of the neutrino mass which hardly evolves
with time19 and thus, as discussed in Sec. 4.3, allows for a positive adiabatic sound speed

18We verified that models with larger values for n in Eq. (4.61) are also characterized by a positive total sound speed
squared, while reproducing the standard cosmology. Furthermore, mφ increases with n rendering the model more
adiabatic. Another interesting result was gained, by subtracting the constant term in the power-law potential
in Eq. (4.61). For certain parameter values, models emerged which are stabilized by CDM until today and are
characterized by a negative sound speed squared.

19We would like to point out that in general in order to comply with a positive sound speed squared according to
Eq. (4.42) (cf. Fig. 4.2) the restriction on the mass variation in a MaVaN model is alleviated at earlier times when
finite temperature effects become more important. In other words, while the neutrino mass is only required to
approach an essentially constant value at late times, in the power-model (as a special case) it always stays nearly
the same.
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squared until today.

We conclude the section by emphasizing that the considered example constitutes a viable
MaVaN model that resides permanently in the effective minimum and is characterized by a
non-relativistic neutrino phase and a positive sound speed squared, a possibility that was not
noticed in Ref. [57].

We have thus demonstrated both analytically and numerically that it is crucial to consider the
magnitude and the growth rate of the scalar-neutrino coupling and to compare its relative im-
portance to other sources of gravitational attraction. As indicated in Sec. 4.4, the comparison
can be made quantitatively through Eq. (4.54).

4.6 Relaxing a No-Go Theorem for Mass Varying Neutrinos

In the following, we will comment on a no-go theorem in Ref. [57] which states that any
realistic adiabatic MaVaN model with m2

φ > 0 becomes unstable before the present time in
the non-relativistic neutrino regime.

For its deduction the authors of Ref. [57] proceeded in the following way. They derived an
expression for the total adiabatic sound speed squared c2

a in the kinetic theory picture for pν �
mν assuming the perturbations to be plane waves which grow exponentially. Independent of
the choice of the scalar-neutrino coupling and the scalar potential which characterize a MaVaN
model, c2

a was found to be negative. Accordingly, it was associated with a generic strong growth
of MaVaN perturbations, while no reference was made to the relative gravitational importance
of other cosmic components like CDM and baryons.

In the present work we have demonstrated analytically and numerically that a detailed analysis
of the potential and coupling functions and an assessment of the influence of other important
cosmic components, like CDM and baryons, are necessary in order to predict the growth of
structure in neutrinos. As our central result, we quantified this statement by deriving an
analytical stability condition which translates into a comfortable upper bound on the scalar-
neutrino coupling as stated in Eq. (4.54) in Sec. 4.4. We indicate the relative smallness of the
neutrino energy density as the reason and stress that accordingly the lower the neutrino mass
scale realized in nature turns out to be, the larger scalar-neutrino couplings are allowed by
the stability.

In accordance with this finding, in our analytical analysis in Sec. 4.4, we found that the density
contrast in neutrinos in the small scale limit only grows exponentially, if the scalar-neutrino
coupling is larger than all other relevant parameters and thus leads to negligible growth-slowing
effects as provided by cosmic expansion and CDM gravitational drag.

In this case we verified numerically for the log-linear model of Sec. 4.5.2 that the sound speed
squared c2

a turns negative in agreement with the result of [57]. Let us point out that since the
sound speed squared merely encodes the effects of the scalar field on the MaVaN perturbations,
its sign only indicates the growth of instabilities if the full stability condition in Eq. (4.54) in
Sec. 4.4 (cf. also Eq. (4.57)) is not fulfilled i.e. if growth-slowing effects can be neglected.
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However, as demonstrated by the result for the power-model, for a moderate constant coupling
the evolution of the neutrino density contrast is not modified with respect to the uncoupled
case in ordinary General Relativity. Accordingly, also on small scales ∼ m−1

φ the plane-wave
solution found in Ref. [57] did not apply and and perturbations were driven by a positive
sound speed squared. Consequently, the dynamics in stable models are governed by CDM,
largely independent of the sign of the sound speed squared, even in the highly non-relativistic
regime.

