가

2 가

Preliminary Guideline for High Temperature

Structure Integrity Assessment Procedure

Part II. High Temperature Structural Integrity Assessment

2007.2.

가

Summary

A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

1.		1
2.	- 가 ······	2
2.1	가	2
2.1.1	가	2
2.1.2		3
2.1.3	フト σ _d	8
2.1.4	FMS	13
3.	- 가 ······	14
3.1	가	14
3.2	가	16
4.	LBB 가	19
4.1		21
4.2		21
4.2.1	가	21
4.2.2	가	24
4.2.3	(Crack Opening)	29
4.3	LBB 가	32
5.	71	40
5.1		40
5.1.1		40
5.1.2		40
5.1.3		41
5.1.4	가	41
5.1.5		45
5.2	가	47
5.2.1		48
5.2.2	가	48
5.2.3		50
5.3	가	51
5.3.1		51
5.3.2		53
5.3.3		55
		58
		58

	A	59
A.1		60
A.1.1		60
A.1.2		65
A.1.3	(Viscoplasticity Model)	66
A.1.4	가	72
A.2 A	BAQUS	75
A.2.1	(Classical metal plasticity)	75
A.2.2	(Models for metals subjected to cyclic loading)	75
A.2.3	(Rate-dependent yield)	79
A.2.4	(Creep and swelling)	79
A.2.5	Two-layer viscoplasticity	80
A.2.6	ORNL constitutive model	81
A.3 A	NSYS	82
A.3.1	(Kinematic Hardening Model)	82
A.3.2	(Isotropic Hardening Model)	84
A.3.3	(Creep Model)	85
A.3.4	(Viscoplasticity)	88
A.3.5	(Swelling)	88
A.3.6	(Material Model Combinations)	88
A.4 N	IONSTA	90
A.4.1	NONSTA-EP () ·····	90
A.4.2	NONSTA-VP () ·····	92
A.4.3	CREEP-BB1 ()	94

4.1			k_m, k_b	22
4.2				23
5.1		k		47
A-1 ANSYS			Implicit Creep Models	86
A-2 ANSYS	가		(Material Model Combination)	89

2.1				
2.2				9
2.3	$\overline{\Delta \varepsilon_1}, \ \overline{\Delta \varepsilon_2}, \ \overline{\Delta \varepsilon_3}$			
2.4	σ_{d}			
2.5 $\Delta \sigma^*$				
3.1	(n_{ir})			
3.2	(Apex of the ellip	ose)		
3.3				
4.1				
4.2	가			
4.3		~~~~		
4.4	가			
4.5		Master Curve		
4.6				
4.7 $c_i \leq c_s$	フト	$(2c_{d})$		
4.8 $c_i > c_s$	가	$(2c_d)$		
4.9		σ()	
4.10	(
4.11			7	
4.12		가		
$4.13 \ J_{sin}$		가	/	
4.14				
4.15		\sim		
5.1 R5 Vol. 7	가			
5.2 T-	T-			
5.3 T-	T-			
5.4				
5.5				54
5.6				55
5.7				56
5.8		(4PB,)	

A-1		,	 60
A-2			 • 62
A-3			 63
A-4			 64
A-5			 65
A-6			 66
A-7	-		 • 72
A-8	\overline{K} \overline{n}		 73
A-9			 - 74
A-10			 - 75
A-11			 • 77
A-12		$\langle \cdots \rangle$	 - 78
A-13			 - 78
A-14 Linear Kin	ematic Hardening Model of AN	SYS	 . 83
A-15 Voce	(NLISO) ···		· 84

2.	-	7	' ŀ				
	-		가				
RCC-MR	A16			가	R5	Volume 2	,3 가
				A16			R5
	가			가		DB	R66
		R5	;	가			
A	16			가			
			RCC	C-MR A16	5		
2.1	가						
				L			
2.1.1	가						
		2	,		(complex	orientation	n)
	(Multiple	defects)	,				
	(Interaction of	criteria)	V.				
	가						
	(initiation)						
				1-		/	
(a)	(evolut	ion)					
		,			가		가
	2.1.2	2.1.(a)			2.1.2	2.1.(b)	
	-	2	2.1.2.2.(a)	2.1.2.2.(b			
_				× ×	,	RCC-MI	R RB/RC
3263							
(b)		가	(in	stability)			
(-)	(tear initis	tion)	(111	- j)		0.2mm	
	(tour mitte	가 .					

1.5 $(\overline{\Delta \varepsilon_i}/1.5)$.

$$I_{f} = \frac{7!}{2} \qquad A7! 1$$

$$I_{f} = \frac{7!}{2} \qquad A7! 1$$

$$I_{f} = \frac{7!}{2} \qquad A7! 1$$

$$I_{f} = \frac{1}{2} \qquad I_{f} \qquad A7! 1$$

$$I_{f} = \frac{1}{2} \qquad I_{f} \qquad$$

(total usage fraction) A

 $7 + , R \qquad (load ratio)$

*n*_{ir}

(b)

,

-

 $0 \sim t_f$

A16.9000

.

$$\frac{da}{dN} = C \cdot \left[\Delta K_{eff}\right]^n \tag{2-6}$$

•

$$\delta a_i = \sum_{N=0}^{n_{ir}} C \cdot \left[\Delta K_{eff} \right]^n \tag{2-7}$$

 $W_{i}[(\sigma_{kd})_{i} / K] \qquad (\sigma_{kd})_{i} \quad A3 \qquad K$ $. \qquad K=1 \quad . \quad (\qquad \text{RCC-MR RB-}$ $3200 \quad 0.9 \quad \text{ASME-NH} \quad 0.67 \qquad \qquad .)$ $d \qquad \qquad \qquad \overline{\Delta\varepsilon_{i}} \quad \text{Creager formula}$ $\sigma_{d} \qquad \qquad \overline{\Delta\varepsilon_{i}} \quad \text{Creager formula}$ $\Delta\varepsilon_{i} = \left[\overline{\Delta\sigma_{el+pl}} + \overline{\Delta\varepsilon_{fl}}\right]_{i} \qquad .$

 $A + W = \sum A_i + \sum W_i$ (2-8)(A, W)A3.58 (bilinear interaction diagram) 가 . 4 (fast rupture) (*A,W*)가 n_{ir} (2-2) t_a i *n*_{ir} (2-3) (2-4) 가 σ_{d} 'd' 50µm(0.05mm) 가 'd' 가 가 RCC-MR RB-3200 20) (K=1.5) 2, (가 Best estimate 가 , N_d RCC-MR RB-3200 (sustained stress) $\sigma_k\!/\!k$ *k*(=0.9) (c.f. ASME NH *k*=0.67), *k*=1 (b) t_o *t*_f 가 가 가 가 n_{ir} $(\delta a_{\rm fa})_{\rm i}$ i $(\delta a_{\rm fa})_{\rm i}$

A

W

 $(\delta a_{fa})_i$

7

$$\overline{\Delta\sigma_{de}} = Max_{t,t'} \left[\overline{\sigma_{de}(t,t')} \right] = \left[Max_{t,t'} \left[\overline{\sigma_{de}(t) - \sigma_{de}(t')} \right]$$
(2-13)

