
I
I

OPERATING DATA DOCUMENTATION SYSTEM
FOR A RESEARCH REACTOR

F.Kasparec*, J.Hammer*
Atominstitut Vienna, Austria

1. History and Discussion of Requirements

The documentation of reactor operating data is an important task at research
reactor stations. Though not directly neccessary for the safety of the reactor,
it is an essential tool for maintenance and safeguarding purposes and therefore
made obligatory by the licensing authorities.

Until 1985, the documentation system of the TRIGA reactor in Vienna com­
prised an automatic data logger with a separate hardcopy terminal. A textual
report on all channel inputs was printed out each hour at normal conditions.
When given thresholds were exceeded, warnings or alarms were issued together
with an out-of-order log message, which conveyed information about the
offending parameters.

In 1985 the development of the documentation system described in this paper
was started. It was based on former experiences with the data logger which had
led to a selection of representative data and useful data formats, but also
made clear that the paper reports produced by the hardcopy terminal were not
useful for further evaluation.

The documentation system was expected to be an extension of the logger-
based system. Data had to be directed to the in-house computer center rather
than to a terminal, though the terminal would be kept for reasons of diversity.

In particular, the documentation system had to meet the following require­
ments :

a) The central computer used for data archivation (a VAX-11/750) had not to be
obstructed beyond neccessity. It was essential to avoid time-consuming high
priority jobs.

b) Data security was neccessary, in the sense that VAX system crashes would not
cause losses of acquired information.

c) A high degree of automatization, especially in the system crash and recovery
phases of the VAX, had to be implemented in order to minimize human
failures.

d) Upon request, data had to be available at any terminal of the VAX within
seconds or minutes. (This was assumed to be particularly important in the
case of warnings or alarms.)

e) Data management tasks (sorting into daily reports etc.) had to be performed

*) At present at Alcatel-Elin Research Center Vienna, Austria (F.Kasparec) and
PSI Wiirenlingen, Switzerland (J.Hammer)

2-47

automatically, so the operator would only have to copy data to tape and
clear up the VAX disk directory every week or month.

f) The transmission protocol used to transmit collected data to the VAX had to
be portable, i.e. not relying on any specific hardware.

i •

N<

P •

U<

T

3 -

Da ta

Logger

Ù A
Hardeopy

Tarminal

Microeomputar

Epson H X 2 0

3=2.
Tap*

Cartridge

Fis.l: SYSTEM STRUCTURE

2. System Description

2.1. Microcomputer as Prebuffer

To meet all these requirements,
special prebuffer hardware was provided
to connect the data logger to the VAX.
Because of its proven reliability an
Epson-HX20 microcomputer was selected
for this purpose.

Today a personal computer would also
be a good choice, especially because of
its large memory and built-in mass
storage which is far more powerful than
the microcassette drive of the HX20.
However, the fact that the operating
system of a PC is resident in dynamic
RAM may cause reliability problems,
which would have to be solved by special
watchdog hardware (e.g. a MAX-691 chip
on a prototype adapter card in a PC
extension slot).

Fig.l depicts the structure of the
documentation system hardware obtained
by introducing the microcomputer.

The microcomputer software performs
five tasks:

a) Input Processor: This task processes the data­
logger output in order to cut the data stream into
records.
The logger output stream is a sequence of ASCII-
coded text lines of 23 characters each, called
frames, which contain information about the result
of a physical measurement, a comment, or
information about date and time. The latter case
occurs whenever a new measurement cycle starts and
is used by the input processor task to identify
the begin of a new record (Fig. 2). The number of
frames per record is variable.
The input processor task also assumes the end of
the current record whenever the stream pauses for
more than 10 seconds. The frame following a pause
always is a date/time frame.

Meaauramen«

Oat* t Tim«

Measurement

Comment

Measurement

Measurement

Comment

Measurement

Data > Time

-*±

_̂ =L

Fi6.2: LOGGER OUTPUT

2-48

b) Buffer Management: This task handles
accesses to a 24kByte ring buffer,
using a special algorithm which will
be discussed in detail in chapter 3.
All newly received data from the data
logger are written to the leading end
of the occupied memory area as if
they were pushed on a stack, whilst
data for transmission to the VAX are
taken from the trailing end.
Since any buffer access beyond top or
below bottom is wrapped around,
repeated accesses make the occupied
memory area wander through the ring
(Fig.3).