However, let us add that for stable MaVaN models characterized by a positive sound speed
squared until the present time the allowed neutrino mass evolution at late times was found to
be generically severely constrained (cf. Fig. 4.2 and the discussion in Sec. 4.3).

Based on our analysis, we thus conclude that the no-go theorem stated in Ref. [57] can be
substantially relaxed, since a viable and stable class of adiabatic MaVaN models was identified
which are characterized by a scalar-neutrino coupling of at least gravitational strength.

In the next subsection we will argue that it might even be desirable to achieve a scalar-field
induced strong growth of MaVaN instabilities with the likely outcome of the clustering of
neutrinos, since under certain circumstances MaVaNs might be promoted to a dark matter
candidate.

4.6.1 Mass Varying Neutrinos as Dark Energy and Dark Matter?

This section deals with the intriguing question, whether neutrino lumps could play the role
of the Dark Matter, while at the same time the observed late-time acceleration is driven by
Neutrino Dark Energy.

Let us make a few notes which might help to answer this question. In our stability analysis
we have tested the growth of perturbations in the framework of linear perturbation theory
valid on large length scales until the present time. Accordingly, we could get a feeling for the
relevant physical effects leading to the possible clumping in neutrinos disentangled from any
non-trivial non-linear effects inherent in small physical scales.

Furthermore, we integrated the relevant equations using CMBFAST and CAMB which work
in the linear regime [202, 220]. Consequently, the mass of the scalar field had to be chosen
small enough (however � H) to push the scales where possible instabilities could occur into
the linear regime. As discussed in Sec. 4.4 and verified by our numerical results for the power-
model and β = 100/Mpl, on scales larger than the range of the scalar field the attraction
felt by neutrinos becomes considerably suppressed. Thus, the possible enhanced growth in
neutrinos was found to be a rather local phenomenon.

By increasing the scalar field mass and thus reducing the range of the scalar field, we would
expect a local scalar field induced enhancement of the gravitational clustering of neutrinos
in the non-linear regime (on scales, where neutrino free-streaming cannot inhibit the growth
of perturbations). Accordingly, resulting neutrino bound states would be interpreted as a
contribution to the CDM small scale structure, which however, on average does not affect the
equation of state of Neutrino Dark Energy.
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Accordingly, if the inverse scalar field mass corresponds to sub-galactic scales, this opens up
the intriguing possibility that clustered neutrinos bound by the scalar-field mediated force and
by gravity could even be (part of) the Dark Matter, while at the same time they could act
as source of Neutrino Dark Energy. However, the detailed discussion of such scenarios and
their phenomenological implications lies beyond the scope of this work (see Ref. [58] for a later
reference on a similar subject).

We note that similarly, in chameleon cosmologies such an enhanced small scale growth of the
CDM density contrast is predicted [221] due to the coupling of CDM to a light scalar field
with range a/k = 250 pc today.

Let us remark that the chameleon constitutes another interesting Dark Energy candidate. It
is a light scalar field with similar properties as the scalar field in the Mass Varying Neutrino
scenario. However, it couples democratically to all matter species in such a way that its mass
increases with the local matter density. As a consequence, it can easily escape ’fifth-force’
measurements in the laboratory, where the matter density and thus the chameleon mass are
comparably high and correspondingly, the chameleon mediated force is sub-millimeter ranged.
In our Ref. [222], we proposed an experimental set-up to be implemented in an on-going
DESY experiment (ALPS [223]), which allows to indirectly detect the chameleon through an
’afterglow’ effect in axion-like particle search experiments. It relies on the possible reconversion
of chameleons into photons in an external magnetic field. We demonstrated that according to
the current state of technology in principle this method is sensitive to a so far unaccessible
region of the parameter space of these theories.