 $\overline{\Delta \varepsilon_i}$

$$\overline{\Delta\varepsilon_i} = \overline{\Delta\varepsilon_1} + \overline{\Delta\varepsilon_2} + \overline{\Delta\varepsilon_3} + \overline{\Delta\varepsilon_4}$$
(2-14)

RCC-MR A3.59

i

,

2.3

,

 $\overline{\Delta\varepsilon} \cdot \overline{\Delta\sigma} = \left(\overline{\Delta\varepsilon_1} + \overline{\Delta\varepsilon_2} \right) \cdot \overline{\Delta\sigma_{de}}$ (2-16)

- $\overline{\Delta \varepsilon_4}$: gain

$$\overline{\Delta\varepsilon_4} = (K_v - 1) \cdot \overline{\Delta\varepsilon_1}$$

$$K_v \quad A3.59 \quad \overline{\Delta\sigma_{de}} \qquad .$$
(2-17)

2.1.3.2 σ_d

2.1.3.3 o_d

가

-

가

.

- $\overline{\Delta \varepsilon}$

 $\overline{\Delta \varepsilon}$

.

2.5 $\Delta \sigma^*$

*

•

7 σ_{kd} ?.threshold,? $\sigma_{seuil} = P_m + 0.67P_b$

power law

2.1.4 FMS

(:

13

 $(\Delta K_{eff})_i$

i

i)

$$(\delta a_{fa})_i$$
 $(\delta a_{fl})_i$
7+ $(\delta a_{fa})_i$
* A16.3213

* A16.3213

14

* A16.9000

*

가

7.
$$(\delta a_{fa})_{i} = C \cdot \left[\left(\Delta K_{eff} \right)_{i} \right]^{n}$$

$$a + (\delta a_{fa})_{i}$$
(3-1)

ii)
$$7 + (\delta a_{fl})_{i}$$

* A16.7700 $C_{i}^{*}(t)$
* A16.9000 $7 +$
 $(\delta a_{fl})_{i} = \int_{t_{i}}^{t_{i}+t_{mi}} A \cdot (C_{i}^{*}(t))^{q} dt$ (3-2)
* $a + (\delta a_{fa})_{i} + (\delta a_{fl})_{i}$

iii) t_f

$$a_{f} = \sum_{i=1}^{n} a + (\delta a_{fa})_{i} + (\delta a_{fl})_{i}$$

$$, \qquad \qquad 7 +$$

$$t_{f} \qquad L_{f} \qquad a_{f} 7 +$$

$$T +$$

3.2

(Apex of the ellipse)

가

A16 Master Curve

가

•

Master Curve 7
2.793cm 7
2.85cm, 0.057mm 7
7
7
7
Master Curve 7
KALIMER-600 IHTS
(2-3) C
(3-3)

$$\delta \alpha_f = C \cdot [\Delta K_{eff}]^3 = 4.52 \times 10^{-6} \cdot [\Delta K_{eff}]^{33}$$
(3-3)
 $(\Delta K_{eff}) J$. (3-4)
 $J_z = J_{eff}^{see} \cdot [\frac{B}{\sigma_{ref}} \frac{\sigma_{ref}^{see}}{\sigma_{ref}} + \Psi]$
(3-4)
 $J_z = J_{eff}^{see} \cdot [\frac{B}{\sigma_{ref}} \frac{\sigma_{ref}^{see}}{\sigma_{ref}} + \Psi]$
(3-4)
 $K_I = [\sigma_n \cdot F_n + \sigma_\delta \cdot F_\delta + \sigma_{g\delta} \cdot F_{g\delta}] \cdot \sqrt{\pi \cdot c}$
(3-5)
 $J_z = J_z = 1.41[MPa \cdot mm]$,
 $\Delta K_z = 14.59[MPa \cdot m^{1/2}] z$, (3-6)
7

$$\frac{da}{dN} = 3.14 \times 10^{-4} [mm/cycle]$$
(3-6)

		240,000				
				A16.1R		
(3-7)	. A16.1R	(3-7)	А,	q		가
550 ~625		,		가 526		
	가	가			(3-7)	
	가가					
	$\delta a_c = A \cdot \left[C^*\right]^q = 8.$	$05 \times 10^{-2} \cdot \left[C^{*}\right]^{0.5}$	81			(3-7)
	(3	-7)	C^*	(3-	8)	()
					,	
($C_{s}^{*} = J_{el} \cdot \left[\frac{E \cdot e}{\sigma_{r}} \right]$					(3-8)
(3-9)	$C_{t}^{*} = 9.043 \times 10^{-8}$ $\frac{da}{dt} = 2.457 \times 10^{-8}$	0 ⁻⁹ [MPa·mm/hr mm/hr]	1)	,	(3-9)
20 7F (3-6) (3-9)	240,000	, ,	12,00	0	-	
$(3-10)$ $\frac{da}{dN}$	= 3.14×10 ⁻⁴ + 2.948×	10 ⁻⁸ [mm/cycle]				(3-10)
20 (240,0	00)	0.0122r	nm	가		
				28.51m	nm, 0.582	mmフト

•

4. LBB 가

,

(Later)

4.2

, k_m , k_b 4.1

$$(\delta) \qquad \left(k_m \cdot \sigma_m - k_b \cdot \sigma_b\right) > C \qquad \qquad \forall k_b \cdot \sigma_b > C$$

•

$$\delta_{el} = \frac{4 \cdot c_L}{E} \cdot \left(k_m \cdot \sigma_m - k_b \cdot \sigma_b \right)$$

.

*

*

h

4.1				k_m ,	k_m , k_b		
	k _m	k _b	K _b	k _b	k _b		
a/b		b/h=5	b/h=20	b/h=50	b/h=500		
0.000	1.000						
0.056	1.000	0.848	0.589	0.482	0.394		
0.111	1.006	0.731	0.508	0.448	0.398		
0.167	1.013	0.655	0.478	0.434	0.398		
0.222	1.030	0.613	0.467	0.432	0.402		
0.278	1.046	0.587	0.462	0.432	0.406		
0.333	1.071	0.575	0.463	0.436	0.412		
0.389	1.099	0.569	0.466	0.442	0.419		
0.444	1.136	0.572	0.474	0.451	0.429		
0.500	1.179	0.579	0.484	0.461	0.440		
0.556	1.233	0.591	0.498	0.475	0.454		
0.611	1.303	0.612	0.517	0.494	0.472		
0.667	1.388	0.639	0.541	0.517	0.494		
0.722	1.500	0.679	0.573	0.547	0.522		
0.778	1.648	0.733	0.615	0.586	0.559		
0.833	1.858	0.816	0.677	0.643	0.610		
0.889	2.179	0.954	0.776	0.730	0.687		
0.944	2.787	1.228	0.904	0.826	0.759		

$$\delta = f\left(\sigma_{m}, \sigma_{b}, \frac{c_{L}}{\sqrt{r_{m}h}}\right)$$

.