c) VAX Interface: This task serves transmission requests issued by the VAX by
sending entire data records to a VAX terminal port, which are then cleared
out of the ring buffer.
As only whole records are handled, the time-out mechanism mentioned at the
end of (a) makes sure that the most recent information becomes available as
soon as the data logger stops sending. Without time-out, the input processor
task would have to wait for the anticipated date/time frame (leader frame)
of the next record to identify the end of the current record.
All communication runs through a serial 1.2kBaud link using 20mA current
loop standard. A special protocol, which will be discussed in detail in
chapter 3, traps line breaks and VAX system crashes, so no data are lost.

d) Buffer Supervision and Tape Access Control: This
task periodically checks the ring buffer
occupation. If the amount of occupied memory area
exceeds an adjustable threshold higher than
16kByte, a 16kByte section of stored data is
scanned for end-of-record marks, proceeding from
the trailing buffer end in forward direction. The
last end-of-record mark found identifies a memory
block containing the largest number of entire
records that fit into the 16kByte space (see
Fig.4). This block is then saved out to tape in
reverse order.
After successful completion of every transmission
cycle to the VAX, which is assumed to have emptied
the buffer except for partial records (when input
from the data logger is in progress), this task
checks for the existence of data blocks on tape.
In case that some is found the block is read back
and appended to the trailing buffer end, pro­
ceeding backward character by character. In case
that none is found the VAX is informed that there
are no outstanding data.

Leading End
(Writ*)

Trailing End

(R#ad>

Fis.3: RING BUFFER ARCHITECTURE

SAVE
OUT

J TPMTH

Fi6.<t: IDENTIFYING A
SAVE-OUT BLOCK

2-49

VAX requests received during an already active save-out or read-back
operation are rejected. Typically, the reason for the impending buffer
overflow is a line break or VAX system crash, so requests need not be
expected during a save-out operation.

e) Tape Management / Operator Interface: This task controls the HX20 micro-
cassette drive as well as operator accesses to this drive, which are the
only manual intervention possibly required. Together with six multicolor
signal lamps the HX20 liquid crystal display informs the operator about the
system state.
Tape management is stack based, i.e. the blocks exchanged with task (d) are
stored first-in / last-out. Each of the MC90 tape cartridges used can
contain four 16kByte blocks in distinct sections. The cartridges need no
formatting; the sections are assumed at fixed offsets and accessed by first
rewinding the tape to the begin and then winding forward to the desired
location.
This task needs the most extensive functional modification to run on a PC.

Fig. 5 illustrates the data flow among the five tasks.
Serial communication via the main data path (input from data logger and

output to VAX) is fully interrupt-driven. Such a design was possible by using
an asynchronous communication adaptor (ACIA) chip in an extension box attached
to the HX20, whereas input from the VAX is polled.

There is also a possibility to output messages to the data logger for the
purpose of dynamic reprogramming. If, for instance, task (d) anticipates an
overflow condition and finds the tape cartridge to be full, the data logger
could be automatically reprogrammed to drop useful, but redundant information
and restrict its output stream to absolutely neccessary data. As this facility
has not been implemented in the actual software version, the corresponding line
in Fig.5 has been drawn dashed.

Since the five tasks partly run in parallel and there is no system program­
ming language available for the HX20, the HX20-software has been written in
assembler.

Data logear

VAX

Input

Procaaaor

RS 232

Dat. Log. Ramota Control

Sava Out

»
Suffar

Suparviaian

Opatator,

Tapa

Managamant

Fis.5: DATA FLOW AMONG PREBUFFER-RESIDENT TASKS

2-50

2.2. VAX Software

The VAX, on the other hand, also executes software, matching to the VAX
Interface task on the HX20 (or PC). This software comprises three modules:

a) the Controller Module, which holds the code of an always resident controller
task. This task is responsible for calling one or more acquisition tasks at
fixed time intervals or upon request from the operating system.

b) the Acquisition Module, holding the code for all acquisition tasks, of which
each serves an individual buffer subprocessor (HX20 or PC) . As the present
configuration contains only one HX20, only one acquisition task has been
implemented.

c) the Sorter Module, which provides the code for all sorter tasks. Acquisition
tasks and sorter tasks are organized in pairs, in a way that each acqui­
sition task activates an individual sorter task on exit. As there is only
one acquisition task, only one sorter task can be active in the present
system configuration.
The activation does not take place unless the acquisition task has been
informed by the assigned buffer subprocessor that there are no outstanding
data on tape (also see buffer subprocessor task (d)).
The sorter task reads a workfile provided by the acquisition task, sorts the
records contained there into a time-ordered sequence using their leader
frames (date/time frames) as key, puts them into daily report files, and
finally deletes the workfile.
If there were no accesses to tape,
the workfile is time-ordered. On the
other hand, Fig.6 gives an example of
five data stream sections in the
workfile of which two have been saved
out to the tape stack. Since the
section limits depend on the time
when save-out or transmission to the
VAX are started, the section defini­
tion is entirely random.
The workfile has to be preserved till
the end of the last read-back and
then sorted section by section or-
as section lengths are undefined-
record by record.
The Sorter Module uses the subroutine
calls of the VAX/VMS Sort-Merge
Utility, which exhibits a good
behavior at this particular sorting
problem.