4.7 Summary and Outlook – Part II

Models of neutrinos coupled to a light scalar field have been invoked to naturally explain the
observed cosmic acceleration as well as the origin of dynamical neutrino masses. However,
the class of MaVaN models characterized by an adiabatic evolution of perturbations in the
non-relativistic neutrino regime was claimed to suffer from a strong growth of instabilities
and as a result may cease to act as viable realizations of Dark Energy [57]. In this paper
we analyzed the stability issue in the appropriate framework of linear perturbation theory.
For this purpose we derived the equation of motion of the density contrast in terms of the
characteristic MaVaN functions, namely the scalar potential, the scalar-neutrino coupling,
and the source terms provided by cold dark matter (CDM) and baryons. Furthermore, we
modified both the CMBFAST [202] and CAMB [220] code to include a light scalar field coupled
to neutrinos and numerically focused on two significant MaVaN models.

We found that the instabilities in the neutrino density contrast only occur if the influence of
the scalar-neutrino coupling on the dynamics of the perturbations dominates over the growth-
slowing effects provided by CDM. As long as the coupling is moderate, the neutrinos feel a
gravitational drag towards the potential wells formed by CDM which effectively leads to a
stabilization of the MaVaN perturbations, largely independent of the sign of the sound speed
squared.

As our central result, we derived an analytic stability condition which was shown to translate
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into an upper bound on the scalar neutrino coupling which depends on the ratio of the energy
densities in cold dark matter and in neutrinos. This ratio can be as large as O(102÷3), depend-
ing on the absolute neutrino mass scale realized in nature and therefore in principle allows
for couplings much larger than of gravitational strength. We would like to point out that the
reason for a possible stabilization of the neutrino density contrast is the relative smallness of
the neutrino mass.

However, in turn, if the coupling is strong enough to render any growth-slowing effects negli-
gible, the stability was shown to require the model to exhibit a positive sound speed squared.
This condition was found to strongly restrict the allowed neutrino mass variation at late times.

We illustrated these results by considering representative limiting cases for the time depen-
dence of the coupling. At first, we investigated MaVaN models characterized by a strong
growth of the coupling and thus of the neutrino masses with time. In this case, at late times
any growth-slowing effects on the perturbations provided by the cosmic expansion or the grav-
itational drag of CDM were found to be negligible. Consequently, independent of the choice of
the scalar potential, the analytic equation for the evolution of the neutrino density contrast at
late times involved a faster than exponentially growing solution. Our numerical results for such
a model with logarithmic scalar potential illustrated that the onset of the instability is around
the time when the neutrinos turn non-relativistic. In this case, the instability could be seen
as the effect of the adiabatic sound speed squared becoming negative, since growth-slowing
effects where negligible. Since the attraction between neutrinos increases rapidly, the sound
speed changes sign as soon as the counterbalancing pressure forces in neutrinos have dropped
sufficiently. As a result, the non-relativistic neutrino density contrast is inevitably driven into
the non-linear regime with the likely outcome of the formation of non-linear structure in the
neutrino density [57,58].

However, we demonstrated that this result does not hold true if the scalar-neutrino coupling
in a MaVaN model is not strong enough to overcompensate for the growth-slowing effects
provided by other cosmic components. Our numerical results for the choice of a moderate
constant coupling and an inverse power law scalar potential showed that the neutrino density
contrast behaves as in the uncoupled case of standard cosmology, since the scalar-field-induced
effects are subdominant. Accordingly, the dynamics are governed by CDM as in the uncou-
pled case. As a consequence, the neutrino density contrast was found to be still in the linear
regime up to the present time, even on scales where possible instabilities would grow fastest.
Accordingly, we have identified an example for an adiabatic MaVaN model which is stable
until the present time. Based on our results, in a later reference [47] another example of a
stable MaVaN model has been presented.

To summarize, our analysis allowed to identified a stable class of adiabatic MaVaN models
characterized by a comfortable strength of the scalar-neutrino coupling at least as large as
that of gravity, even for the largest absolute neutrino mass scale allowed by terrestrial upper
bounds (as given in Sec. 2.6.4).