 (R_e) <u>c.</u> $(R_e)_{lam}$ 가 •

$$: V_{lam} = \frac{\Delta P \cdot D_H^2}{48 \cdot \mu_{Na} \cdot h}$$

*
$$7$$
 : $D_H = \frac{\pi \cdot \delta}{2}$

$$(R_e)_{lam} = \frac{p_{Na} \cdot V_{lam} \cdot D_H}{\mu_{Na}}$$

$$\Delta P :$$

$$h :$$

$$p_{Na} :$$

$$\mu_{Na} :$$

$$Log_e(\mu_{Na}) = -5.7316 + \frac{508.07}{273 + \theta} - 0.4925.Log_e(273 + \theta)$$

$$p_{\scriptscriptstyle Na}$$
 , $\mu_{\scriptscriptstyle Na}$

	Λ	2
	÷.	. 4

	1	4.2					
Temp.	100	200	300	400	500	600	700
$p_{\scriptscriptstyle Na} \ ({ m kg/m^3})$	927	904	880	856	832	809	784
$\mu_{\scriptscriptstyle Na}$ (Ns/m ³)	6.848e-4	4.569e-4	3.447e-4	2.792e-4	2.365e-4	2.066e-4	1.845e-4

$$\begin{array}{c|cc} \underline{\mathbf{d}} & \overline{\mathbf{7}} \\ 1 & 2 \\ \overline{\mathbf{7}} & (2c_L) \end{array}$$

*

,

가

,

$$Q_{\rm det} = V \cdot A_L$$

$$Q_{det} \qquad c_L \qquad .$$

$$* A_L : 7! \qquad , A_L = \frac{\pi \cdot \delta(c_L) \cdot c_L}{2}$$

$$* V:$$

$$- (R_e)_{lam} < 2300$$

$$V = \frac{\Delta P \cdot D_H^2}{48 \cdot \mu_{Na} \cdot h}$$

$$\delta_{el} = \frac{4 \cdot c_L}{E} \cdot \left(k_m \cdot \sigma_m - k_b \cdot \sigma_b \right) \qquad , \qquad 7 +$$

.

$$c_{L} = \left[Q_{\text{det}} \cdot \frac{6 \cdot \mu_{Na} \cdot h \cdot E^{3}}{\pi^{3} \cdot \Delta P \cdot (k_{m} \cdot \sigma_{m} - k_{b} \cdot \sigma_{b})^{3}} \right]^{\frac{1}{4}}$$

,

- $(R_e)_{lam} > 2300$

$$V = V_{tur} = \sqrt{\frac{2 \cdot \Delta P}{\rho_{Na} \cdot \left(1.5 + \frac{\lambda \cdot h}{D_H}\right)}}$$

4.2.2 가

•

Master Curve

•

$$\left(\begin{array}{c} \frac{c_s}{h} = F(X) \text{ with } X = \frac{1}{1 + \frac{\Delta\sigma_b}{\Delta\sigma_m}} \text{ or } X = \frac{1}{1 + \frac{\sigma_b}{\sigma_m}} \right)$$

4.6

.

a/h = 0.6 Defect at penetration on the external surfation Initial defect : a/h = 0.25	X=1 (Pure tension)
a/h = 0.6 Defect at penetration on the external surfa	се X=0.5
a/h = 0.6 Defect at penetration on the external surfa	ce X=0.25
Defect at penetration on the external surface initial defect : a/h = 0.25	x=0.1
a/h = 0.6 Defect at penetration on the external surface Initial defect : a/h = 0.25	X=0 (Pure bending)

b.7.master curve $(c_i \le c_s)$ master curve $(c_i > c_s)$..

• $c_i \leq c_s$: / . (4.7)

4.7 $C_i \leq C_s$

 $(2c_{d})$

가

4.9

 σ

$$W_{el} = -\frac{1}{2} \int_{S} \sigma \cdot y \cdot dS$$

S: $dS = h \cdot dx = -h \cdot a \cdot \sin(\phi) \cdot d\phi$ h:

y: ,
$$y = (\delta/2) \cdot \sin(\phi)$$

 δ : x=0
2c: ()
 ϕ :
 σ 7 + x ,
 $\frac{\delta_{el}}{F} = \frac{8\pi \cdot k \cdot \sigma}{E^* \cdot c} \cdot \frac{\int_0^c f^2 \cdot x \cdot dx}{\int_0^{2\pi} \sigma \cdot \sin^2(\phi) \cdot d\phi}$, $\sigma = k \cdot F$
 σ 7 +
 $\int_0^{2\pi} \sin^2(\phi) \cdot d\phi = \pi$ $\frac{\delta_{el}}{F} = \frac{8 \cdot k}{E^* \cdot c} \cdot \int_0^c f^2 \cdot x \cdot dx$
b.
(4.10)
Geometry of the defect
2c: length of the defect (2c = 2\beta.r_m)
2\beta: angle of the defect (in radians),
symmetrical position in relation to
the bending plane
4.10

 σ 가

$$\frac{\delta_{el}}{M} = \frac{8}{E^* \cdot \pi \cdot r_m^2 \cdot h \cdot c} \cdot \int_0^c F_b^2 \cdot x \cdot dx$$

,

$$\sigma = k \cdot M$$
$$k = 1/(\pi \cdot r_m^2 \cdot h)$$

 r_m :

•

•

h : $f = F_b$: 2c :

 σ 가

 $\sigma_x = \sigma_b \cdot \cos\left(\frac{x}{r_m}\right) = \sigma_b \cdot \cos\left(\frac{c}{r_m} \cdot \cos(\phi)\right) = \sigma_b \cdot \cos\left(\beta \cdot \cos(\phi)\right)$, β

.

$$\frac{\delta_{el}}{M} = \frac{8 \cdot k}{E^* \cdot r_m^2 \cdot h \cdot c} \cdot \frac{\int_0^c f^2 \cdot x \cdot dx}{\int_0^{2\pi} \cos(\beta \cdot \cos(\phi)) \cdot \sin^2(\phi) \cdot d\phi}$$

$$\int_0^{2\pi} \cos(\beta \cdot \cos(\phi)) \cdot \sin^2(\phi) \cdot d\phi = \xi \cdot \int_0^{2\pi} \sin^2(\phi) \cdot d\phi = \xi \cdot \pi$$

$$, \quad \xi \qquad , \quad \beta \in \left[0, \frac{\pi}{2}\right]$$

$$\xi = 1 - 1.3574 \left(\frac{\beta}{\pi}\right)^2 + 0.4642 \left(\frac{\beta}{\pi}\right)^3 \approx \frac{3 + \cos\beta}{4}$$

$$\cdot$$

$$\frac{\delta_{el}}{M} = \frac{8}{\pi \cdot E^* \cdot r_m^2 \cdot h \cdot c} \cdot \frac{1}{\xi} \cdot \int_0^c f^2 \cdot x \cdot dx$$

A16.7310 J_s J

.

<u>c.</u>

 $\delta_{\scriptscriptstyle elpl}$

.

$$\delta_{elpl} = \delta_{el} \cdot \frac{E \cdot \varepsilon_{ref}}{\sigma_{ref}}$$

4.11

(

(ligament)

가

 e_{ref}

-- J

_

.

