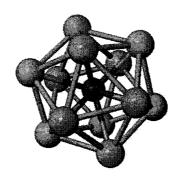
Towards a 32-electron principle: Pu@Pb₁₂ and related systems¹

Jean-Pierre Dognon^a, Carine Clavaguéra^b and Pekka Pyykkö^c


Department of Chemistry, University of Helsinki, P.O.B. 55 (A.I. Virtasen aukio 1), FIN-00014 Helsinki, Finland

- ^a Present and permanent address: CEA/Saclay, DSM/DRECAM/SCM, 91191 Gif-sur-Yvette, France.
- ^b Present address: Laboratoire des Mécanismes Réactionnels, Département de Chimie, Ecole Polytechnique, CNRS, 91128 Palaiseau Cedex, France.
- ^c Department of Chemistry, University of Helsinki, P.O.Box 55, 00014 Helsinki, Finland. Fax 358-9-191 50169.

The 18-electron principle goes back to Langmuir.² For its history and interpretation, see the recent paper.³ Formally it would correspond to fully occupying at a central atom its ns, np and (n-1)d orbitals. For early 5f-elements the f-shell becomes chemically available and remains so until about Am. Theoretically it could be filled with 14 further electrons, bringing the total to 32, a theoretical possibility already evoked by Langmuir.² How far towards that limit can one go? Thorocene, Th(C₈H₈)₂, was classified as a '20e' case.³ In the 'metalloactinyl' compounds, like the linear IrThIr²⁻, one could potentially reach '24e'.⁴

We now find that the 6p valence band of the recently discovered icosahedral $[Pb_{12}]^{2-}$ shells forms a perfect partner for the 5f shell of an enclosed actinide atom, like plutonium. Detailed DFT calculations suggest that the system is viable. It could be on good grounds characterised as a '32e' system.

The calculated molecular geometries, an orbital analysis and a bonding energy analysis in term of Morokuma-type decomposition will be presented for $[Pb_{12}]^{2-}$ and $[M@Pb_{12}]^{x-}$ with M=Yb, Th, U, Np, Pu, Am, Cm. The orbital-energy spectra and the densities of states for $[Pb_{12}]^{2-}$, $[An@Pb_{12}]^{x-}$ (An=Pu, Am, Cm) will be given. Finally we will show for $[Pu@Pb_{12}]$ an ELF distribution, clearly demonstrating the radial bonds.

¹J.-P. Dognon, C. Clavaguéra, P. Pyykkö, Angew. Chem. Int. Ed. 2007, 46, 1-5

²I. Langmuir, *Science* **1921**, *54*, 59-67,this paper mentions the 8, 18 and 32-electron closed shells and uses on pp. 65-66 Fe(CO)₅, Ni(CO)₄ and Mo(CO)₆ as examples on 18e.

³P. Pyykkö, J. Organomet. Chem. **2006**, 691, 4336-4340

⁴P. Hrobárik, M. Straka, P. Pyykkö, Chem. Phys. Lett. **2006**, 431, 6-12