3

2

4

— — — ^

1

5

First tr«n«m. cycle completed:

Suiter empty, block2 read-oack star ted

Second transm. cycle completed!

Suffer empty, b lockt read-beck started

Third transm. cycle completed:

Suffer empty, start sorting

Fi6.6: EXAMPLE OF TAPE-
READ-BACK ORDER

Fig.7 gives a concise formal description of the VAX task interaction, using
the real-time language Occam /!/. Although this language has been developed for
concurrent programming on transputer systems, it is a good tool to describe
software that extensively relies on VAX/VMS low level system calls.

2-51

An alternative description language could be seen in PEARL ('Process and
Experiment Automation Real-Time Language'), as it is defined in the papers by
the 'Kernforschungszentrum Karlsruhe' /2/.

Among the VAX/VMS system calls used, there are process hibernation,
scheduled wakeup, wakeup enforced by a parallel process, as well as event flag
services which are used for locking the acquisition task, in order to grant the
operator exclusive access to the workfile for testing purposes.

Except for the Sorter Module, which has been written in Fortran, all VAX
software has been programmed in VAX Macro-Assembler.

^̂

PAR
WEILE TRUE

SEQ
PAR

SEQ
... Acquisition Task 1
IF

no_outstandingjiata
... Sorter Task 1

TRUE
SKIP

... Other Acquisition / Sorter Pairs (SEQs within PAR)
... Compute next_time (= schedule wakeup)
ALT

(TIMER ? AFTER next_time) â notJLocked
SKIP

(forcedjpakeup ? any) S notJLocked
SKIP

— End of infinite-loop body (outermost sequencial construct)
... Other jobs under VAX/VMS (write to channel forced_wakeup)

\ /

Fis.7: VAX TASK INTERACTION (FUNCTION OF THE CONTROLLER TASK)

In Fig.7 SEQ denotes a process comprising any number of subprocesses (next
indentation level in the list) to be executed sequentially. In a similar way,
PAR indicates a process consisting of two or more parallel (concurrent) sub-
processes of which the slowest is responsible for the termination of the PAR.

An ALT construct specifies two or more alternative processes which can be
triggered by individual timer, interprocess-communication or real-time events
masked by static conditions ('&' operator). Only the alternative triggered
first of all is executed; its termination is that of the entire ALT.

SKIP is a dummy process used in constructs where only communication or
synchronisation is of interest.

2-52

3. Fault Tolerance Precautions

Wait for and
racatv.acho
(with timaout
and arror chack)

In the context of this paper the term 'Fault Tolerance' expresses that VAX
system crashes and transmission errors are trapped. No means has been provided
to meet hardware faults in the data logger or prebuffer system, because this
could not be accomplished except by extensive hardware redundancy.

In transmitting data from the microcomputer (prebuffer) to the VAX, a record
is the smallest unit that can be handled by the protocol. Whenever a line break
occurs during transmission, both sides respond with a time-out and the last,
only partially received record is discarded in the VAX.

Hence the buffer management task in the microcomputer must use a double-
pointer algorithm. This algorithm distinguishes character-level pointers with
names ending in 'PNTR' and reeord-level pointers with names ending in 'REC.

A transmission pointer
(TPNTR) always holds the
address of the next byte to
be sent to the line. This
definition implies that
TPNTR is incremented after
every byte transmission, as
is usual in system program­
ming.

A transmission record
pointer (TREC) is over­
written by the current
TPNTR value whenever TPNTR
points to the first byte of
a record and the preceding
end-of-record mark - which
has been used to identify
the record begin - has been
succesfully transmitted-.
Hence TREC never can point
at other locations than
record begins and always is
updated record by record.

When aborting the trans­
mission, TPNTR is set back
to the current TREC value,
so the next communication
cycle will start with the
begin of the record which
was affected by the error.

There are two possible reasons for a communication abort, closely related
to the error-checking mechanism used. This mechanism is based on the echo
returned by the VAX terminal driver whenever a character is fetched by the
VAX CPU. Such an echo-checking protocol requires a full-duplex line, but has
the advantage that no software overhead in the VAX is caused as is by
protocols like XModem or Kermit.