(K_I)
$$J_{el}$$
 .
 $J_{s}=J_{R}$ (F M)
 $J_{s} = \left[\frac{\sigma_{ref}^{2}}{2(\sigma_{ref}^{2} + \sigma_{y}^{2})} + \frac{E\varepsilon_{ref}}{\sigma_{ref}}\right] \left(\frac{K_{I}^{2}}{E^{*}}\right)$ for mechnical load da

4.13(c)

4.13(c) M

A, B, C, D

가

(U)

$$U = \sum_{j=1}^{N} \frac{t_j}{T_j}$$

Ν

 t_j j

(JR)

가

가

vi) LBB

5. 가

2	,			•
<u>2.</u>	(t _o)	(t _s)	. 가	$t_1 = t_0 +$
<u> </u>				
(t=	$= 0 \qquad t = t_o + t_s)$			
	10	12 $t_{o} + t_{s}$		$t_{o} + t_{s}$
가 가	가	가 .	가	가
<u> </u>				
3				-
<u> </u>	votivo Testino)			
NDI (Non Destru	icuve lesting)	가	가	a _o フト
(5.1.5).	(.)	
<u> </u>		$\langle \uparrow \uparrow$		1 2
σ _{ref} K _p	۲ Ks	(R5 Appendix A3).	1 2
P	5	R6 가		
<u></u>	ao	T _{ro}		ao
D _o	~			U U
	2 7	, 		$t_{o} + t_{s}$
T_{rc}) 7 1	$T_{ro} < t_{o} +$	- t _s	
	가			

5.1 R5 Vol. 7 가

5.1 k			
CONSTITUENT	k Factor		
ZONE	Hoop Stress Dominant	Axial Stress Dominant	
Parent(CrMoV)	1.0	1.0	
Type IV Zone	1.0	1.0	
Refined HAZ	1.0	1.0	
Coarse HAZ	1.4	1.0	
Weld(2CrMo)	0.7	1.0	

1) ,*A*

(5-4)

$$C = \sum_{k} N_{k} \frac{\varepsilon_{k}}{\varepsilon_{fk}}$$
(5-4)

$$k , \varepsilon_{k}$$
dwell (shift)

$$, \varepsilon_{fk} , k$$
7

$$, (rate)$$

$$. R5 A4$$

 N_k

3) *C*:

5.3.2

R6 BS7910

5.4

(master

가

2006

[1] , KALIMER-600

, KAERI/TR-

2784/2004,2004.

[2] R5, British Energy Generation Ltd, *Assessment procedure for high temperature response of structure*, Issue 3. British Energy Generation Ltd, UK., 2003.

[3] Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, RCC-MR, Edition, AFCEN 2002.

[4] Technical Appendix A16, "Guide for Leak Before Break Analysis and Defect Assessment," AFCEN 2002.

[5] R6, British Energy Generation Ltd, *Assessment of the Integrity of Structures Containing Defects*, Rev. 4. British Energy Generation Ltd, UK, 2001.

[6] British Standard Institution, 2000, *Guide on methods for assessing the acceptability of flaws in metallic structures*, BS7910: 1999 (Rev. March 2000) British Standards Institution, London, UK.,2000.

[7] H.Y. Lee, K.M. Nikbin "Modelling the Redistribution of Residual Stresses at Elevated Temperature in Components", Journal of ASTM International, pp.1-15., Vol. 3 No.1, Jan., 2006.

[8] H.Y. Lee, J.B. Kim, J.H.Lee, K.M.Nikbin, "Comprehensive Residual Stress Distribution for a Plate and Pipe Components," Journal of Mechanical Science and Technology, Vol.20.,No.3,pp.335-344, 2006.

[9] Technical Appendix A3, Subsection Z, RCC-MR, 2002 Edition, AFCEN, 2002.

[10] NONSTA , KAERI/TR-1256/99, 1999

[11] ABAQUS, User's Manual, Version 6.2, 2005, HKS, USA

[12] J.L. Chaboche, Mechanics of Solid Materials, Cambridge University Press, UK, 1990

[13] J. Lemaitre, A Course on Damage Mechanics, Springer-Verlag, 1992

[14] ANSYS, User's Manual, Version 9.0, 2006, SAS IP Inc, USA

가

59

$$d\varepsilon = d\varepsilon^{e} + d\varepsilon^{p}$$
$$d\varepsilon^{e} = \frac{1+\nu}{E} d\sigma - \frac{\nu}{E} d(Tr(\sigma))I$$
$$d\varepsilon^{p} = \frac{3}{2}H(f)g'(\sigma_{eq})\frac{\langle d\sigma_{eq} \rangle}{\sigma_{eq}}\sigma'$$

(multilinear)

.

. ABAQUS ANSYS

 $f_{\boldsymbol{Y}}$

i)

ii)

iii)

가

 $\sigma_{\boldsymbol{Y}}$

. Prandtl-Reuss

 σ_{Y} R (

 $f = f_{Y}(\sigma) - \Gamma(R)$

 $\sigma_{\rm H}=1/3Tr(\sigma)$

$$d\varepsilon^{p} = d\lambda(\partial f / \partial \sigma) = 3/2 \, d\lambda(\sigma' / \sigma_{eq})$$
$$dp = -d\lambda(\partial f / \partial R) = d\lambda = (2/3 \, d\varepsilon^{p} : d\varepsilon^{p})$$

 $f = \sigma_{eq} - R(p) - \sigma_{Y} = 0$

iv) von Mises

$$J_{2}(\sigma) = \sigma_{eq} = (\frac{3}{2}\sigma':\sigma')^{1/2}$$

$$J_{3}(\sigma) = (\frac{9}{2}\sigma':\sigma')^{1/3}$$
(associated plasticity) normality 7† .

$$d\varepsilon^{p} = d\lambda(\partial f / \partial \sigma) = 3/2 d\lambda(\sigma' / \sigma_{eq})$$

$$J_{2}(\sigma) = (2/2 + p - p)^{1/2}$$

$$J_2 \quad J_3 \qquad .$$
$$J_2(\sigma) = \sigma_{eq} = (\frac{3}{2}\sigma':\sigma')^{1/2}$$

)

(deviatoric stress)

$$\sigma' \qquad J_2 \quad J_3$$

 $I_1(\sigma) = \sigma = -(\frac{3}{2}\sigma'; \sigma')$

$$dp = -d\lambda(\partial f / \partial R) = d\lambda = (2/2)$$

61

 $\Gamma(\mathbf{R})$

hydrostatic stress

.

(Tangent modulus)

가

Bauschinger

A-3

.

.

$$f = f_{Y}(\sigma - X) - \kappa$$

(Back Stress)

κ

 $\sigma_{\rm Y}$

Х

C γ

γ

가

С

가

.