Outlook

We would like to comment on another intriguing class of models, which might at the same time
explain Dark Energy and (part of the) Dark Matter by the help of Mass Varying neutrinos.
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This might be accomplished if the scalar field range (i.e. its inverse mass) corresponds to sub-
galactic scales and if in addition the scalar-neutrino coupling is large enough to initiate the
strong growth of MaVaN instabilities. Since we demonstrated that on scales much larger than
the range of the scalar field the attraction felt by neutrinos becomes considerably suppressed,
the likely outcome is the formation of bound neutrino structure – however, only on sub-galactic
scales. Accordingly, under these circumstances on small scales MaVaNs could be (part of the)
Dark Matter, while averaged over all scales, the equation of state of Neutrino Dark Energy
would not be affected and could thus still drive late-time acceleration.

The quantitative discussion of these interesting scenarios lies, however, beyond the scope of
this work. While this possibility was so far not noticed in the MaVaN literature (see Ref. [58]
for a later reference on a similar subject), a similar reasoning can be found in models of
chameleon cosmologies [221], see e.g. our Ref. [222] for a proposed laboratory based test for
these theories to be implemented in an on-going DESY experiment (ALPS [223]).
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In this thesis we explored various theoretical aspects and phenomenological implications re-
sulting from non-standard neutrino interactions with a light scalar field attributed to the
sector responsible for Dark Energy. All in all, we conclude that such connections are rich and
attractive from the theoretical point of view and as a further merit allow to be verified within
the near future. Considering that at the current experimental stage it is not even possible
to state whether the observed late-time acceleration arises from a constant or a dynamical
source of energy or even from a modification of gravity on the largest scales, it would really
be exciting if neutrino physics turned out to open a window into the dark sector.

In the following we will summarize the central results gained in the first and second main part
of this thesis.

1) Signatures of Mass Varying Neutrinos in the Sky?

In light of the possible realization of Neutrino Dark Energy in nature, we explored a more direct
way of probing the cosmic neutrino background (CνB) by means of neutrino observatories [61–
68]. They open up the exciting possibility to trace the annihilation of extremely high-energy
neutrinos (EHECν’s) and relic anti-neutrinos of the CνB (and vice versa) into Z bosons by
localizing absorption dips in the EHECν spectra at energies set by the neutrino masses. For
various EHECν sources we illustrated the discovery potential for the CνB by means of relic
neutrino absorption spectroscopy and estimated the prospects for probing its interpretation
as source of Neutrino Dark Energy largely following our Refs. [69,70].

To this end, we provided all state-of-the-art technical tools to interpret EHECν absorption dips
for a given injection spectrum, both for constant and for varying neutrinos masses, including
all thermal background effects caused by the relic neutrino motion.

We demonstrated that within the MaVaN framework proposed in Ref. [22], remarkably, the
redshift distortion of the absorption dips caused by cosmic expansion is essentially compen-
sated by the time evolution of the neutrino masses, leading to features as in a static universe
for constant neutrino masses. This could be seen most clearly analytically by switching off the
thermal effects. Correspondingly, a reduction of the effects of the expansion on the absorption
features is generically achieved, if the neutrino mass is a decreasing function of redshift as in
the standard Mass Varying Neutrino scenario.

Therefore, as a main result, we found that compared to constant mass neutrinos, mass varying
neutrinos from astrophysical sources produce much sharper absorption dips clearly shifted to
higher energies at a statistically significant level. Even though the impact of the thermal
washout on these characteristics turned out to grow for decreasing neutrino mass, this nice
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and clear-cut feature was found to prevail also for the lowest possible neutrino mass scale
realized in nature.

Accordingly, if the radio-telescope LOFAR [158] achieves the projected energy resolution of
∆E/E ∼ 30% [186], we demonstrated in a largely model-independent way that it seems feasi-
ble to trace a time variation of neutrino masses and thus to possibly reveal the nature of Dark
Energy within the next decade.

2) On the stability of Neutrino Dark Energy

Recently the authors of Ref. [57] argued that any adiabatic Mass Varying Neutrino Scenario
in the non-relativistic neutrino regime is threatened by a severe stability problem. Their claim
was based on the following line of arguments. Firstly, every realization of such a scenario is
characterized by a negative adiabatic sound speed squared. Secondly, a negative sound speed
squared generically implies the strong growth of instabilities.