A communication abort by the microcomputer may be caused by an echo time­
out or by an accumulation of echo errors. In case that an erroneous echo

Fis.8: PREPARING TRANSMISSION OF ONE CHARACTER

2-53

C CXaractar " \

Stor« to

bul f«

arrives a limited number of retries is done, making the VAX discard the
record torso by sending it a backspace character and then restarting at TREC
position. If the retry limit is exceeded or the backspace is not echoed
properly, communication is shut down.

As some time is required for a character to travel to the VAX and back, at
least three unechoed characters must be on the way if the line shall not be
slowed down. (See /3/ for a detailed description.) For this reason the VAX
interface task in the microcomputer allows a credit of five characters,
except if an end-of-record mark or the first character after an end-of-record
or backspace (i.e. the leading character of a record) is to be sent.

The first exception ensures that the record has arrived properly before
the VAX is informed to accept it definitely. The second exception does not
allow to continue with a new record as long as it is not sure that the old
one is on disk.

Taking this into account and regarding the TREC update condition explained
above, TREC obviously must be set equal to TPNTR when an end-of-record echo
is received (see flowchart in Fig. 8).

The double pointer philosophy is also
used at the leading buffer end, which is
controlled by the input processor task.
Here the pointer pair is named RPNTR and
RREC. RREC is overwritten by RPNTR when­
ever the last character written to the
buffer is an end-of-record mark (Fig.9).
Transmission to the VAX always stops at
RREC, so records just being received by
the data logger remain unaffected.

In the microcomputer-resident Buffer
Supervision / Tape Access Control task
(task (d) in chapter 2.1.) a pointer
named SREC is used to cut off the save-
out block, whereas SPNTR runs through
the buffer during tape operations. How­
ever, save-out is done on a predecrement
base whereas read-back operations keep
to the post-increment convention.

It should also be mentioned that every transmission burst (from the pre-
buffer to the VAX) is preceded by a password exchange, so it is difficult to
interrupt the line and extract data from the prebuffer by simulating a VAX
request.

The VAX always begins the exchange by sending a password to the micro­
computer. The microcomputer then answers with another password, which is not
echoed by the VAX, and starts the transmission protocol.

However, since it is easy to monitor a serial line, this is a facility for
avoiding accidental data losses rather than a protection against 'hackers'.
In endangered areas glass fiber cables should be used, as they are hard to
tap. Assemblies with optical transmitters and receivers integrated in RS232
connector cases, which are available from various manufactures, allow data
rates up to lOOkBaud over distances of 40m and more with excellent
reliability at a cheap price.

Fi6.9: READING ONE
CHARACTER

2-54

4. Experiences and Conclusion

By now, the Documentation System has been operational for about ten
months, collecting a daily average of 30kByte of data, and overcome a number
of VAX system crashes, maintenance days and VAX/VMS updates.

During this time various software extensions have been developed for pro­
cessing the daily reports- Among these extensions there are programs for
convenient tape backup, procedures for formatted printer output, and other.

It is especially helpful to use commercial personal computer software for
further data processing, in particular when PCs are connected in a network
with the VAX or, on the other hand, emulate VAX terminals. There is a vast
number of spread-sheet or database programs with excellent computational and
graphic support available for PCs. Most of them allow data import, though
format conversion programs will be neccessary in most cases.

Fig.10 gives an example where nuclear reactor power and radiation level at
the reactor pool surface (the latter measured by an aerosol detector) are set
against each other graphically, using the program MS-Chart by Microsoft. The
measurement time extended over ten days, including a week-end. The picture is
based on data collected by the Documentation System.

Aerosol Monitor
14-

12--

mR/h, 100kW

\

\ \ \ -1 ' 3 Aerosol
Monitor

• Reactor
Power

i t e VIIIH !
WED THU FR\ SAT SUN MON TUE WED THU FRI

• Day

Fi6.10: AEROSOL ACTIVITY AT POOL SURFACE (WED; JUN 15, 1988 - FRI; JUN 24, 1988)

References: /!/ 'OCCAM Reference Manual', INMOS Ltd.
/2/ 'Full PEARL Language Description1, Ges. für Kernforschung

m.b.H. Karlsruhe, PDV-Report KFK-PDV 130
/3/ F.Kasparec, 'Betriebsdaten-Dokumentationssystem für For­

schungsreaktoren' (Diploma Thesis, Tech. Univ. Vienna)
/4/ J.Hammer, 'Computer Controlled Area Surveillance System

for the TRIGA Mark II Reactor Vienna', Acta Physica
Hungarica 59 (1985)

2-55