ABAQUS

. ANSYS

A.1.2

independent plasticity)

(Rate-dependent plasticity)

(Viscoplasticity)

(1) ORNL

(2) Robinson

$$\begin{split} K &= \frac{K_{\rm S}(T_{\rm I}) - K_{i}(T_{\rm I})}{3W_{\rm g}(T_{\rm I})} \exp\left[-\frac{W^{*}}{W_{\rm g}(T_{\rm I})}\right] W^{*} - \frac{Q_{\rm g}K_{\rm g}}{6T^{2}} \exp\left[-Q_{\rm g}\left(\frac{1}{T_{\rm g}} - \frac{1}{T_{\rm I}}\right)\right] T \\ K_{\rm o}, Q_{\rm o}, T_{\rm o} & W^{\rm p}, W_{\rm o}, K_{\rm i}, \quad K_{\rm s} \\ W^{*} &= \sigma \dot{\varepsilon}^{*} \\ K_{i} &= K_{\rm g} \left\{1 - \frac{1}{2}(1 - \exp\left(-Q_{\rm g}(1/T_{\rm g} - 1/T)\right)\right)\right\} \\ K_{\rm s} &= A + B(T - T_{\rm p}) + C(T - T_{\rm p})^{2} \\ W_{\rm g} &= p + q(T - T_{\rm p})^{2} \end{split}$$

.

(3) Ohno-Wang

Ohno-Wang

(Hardening/dynamic recovery format)

()가

$$\overrightarrow{a}_{i} = h_{i} \left\{ \begin{array}{cc} \frac{2}{3} \overrightarrow{\hat{\epsilon}}^{p} - H(f_{i}) < \overrightarrow{\hat{\epsilon}}^{p} : \overrightarrow{k}_{i} > \frac{\overrightarrow{a}_{i}}{\varkappa_{i}} \end{array} \right\}$$

 $h_i = \zeta \chi_i$

$$\overrightarrow{a_{j}} = \zeta_{j} \left\{ \begin{array}{c} \frac{2}{3} & \chi_{j} \overrightarrow{\epsilon} & -H(f_{j}) < \overrightarrow{\epsilon} & \vdots & \vdots \\ \end{array} \right\}$$

Ohno-Wang

$$\begin{array}{rcl} & & & & & & & & & \\ \mathbb{V}_{(k)} & = & f \left(\left. T_{\textit{obs}} \right) & g \left(\left. R_{H} \right) \right. \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & &$$

Ohno-Wang

$$\begin{split} \triangle \alpha_{ij} &= \sum_{k=1}^{M} \left[\zeta_{(k)} \left\{ \frac{2}{3} \nabla_{(k)} \triangle \varepsilon_{ij}^{*} - H(f_{k}) \frac{\langle \Delta \varepsilon_{ji}^{*} - \alpha_{ji(k)} \rangle}{\alpha_{(k)}} \alpha_{ij(k)} \right\} + \frac{\Delta \nabla_{(k)}}{\nabla_{(k)}} \right] \\ \triangle \alpha_{ij} &= \sum_{k=1}^{M} \left[\zeta_{(k)} \left\{ \frac{2}{3} \nabla_{(k)} \triangle \varepsilon_{ij}^{*} - \left(\frac{\overline{\alpha_{(k)}}}{\overline{\alpha_{(k)}}} \right)^{m} \frac{\langle \Delta \varepsilon_{ji}^{*} - \alpha_{ji(k)} \rangle}{\alpha^{(k)}} \alpha_{ij(k)} \right\} + \frac{\Delta \nabla_{(k)}}{\nabla_{(k)}} \right] \\ R_{\mathrm{H}} & . \end{split}$$

$$\begin{split} R_{H} &= \sum_{i=0}^{2} R_{H}^{(i)} \\ & \Delta R_{H}^{(i)} = L_{H}^{(i)} (R_{HS}^{(i)} - R_{H}^{(i)}) \overline{\Delta \varepsilon_{P}} & (R_{HS}^{(i)} \ge R_{H}^{(i)} \underline{\varepsilon_{P}} \\ &= L_{R}^{(i)} (R_{HS}^{(i)} - R_{H}^{(i)}) \overline{\Delta \varepsilon_{P}} & (R_{HS}^{(i)} \le R_{H}^{(i)} \underline{\varepsilon_{P}} \\ & \text{Hs} & R_{H} & . R_{HS} \end{split}$$

 $R_{\rm HS}$

$$R_{HS}^{(0)} = a_{0} \overline{\rho}^{m_{0}}$$

$$R_{HS}^{(1)} = a_{1} \overline{\rho}^{m_{1}} h_{1} (T_{abs})$$

$$R_{HS}^{(2)} = a_{2} \overline{\rho}^{m_{2}} h_{2} (T_{abs})$$

 $\overline{
ho}$

$$g = \frac{2}{3} \left(\varepsilon_{jj}^{*} - \beta_{jj} \right) \left(\varepsilon_{jj}^{*} - \beta_{jj} \right) - \rho^{2} = 0$$

 $\rho = \beta_{ij}$

$$\dot{X}_{i} = \frac{2}{3}C_{i} \mathscr{B}_{p} - \gamma_{i}(p)X_{i} \dot{p}$$

$$\gamma_{i} = \gamma_{i}^{0} \Big[a_{0} + (1 - a_{0})e^{-bp} \Big] \qquad .$$

$$\gamma_{i} = \gamma_{i}^{0} \Big[a_{0} + (1 - a_{0})e^{-bp} \Big] \qquad .$$

$$\gamma_{i} = \gamma_{i}^{0} \Big[a_{0} + (1 - a_{0})e^{-bp} \Big] \qquad .$$

가 drag .

(C, y)

$$\begin{split} \hat{X}_{ij}^{\hat{\mathbf{R}}} &= \frac{2}{3} C \hat{\mathcal{B}}_{jj}^{\mathbf{R}} - \gamma(p) \hat{\mathcal{B}} \hat{X}_{ij} \\ & \text{Tensile Peaks} \end{split}$$

$$\sigma_{i} &= \frac{c}{\gamma} \tan h \left(\frac{\gamma \Delta c_{p}}{2} \right) + Q + \kappa + K \left(\hat{\mathcal{B}}_{j}^{\mathbf{R}} \right)^{\frac{1}{n}} \\ & (A-1) \\ & \frac{\partial \sigma_{i}}{\partial \left(\frac{\Delta c_{p}}{2} \right)} = \frac{c}{\gamma} \cdot \gamma \cdot \sec h^{2} \left(\frac{\gamma \Delta c_{p}}{2} \right) \\ & (A-1) \\ & A-8(a) \\ & \text{Curve Fitting} \\ & \sigma_{i} &= \overline{K} \left(\frac{\Delta c_{p}}{2} \right)^{\frac{n}{n}} \\ & A-8(b) \\ & \ln \sigma_{i} &= \overline{n} \ln \frac{\Delta c_{p}}{2} + \ln \overline{K} \\ & \frac{d \sigma_{i}}{d \left(\frac{\Delta c_{p}}{2} \right)^{\frac{n}{n}} \right)} \\ & (A-2) \\ & \Delta \sigma/2 - \kappa \\ & \ln \Delta c_{i} \\ & (a) \\ & K \\ & \overline{K} \\ & \overline{K} \\ & \overline{R} \\ & (b) \\ & (b) \\ \end{array}$$

•

73

.