Based on our Ref. [71], we reconsidered the stability issue in the appropriate framework of
linear cosmological perturbation theory in a model-independent way. We found that this no-go
theorem can be considerably relaxed, since both of these arguments do not generally hold.

To this end, we derived the equation of motion of the density contrast in neutrinos from the
linearized Einstein equations in terms of the characteristic MaVaN model dependent functions,
namely the scalar potential, the scalar-neutrino coupling as well as the source terms provided
by cold dark matter (CDM) and baryons. Let us note that the gravitational effect of these
other important cosmic components, most notably of CDM, was not considered in Ref. [57],
since the adiabatic sound speed squared merely encodes the influence of the scalar field on the
neutrino perturbations.

Based on our analytical results, we found that the gravitational drag felt by neutrinos to-
wards the potential wells formed by CDM can effectively lead to a stabilization of the MaVaN
perturbations, largely independent of the sign of the sound speed squared. Moreover, im-
portantly, the equation of motion of the neutrino density contrast allowed to directly infer a
model-independent, analytic stability condition.

As our central finding, the stability condition turned out to translate into an upper bound on

the scalar-neutrino coupling β .
√

ΩCDM

2Ων

1
Mpl

, which is determined by the ratio of the energy

densities in cold dark matter ΩCDM and in neutrinos Ων . Since according to experimental data
this ratio can range up to O(102÷3), the coupling in principle is allowed to be much stronger
than gravity, depending on the absolute neutrino mass scale realized in nature.

This result directly relates to the fact that the strength of the two competing forces felt by
neutrinos does not only depend on the coupling, but also on the masses which attract each
other. Accordingly, in physical terms the stability condition simply states that the gravita-
tional drag exerted by the CDM source term dominates the dynamics of the perturbations,
if the scalar-neutrino coupling does not overcompensate for the relative smallness of neutrino
masses. In accordance with this finding, we showed that if the stability condition is satisfied,
the density contrast in MaVaNs grows only moderately on all scales just as in the absence of
the scalar-neutrino coupling in General Relativity. As a result, it stays in the linear and thus
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stable regime until the present time.

If, however, the scalar-neutrino coupling is sufficiently strong to render the growth-slowing
effects of CDM negligible, the stability of the model was found to require a positive sound
speed squared. We demonstrated that models of Neutrino Dark Energy in general can comply
with this condition (cf. also [60]), however, as a consequence, the allowed neutrino mass
variation was found to be strongly restricted at late times.

We illustrated our results by considering representative examples both for stable and unstable
scenarios.

To summarize, independent of the neutrino mass scale realized in nature, a class of viable,
stable Mass Varying Neutrino scenarios could be identified, which is characterized by a scalar-
neutrino coupling of at least gravitational strength.

Outlook

As an outlook we would like to remark on another intriguing class of scenarios which are
characterized by a scalar-neutrino coupling strong enough to initiate the rapid growth of
MaVaN instabilities (cf. our Ref. [71]). The likely outcome is the formation of bound
neutrino lumps held together by the scalar-field mediated force and by gravity [57,58].
However, as we demonstrated analytically, not only the force mediated by the scalar field but
also the scalar-field induced growth of instabilities becomes strongly suppressed on scales
much larger than its Compton wavelength or correspondingly its inverse mass. Accordingly,
the possible occurrence of bound neutrino structure is a local phenomenon restricted to
scales which decrease with increasing scalar field mass. Accordingly, while on average the
equation of state associated with Neutrino Dark Energy is not expected to be affected by
this local phenomenon, for an inverse scalar field mass corresponding to sub-galactic scales,
the clustering neutrinos could even play the role of (part of) the Dark Matter (for a later
reference see [58] on a similar subject)1.

1A similar reasoning can be found in models of chameleon cosmologies [221] (see e.g. our Ref. [222] for a proposed
laboratory based test for these theories to be implemented in an on-going DESY experiment (ALPS [223])).
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