Relativistic Ion Collisions

Helena Białkowska
Sołtan Institute for Nuclear Studies
Warsaw

Why heavy ions?

- You could think there are enough problems with elementary collisions...
- Yet if you collide many nucleons together you can perhaps learn more about their constituents and their interactions.

From dynamics to thermodynamics of strong interactions?

QCD: dynamics of strong interactions

Useful numbers:

Energy density:

- \bullet SPS ~ 3 GeV/fm³
 - ▶RHIC ~ 5-8 GeV/fm³
 - ◆Proton: ~
 - 0.14GeV/fm^3

Temperature:

(measured in degrees Kelvin - or in eV, via Boltzmann k)

Surface of the Sun: 6000 K

Nuclear fireball: 150 MeV

From Big Bang to Little Bang

This is where the 'hot stuff' forms

But we observe it here...

Big questions:

- What have we learned so far?
- What do we want to know?

Existing data come from two sources:

- The RHIC accelerator
- 100+100 GeV/N
- Au + Au

- 158 GeV/N
- Pb on stationary Pb

Basic info on 'soft' interactions:

- Multiplicities
- Particle spectra
- Particle composition
- Particle correlations

Important for heavy ion collisions: centrality

- 'Centrality' how many nucleons participate in the collision
- No way to measure directly, but can evaluate
- Often expressed in terms of 'number of participant pairs'

Back to basic facts: multiplicities (from central collisions)

Two surprises: Far away from many a prediction Only ~ 30% more than in pp

(per participant)

E917 (AGS) ♦ ISR (pp) \triangle UA5 (pp) □ CDF (pp) $\sqrt{s_{NN}}^3$ (GeV) 10²

10

Basics ctn'd: spectra

Scaling in participants

Nuclear geometry determines basic characteristics!

HB, 21/04/08

What can we expect for LHC?

One (of many) models

HB, 21/04/08

Basics ctn'd: hadrochemistry

How many particles of different species?
Baryons – antibaryons?
Non-strange, strange, charmed?

Here come thermodynamical models
Nb of particles determined by two parameters
baryon density μ , temperature T

Temperature – from transverse spectra
Baryon density (net baryons!) – can count them
(and determine the radius of a fireball
from quantum interference effects)

Counting – and predicting net baryons:

predicted

Thermal models work at RHIC:

Baryon density and temperature predictions for LHC:

Heavy flavor story: strangeness, charm

Strange particles more abundantly produced in nuclear collisions

But real news come from charm:

J/ψ is charm-anticharm pair

It is suppressed (compared to production in pp) (main SPS discovery)

Why?
Presumably – hot & dense
nuclear matter (is it plasma?)
'melts' the charmonium

18

Will J/Y 'melt' more (be more suppressed) at LHC?

Not necessarily so...

Now for the hard stuff: jets

Jets from pp and AA:

Study of jets: study of large p_T

Direct probe of partonic phase $\tau \sim 1/p_t$

21

How to study jets:

$$e^+ + e^- \rightarrow jet + jet$$

Compare large pt spectra for pp and AA (scaled by number of collisions):

Radiation energy loss by high energy partons moving in a dense partonic medium

High gluon density requires deconfined matter - 'indirect' QGP signature

LHC will extend considerably the p_t range:

Even charmed particles suppressed

The data suggest large c-quark-medium cross section; evidence for strongly coupled QGP? (not a gas of free-flowing quarks and gluons) More evidence for QGP as a 'perfect liquid' comes from azimuthal correlations - particles flow

First time hydrodynamics without any viscosity describes heavy ion reactions.

Transverse spectra

'Flow' – azimuthal correlation

Thermalization time t=0.6 fm/c and $\varepsilon=20$ GeV/fm³

'Plasma' – an ideal liquid?

Heavy ions at the LHC: ~2 years after pp 5.5TeV/Pb + 5.5 TeV/Pb

One dedicated experiment, ALICE, but CMS and ATLAS also

- The first 15 minutes; $L_{int} = 1 \mu b^{-1}$
 - Event multiplicity, low p_t hadronic spectra, particle ratios
- The first month; $L_{int} = 0.1 1 \text{ nb}^{-1}$
 - Rare high p_t processes: jets, D and B particles, quarkonia, photons, electrons
- The following years:
 - pA, A scan, E scan

Progress/summary:

- from "oh wow!" (SPS, RHIC)
- we have found a surprising new form of matter (certainly partonic, but not 'soup of free quarks & gluons' rather 'perfect liquid'
 - to "aha!"
 - here is how it works
 - how QGP relates to and helps progress in other fields

Hopefully - LHC

HB, 21/04/08