Method

$$\begin{split} f\left(\frac{c}{\gamma},\gamma\right) &= \sum_{i=1}^{N} \left[F_{i} - \frac{c}{\gamma} \cdot \gamma \cdot \sec h^{2} \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right)\right]^{2} \\ &\frac{\partial f}{\partial \frac{c}{\gamma}} = 0 \quad \Rightarrow \quad \frac{c}{\gamma} = \frac{\sum_{i=1}^{N} F_{i} \cdot \sec h^{2} \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right)}{\gamma \sum_{i=1}^{N} F_{i} \cdot \sec h^{4} \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right)} \\ &\frac{\partial f}{\partial \gamma} = 0 \quad \Rightarrow \quad \frac{c}{\gamma} = \frac{\sum_{i=1}^{N} F_{i} \left[1 - \gamma \frac{\Delta \varepsilon_{pi}}{2} \tan h \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right)\right] \cdot \sec h^{2} \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right)}{\gamma \sum_{i=1}^{N} \sec h^{4} \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right) \left[1 - \gamma \Delta \varepsilon p_{i} \tan h \left(\frac{\gamma \Delta \varepsilon_{pi}}{2}\right)\right]} \\ &\text{A-9} \end{split}$$

(3)

$$R = b(Q-R) p$$

(cyclic hardening)

Tensile Peaks / A-10 Curve

(cyclic softening)

(γ,

가

A.2 ABAQUS

ABAQUS	가가
A.2.1	(Classical metal plasticity) 기 standard Mises Hill associated plastic flow
A.2.2	(Models for metals subjected to cyclic loading)
(nonline ,	ar isotropic/kinematic hardening model) (Bauschinger effect)
- ORNL 가	ABAQUS ORNL ABAQU A.1.4
A.2.2.1	(Linear kinematic hardening model) (α) Ziegler $\dot{\alpha} = C \frac{1}{\sigma^0} (\sigma - \alpha) \dot{\varepsilon}^{pl},$
$\dot{\varepsilon}^{pl}$	가 C 가 σ^0 가 $\sigma^0 = \sigma _0$ 가 $\sigma _0$ 가 가
A.2.2.2 ABAOUS	(Nonlinear isotropic/kinematic hardening model)

.

A.1.1.3 7 . Ziegler

$$\mathcal{X} = C \frac{1}{\sigma^0} (\sigma - X) p - \gamma X p$$

$$\sigma^0 = \sigma |_0 + Q_\infty (1 - e^{-bp})$$

X , p , σ^0 , $\sigma|_0$

dX

 $\begin{array}{ccc} C, \gamma, b, \text{ and } Q_{\infty} & & . \\ \text{Lemaitre Chaboche} & & \text{ABAQUS Theory Manual} \\ \text{two surface Mroz model} & 7 & . & Ziegler hardening law & 7 \\ & X & & . \end{array}$

A-11

stabilized

plastic shakedown

 $\Delta \epsilon = constant$

ABAQUS

*CYCLIC HARDENING, PARAMETERS ; *CYCLIC HARDENING, USER ; user subroutine *PLASTIC, HARDENING=COMBINED, DATA TYPE=PARAMETERS ;

*PLASTIC, HARDENING=COMBINED, DATA TYPE=HALF CYCLE ;

*PLASTIC, HARDENING=COMBINED, DATA TYPE=STABILIZED ;

A.2.3 (Rate-dependent yield): 가 가 가 . ABAQUS 가 가 가 Drucker-Prager crushable foam , 가 가 가 ABAQUS *PLASTIC, HARDENING=ISOTROPIC, RATE= $\dot{\epsilon}^{pl}$ *CYCLIC HARDENING, RATE= *DRUCKER PRAGER HARDENING, RATE= () ABAQUS A.2.4 (Creep and swelling) ABAQUS deviatoric 가 가 ABAQUS Drucker-Prager ABAQUS Power-law power-law $\dot{\bar{\varepsilon}}^{cr} = A\tilde{q}^n t^m,$ $:\dot{\varepsilon}^{c}$ $\overline{\overline{\varepsilon}}^{cr}$ \tilde{q} 가 가 가 t, <mark>A</mark>, n, m $-1 < m \le 0$ \tilde{q} A Mises 가 п *CREEP, LAW=TIME

$$\dot{\bar{\varepsilon}}^{cr} = \left(A\tilde{q}^n[(m+1)\bar{\varepsilon}^{cr}]^m\right)^{\frac{1}{m+1}},$$

.

*CREEP, LAW=STRAIN

$$i \overset{i}{\varepsilon}^{w} = f(\theta, f_1, f_2, \ldots),$$

$$i \overset{i}{\varepsilon}^{w} \qquad f_1, f_2,$$
anisotropic
$$i \overset{i}{\varepsilon}^{w} \qquad r_{11}, r_{22}, r_{33} \qquad r_1$$
*SWELLING
*RATIO
ABAQUS
*CREEP, LAW-USER
*SWELLING, LAW-USER
*SWELLING, LAW-USER
*SWELLING, LAW-USER
*OTENTIAL
AL3.(4) Chaboche
ABAQUS
NONSTA NONSTA ABAQUS A4

.

A.2.6 ORNL constitutive model

ORNL	Oak Ridg	ge Nationa	l Laboratory					
A.1.3.(1)		Nuclear St	andard NE F	9-5T(Guidelines	and	Proced	ures	for
Design of	Class I Elevated Temperature	Nuclear Sy	stem Compor	nents)	304	4 SS	316	SS

A.3 ANSYS			
ANSYS	가		
		. ANSYS	
A.3.1	(Kinemati	c Hardening Model)	
	ABAQUS	가	
	ANSYS	BKIN (Bilinear Kinematic Hardening), MKIN(Multilinear Kinematic	
Hardening),	Nonlinear Kinema	atic Hardening Model Chaboche7	
The Bilinear Ki	inematic Hardening	<u>(BKIN)</u> :	
A-14(a	a)		
	2	\sim	
가			
		(Tangent Modulus)	
	A-14(a)		
		. MKIN	
	BKIN		
	1		
MPTEMP	,1,0,500	! Define temperatures for Young's modulus	
MP,EX,1,1	12E6,-8E3	! C0 and C1 terms for Young's modulus	
TB,BKIN,	,1,2	! Activate a data table	
TBTEMP,0.0		! Temperature = 0.0	
<u>TBDATA,</u>	<u>1,44E3,1.2E6</u>	! Yield = $44,000$; Tangent modulus = $1.2E6$	
TBTEMP,	500	! Temperature = 500	
TBDATA,	1,29.33E3,0.8E6	! Yield = 29,330; Tangent modulus = 0.8E6	
TBLIST,B	BKIN,1	! List the data table	
/XRANGI	E,0,0.01	! X-axis of TBPLOT to extend from varepsilon=0 to 0.01	
TBPLOT,	BKIN,1	! Display the data table	

