to determine the α -decay energy and half-life of isomer $^{216}Fr^{m}(9^{-})$ for the first time. The isomer ratios of 0.28(1) and 0.31(2) were determined for the (9^-) isomers of ²¹²At and ²¹⁶Fr, respectively [1].

It would have been a difficult task to obtain these results without using mass-separation and α - α time correlation (i.e. on the basis of measuring a mere α single spectrum). If the (9⁻) state energies of parent and daughter nuclei are very similar, the α line originating from the transition between these levels could be obscured by the much stronger ground-state to ground-state α transition.

Identification of the α -decaying (9⁻) isomer in ²¹⁶Fr provides a basis for assignment of level energies of alternating parity band. Recently, high-spin octupole yrast levels in ²¹⁶Rn were studied [2]. All experimental characteristics indicate that 216 Rn is a transitional nucleus. From this result, the lightest nucleus showing evidence of octupole collectivity at low spins is still 216 Fr, thereby defining the lowest mass "cornerstone" for this phenomenon in the $N \ge 129$, $Z \ge 87$ region of the nuclear chart [2].

The results obtained in this work suggest the existence of an isomeric state in 220 Ac. The search for an α -decaying (9⁻) isomer in ²²⁰Ac will be the aim of our next study.

Some technical improvements were performed on the IGISOL system. The most important one was the installation of a movable diaphragm in the focal plane of the mass separator, which allows to cut off the neighbouring masses in the mass spectrum and, consequently, to purify the α-spectra.

These works were partially performed in frame of the Warsaw University – IN2P3 (France) collaboration (N0. 04-112) and have been supported in part by the EU-RTD project ION CATCHER (HPRI-CT-2001-50022), the Polish Ministry of Science and High Education Grant No. N202 017032/0696, and the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University Grant No. G26-4.

The authors would like to acknowledge the staff of the Warsaw Cyclotron for cooperation during the experiments.

References:

- [1] J. Kurcewicz, W. Czarnacki, M. Karny, M. Kasztelan, M. Kisieliński, A. Korgul, W. Kurcewicz, J. Kurpeta, S. Lewandowski, P. Majorkiewicz, H. Penttilä, A. Płochocki, B. Roussière, O. Steczkiewicz , A. Wojtasiewicz, Phys. Rev. **C76**, 054320 (2007)
- [2] M.E. Debray *et al.*, Phys. Rev. **C73**, 024314 (2006)

15. Double sided strip monolithic silicon E-∆**E telescope produced by Quasi-Selective Epitaxy**

A.J. Kordyasz¹ , E. Kulczycka¹

1) Heavy Ion Laboratory, Warsaw University, Warsaw, Poland

The main problem discovered during tests of the monolithic silicon E-∆E telescopes produced by the Quasi-Selective Epitaxy was a cross-talk of signals between the two active

layers of the telescope. It was shown by solving the telegraphic equation [1] that the time evolution of induced signals in the E-∆E detector RC line depends strongly on the detector shape. The calculations were performed for rectangular detectors of various length to width ratio, at a constant area. For long and narrow detectors (high length to width ratio) the fall time of induced signals was significantly shortened (see Fig. 1) resulting in a cross-talk pulse length below the minimum required by the related electronics. These results are experimentally supported by measurements of α particles with a circular monolithic E- Δ E telescope [2,3]. When α particles were measured at the telescope edge, the induced signal (cross-talk) was decreased. For α particles measured at the centre of the telescope the amplitude of cross-talk was higher, see Fig. 2.

Figure 1. Average potential versus time for rectangular monolithic E - ∆E telescopes calculated using (A.8) from Ref. [3] for various rectangular telescope shapes L (length) and W (width) with constant telescope area=L*W=0.2809 cm² and RC=4.025*10⁻⁶ s, where C = 917.4 pF/cm² and sheet resistance R = 4387.4 Ω . The initial position of the source cross-talk potential was localized at the centre of the detector. The curves were calculated for the following values of the ratio L/W: 1, 2, 4, 8, 16, 32, and 64.

Applying these results we have designed a new type of the device based on the n^{+} - n – p^{+} - n – n + structures: double-sided strip monolithic silicon E-∆E telescope, see Fig. 3. The device is similar to the traditional double sided strip detector $[4]$, however, an introduced p^+ - type buried grounded separating layer isolates the (upper) ∆E strip detector from the (bottom) E strip detector of the telescope. We plan to build such a device in the following months in collaboration with the Institute of Electronic Materials Technology and Institute of Electron Technology in Warsaw.

Figure 2. Oscilloscope pictures of the charge preamplifier outputs for a monolithic E - ∆E telescope with a 20 µm thick E-∆E detector irradiated by α particles of 8.78 MeV energy. For ∆E detectors a negative cross-talk signal is observed. Left: α particles hit the centre of the telescope. Right: α particles hit the edge of the ∆E detector.

Figure 3. Design of the double-sided strip monolithic silicon E - ∆E telescope produced by Quasi-Selective Epitaxy.

References:

- [1] A.J. Kordyasz *et al.,* Nucl. Instr. and Meth. **A 568** (2006) 778
- [2] A.J. Kordyasz *et al.,* Nucl. Instr. and Meth. **A 530** (2004) 87
- [3] A.J. Kordyasz *et al.,* Nucl. Instr. and Meth. **A 528** (2004) 721
- [4] G. Lutz MPI-PAE/EXP. EL 175 (1987)