ANSYS

		1 1		
TBOPT	Name	Equation		Туре
1	Strain Hardening	$\dot{e}_{cr} = C_1 \sigma^{C2} e_{cr}^{C3} e^{-C4/T}$	C1>0	Primary
2	Time Hardening	$\dot{\epsilon}_{tr} = C_1 \sigma^{C2} t^{C3} e^{-C4/T}$	C1>0	Primary
3	Generalized Exponential	$\dot{v}_{cr} = C_1 \sigma^{C2} r e^{-rt}$, $r = C_5 \sigma^{C3} e^{-C4/T}$	C1>0, C3>0	Primary
4	Generalized Graham	$\dot{s}_{cr} = C_1 \sigma^{C_2} (t^{C_3} + C_4 t^{C_6} + C_6 t^{C_7}) e^{-C_8 t^T}$	C1>0	Primary
5	Generalized Blackburn	$\dot{v}_{cr} = f(1 - e^{-ft}) + gt$ $f = C_1 e^{C_2 \sigma}, r = C_3 (\sigma/C_4)^{C_6}, g = C_6 e^{C_7 \sigma}$	C ₁ >0, C ₃ >0, C ₆ >0	Primary
6	Modified Time Hardening	$\varepsilon_{tr} = C_1 \sigma^{C_2} t^{C_3+1} e^{-C_4/T} / (C_3 + 1)$	C1>0	Primary
7	Modified Strain Hardening	$e_{cr} = (C_1 \sigma^{C_2} [(C_3 + 1)e_{cr}]^{C_3})^{1/(C_3 + 1)} e^{-C4/T}$	C1>0	Primary
8	Generalized Gerofalo	$\dot{z}_{CF} = C_1 [\sinh(C_2 \sigma)]^{C_3} e^{-C_0 / T}$	C1>0	Secondary
9	Exponential form	$\dot{e}_{cf} = C_1 e^{\sigma/C_2} e^{-C_3/1}$	C1>0	Secondary
10	Notton	$\dot{e}_{tr} = C_1 \sigma^{C_2} e^{-C_3/T}$	C1>0	Secondary
11	Time Hardening	$s_{Cf} = C_1 \sigma^{C_2} t^{C_3 + 1} e^{-C_4/T} / (C_3 + 1)$ + $C_5 \sigma^{C_6} t e^{-C_7/T}$	C ₁ >0, C ₅ >0	Primary + Secondary
12	Rational polynomial	$\begin{split} \dot{s}_{cr} &= C_1 \frac{\partial \epsilon_c}{\partial t}, \ s_c &= \frac{cpt}{1+pt} + \dot{s}_m t \\ \dot{s}_m &= C_2 10^{C_3\sigma} \sigma^{C_4} \\ c &= C_7 \dot{s}_m^{C_9} \sigma^{C_9}, \ p &= C_{10} \dot{s}_m^{C_{11}} \sigma^{C_{12}} \end{split}$	C2>0	Primary + Secondary
13	Generalized Time Hardening	$a_{CF} = ft^{r} e^{-C} 6^{/T}$ $f = C_1 \sigma + C_2 \sigma^2 + C_3 \sigma^3$	r = C4 + C50	Primary
100		UserCreep		

A-1 ANSYS

Implicit Creep Models

C.1 Primary Explicit Creep Equation for C6 = 0

$$\dot{\varepsilon}_{cr} = C_1 \sigma^{C2} \varepsilon_{cr}^{C3} e^{-C4/T}$$

C.2 Primary Explicit Creep Equation for C6 = 1

$$\dot{\varepsilon}_{cr} = C_1 \sigma^{C2} t^{C3} e^{-C4/T}$$

C.3 Primary Explicit Creep Equation for C6 = 2

C.4 Primary Explicit Creep Equation for C6 = 9 (Annealed 304 Stainless Steel[®])

$$\dot{\varepsilon}_{cr} = C_1 \frac{\partial \varepsilon_c}{\partial t}$$

C.4.1 Double Exponential Creep Equation (C4 = 0)

$$\begin{split} \epsilon_c &= \epsilon_x (1-e^{-st}) + \epsilon_t (1-e^{-rt}) + \dot{\epsilon}_m t \\ &\qquad 800 ~\sim ~ 1100^\circ F \qquad 304 SS \end{split}$$

C1=1 Blackburn

C.4.2 Rational Polynomial Creep Equation with Metric Units (C4 = 1)

$$\varepsilon_c + \frac{cpt}{1+pt} + \dot{\varepsilon}_m t$$

C.4.1

C.5 Primary Explicit Creep Equation for C6 = 10 (Annealed 316 Stainless Steel)

$$\dot{\varepsilon}_{cr} = C_1 \frac{\partial \varepsilon_c}{\partial t}$$

C.4.2

316 SS C.4.1

C.6 Primary Explicit Creep Equation for C6 = 11 (Annealed 2 1/4 Cr - 1 Mo Low Alloy Steel)

$$\dot{\varepsilon}_{cr} = C_1 \frac{\partial \varepsilon_c}{\partial t}$$

C.7 Primary Explicit Creep Equation for C6 = 12

$$\dot{\epsilon}_{cr} = MK(C_1\sigma)^N t^{(M-1)}$$

C.8 Primary Explicit Creep Equation for C6 Equals 13 (Sterling Power Function)

$$\dot{\varepsilon}_{cr} = \frac{\varepsilon_{acc}}{B\varepsilon_{acc}^{B}\sigma^{A} 10^{(3A+2B+C)}}$$

C.9 Primary Explicit Creep Equation for C6 = 14

$$\dot{\varepsilon}_{cr} = C_1 \frac{\partial \varepsilon_c}{\partial t}$$

C.10 Primary Explicit Creep Equation for C6 = 15

$$\dot{\varepsilon}_{cr} = C_1 \frac{\partial \varepsilon_c}{\partial t}$$
, $\varepsilon_c + \frac{cpt}{1+pt} + \dot{\varepsilon}_m t$, $\dot{\varepsilon}_m = C_2 \cdot 10^{C_3 \sigma} \sigma^{C_4}$

(C2 must not be negative)

- C.11 Primary Explicit Creep Equation for C6 = 1007 C6=100
- C.12 Secondary Explicit Creep Equation for C12 = 0

C.13 Secondary Explicit Creep Equation for C12 = 1

C.14 Irradiation Induced Explicit Creep Equation for C66 = 5 ANSYS

Model	With	Combination Type	Command, Label	
Plasticity	Combined Hardening	Bilinear	TB,BISO + TB,CHAB	
Plasticity	Combined Hardening	Multilinear	TB,MISO + TB,CHAB	
Plasticity	Combined Hardening	Nonlinear	TB,NLISO + TB,CHAB	
Viscoplasticity	Isotropic Hardening	Bilinear	TB,BISO + TB,RATE	
Viscoplasticity	Isotropic Hardening	Multilinear	TB,MISO + TB,RATE	
Viscoplasticity	Isotropic Hardening	Nonlinear	TB,NLISO + TB,RATE	
Plasticity and Creep (Implicit)	Isotropic Hardening	Bilinear	TB,BISO + TB,CREEP	
Plasticity and Creep (Implicit)	Isotropic Hardening Multilinear		TB,MISO + TB,CREEP	
Plasticity and Creep (Implicit)	Isotropic Hardening	Nonlinear	<u>TB</u> ,NLISO + <u>TB</u> ,CREEP	
Plasticity and Creep (Implicit)	Kinematic Hardening	Bilinear	<u>TB</u> ,BKIN + <u>TB</u> ,CREEP	
Anisotropic Plasticity	Isotropic Hardening	Bilinear	TB,HILL + TB,BISO	
Anisotropic Plasticity	Isotropic Hardening Multilinear		TB,HILL + TB,MISO	
Anisotropic Plasticity	Isotropic Hardening	Nonlinear	TB,HILL + TB,NLSIO	
Anisotropic Plasticity	Kinematic Hardening	Bilinear	TB,HILL + TB,BKIN	
Anisotropic Plasticity	Kinematic Hardening	Multilinear	TB,HILL + TB,MKIN/ KINH	
Anisotropic Plasticity	Kinematic Hardening	Chaboche	TB,HILL + TB,CHAB	
Anisotropic Plasticity	Combined Hardening	Bilinear Isotropic and Chaboche	TB,HILL + TB,BISO + TB,CHAB	
Anisotropic Plasticity	Combined Hardening	Multilinear Isotropic and Chaboche	TB,HILL + TB,MISO + TB,CHAB	
Anisotropic Plasticity	Combined Hardening	Nonlinear Isotropic and Chaboche	TB,HILL + TB,NLISO + TB,CHAB	
Anisotropic Viscoplasticity	Isotropic Hardening	Bilinear	TB,HILL + TB,RATE + TB,BISO	
Anisotropic Viscoplasticity	Isotropic Hardening	Multilinear	TB,HILL + TB,RATE + TB,MISO	
Anisotropic Viscoplasticity	Isotropic Hardening	Nonlinear	TB,HILL + TB,RATE + TB,NLISO	
Anisotropic Creep (Implicit)			TB,HILL + TB,CREEP	
Anisotropic Creep and Plasticity (Implicit)	Isotropic Hardening	Bilinear	TB,HILL + TB,CREEP + TB,BISO	
Anisotropic Creep and Plasticity (Implicit)	Isotropic Hardening	Multilinear	TB,HILL + TB,CREEP + TB,MISO	
Anisotropic Creep and Plasticity (Implicit)	Isotropic Hardening	Nonlinear	TB,HILL + TB,CREEP + TB,NLISO	
Anisotropic Creep and Plasticity (Implicit)	Kinematic Hardening	Bilinear	TB,HILL +	
Hyperelasticity and Viscoelasticity (Implicit)	Finite Strain Viscoelasticity	Nonlinear	<u>TB</u> ,HYPER + <u>TB</u> ,VISCO	

A-2 ANSYS 가

(Material Model Combination)

$$X_{ij}^{k} = C(\mathcal{E}_{p})_{ij} - \gamma \mathcal{E}_{ij}$$

C, γ

$$\mathbf{R} = b(Q - R) \mathbf{k}$$

b Q

NOSTA-EP ABAQUS

· · / ·	
*material,name=	\:
*depvar	
*user material, constants=	· · · · · ·
*user subroutines, input=nonsta_ep.f	: NONSTA-EP

TD NOOD	AB	AQ	US
---------	----	----	----

C, γ, Q, b A.1.4

316SS ABAQUS ***** *** ** ELEMENT PROPERTY ******* *SOLID SECTION, ELSET=EALL, MATERIAL=316SS 1., ***** ** Material Definition : 316SS ***** *MATERIAL, NAME=316SS *DEPVAR 20 *USER MATERIAL, CONSTANTS=24 3,0,1,1,5,0,0,0 20,196000,0.3,1.d-5,0,0,0,0 20,162400,2800,8,60,82,0,0 *USER SUBROUTINE, INPUT=nonsta-ep.f

ABAQUS

.

A.2.2.2

,

,

NONSTA-EP


```
(DEPVAR)
                                                                                  10
                                         USER MATERIAL
                           Chaboche model
                                                  3
                                                                      GMR
    (midpoint coefficient = 0.5)
                                                                            (RTOL)
                                                    Newton
        . USERINIT
                               Chaboche
                       가
316SS
        material parameter for 316 stainless steel (600C)
   с
    с
          param(1)= 149600.e+6
                                       : E
          param(2) = 0.309
                                         : v
          param(3)= 1.870d-5
                                       :α
          param(4)= 180.e+6
                                        : K
          param(5) = 9.6
                                          : n
          param(6) = 6.e + 6
                                         ∶ĸ
                                        : C
          param(7)= 24801.e+6
          param(8)= 300
                                         :γ
          param(9)= 80.e+6
                                         : Q
          param(10) = 10
                                         : b
                NONSTA-VP
                                     Implicit Version
                          NONSTA-VP2
Explicit Version
    ** MATERIALS
    *****
                                            ******
    *MATERIAL, NAME=SS316
    *USER MATERIAL, CONSTANTS=10
    149760.e+6, 0.3, 6.e+6, 24800.e+6, 300, 10, 80.e+6, 150.e+6,
    12, 1
    *DEPVAR
    20,
                              NONSTA-VP2
    c
       parameter definition
    EMOD
              = PROPS(1)
                                 : E
    ENU
             = PROPS(2)
                                 : v
    SYIELD0 = PROPS(3)
                                 ∶ĸ
    С
             = PROPS(4)
                                 : C
    GAMMA = PROPS(5)
                                 :γ
    В
             = PROPS(6)
                                  : b
```

Q	= PROPS(7)	: Q
EK	= PROPS(8)	: K
EN	= PROPS(9)	: n
THETA	= PROPS(10)	: 0

BIBLIOGRAPHIC INFORMATION SHEET							
Performing Org.		Sponsoring Org.		Standard		INIS Subject	
Report No.		Report No.		Report	t No.	. Code	
KAERI/TR-3383/2007							
Title/ Preliminary		Guideline for the High Temperature Structure Integrity Assessment					
Subtitle Proce		dure/Part II. High	Temperatu	e Structural	Integrity A	ssessme	ent
Project Manager		Jae-Han Lee	/ KALIN	IER Mech	anical St	ructure	Design
and Department		Development	Development				
Researcher and Department (or Main Author)		J.B. Kim, H.Y. I KALIMER Mech	Lee, C.G.	Park, Y.S. J icture Design	oo, G.H. K 1 Developn	Koo, S.I nent	H. Kim /
Publication Place	Taejon, Korea	Publisher	KA	ERI	Publicati Date	ion	2007.2
Page	p.94	Fig. & Tab.	Yes(V)	, No ()	Size		A4
Note					/		
Classified Open(V), Class		Restricted(), Document	Rep	oort Type	Technic	al Repo	ort
Sponsoring O	rg.		Cor	ntract No.			
Abstract (15-2)	Abstract (15-20 Lines)						

A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

Subject Keywords	Liquid Metal Reactor, Creep-fatigue, Crack, LBB, Welded joint,
(About 10 words)	Inelastic analysis