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Résumé - K1-x
s,B Kx

s,C = [AzA] [BzB]b(1-x) [CzC]cx /((1-x)b(1-x) xcx) et Ks,C/KsB = (1-x)b 

[CzC]c /([BzB]b xc) sont les 2 formules permettant de calculer la solubilité aqueuse 
contrôlée par la solution solide (idéale) ABb(1 x)Ccx, où Ks,B et Ks,C sont les produits 
de solubilité (constants, classiques) des pôles purs, ABb et ACc, les valeurs de b et c 
assurent l'électro-neutralité compte tenu des charges (zi) des ions. Ce rapport donne 
une démonstration (thermodynamique) calquée sur celle, habituelle, de la loi 
d'action de masse, afin de confirmer les bases scientifiques de l'utilisation de ces 
formules en géosciences (piégeage de radionucléides par un co-précipité) et de 
faciliter l'utilisation des formules en question. En particulier la loi d'action de 
masse est ici un système de 2 équations (et non une seule) pour un système idéal ou 
proche de l'idéalité. Conformément à la règle des phases, elles sont suffisantes 
(avec les bilans de matière) pour calculer toutes les concentrations dans toutes les 
phases : [AzA], [BzB], [CzC] et y compris x.  
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Abstract - K1-x
s,B Kx

s,C = [AzA] [BzB]b(1-x) [CzC]cx /((1-x)b(1-x) xcx) et Ks,C/KsB = (1-x)b 

[CzC]c /([BzB]b xc) are the two formula needed to calculate the aqueous solubility 
when controlled by the ideal ABb(1-x)Ccx solid solution, where Ks,B and Ks,C are the  
classical constant  solubility products of the ABb and ACc end-members, the b and 
c values are calculated form the (zi) charges of the ions and from charge balance. 
This report is essentially written to provide a thermodynamic demonstration of the 
law of mass action in attempts to confirm scientific bases for solubility calculations 
in geosciences (as typically retention of radio-nuclides by co-precipitation), and to 
facilitate such calculations. Note that the law of mass action is here a set of 2 
equations (not only 1) for the ideal or near ideal systems. Since they are consistent 
with the phase rule, no extra formula (beside mass balance) is needed to calculate 
the concentrations of all the species in both phases, namely: [AzA], [BzB], [CzC] and 
specially x.  
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Avant-propos et remerciements.

Ce rapport contient essentiellement une démonstration de la loi d'action de masse 
pour les solutions solides. Naturellement, nous obtenons des formules connues. 
Ainsi,  pour  la  solution solide (idéale)  ABb(1-x)Ccx nous retrouvons le  pseudo produit  de 
solubilité variable

Ks,B
1-x Ks,C

x = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx

où Ks,B et Ks,C sont les produits de solubilité (eux constants et classiques) des pôles purs 
ABb et ACc respectivement, les valeurs de b et c étant imposées par les charges (zi) des 
ions,  pour  assurer  l'électro-neutralité.  Toutefois,  le  fait  d'avoir  rendu  une  composition 
variable (x) dans un solide initialement pur (un des pôles purs), rajoute un degré de liberté 
au système d'une part. D'autre part, la loi du produit de solubilité (pour le pôle pur initial) 
n'est plus valable. Ainsi, là où on avait une équation, celle du produit de solubilité, il en 
faut maintenant deux. Celle ci-dessus (du pseudo produit de solubilité variable) en est 
une ; nous démontrons que l'autre est, par exemple

Ks,C

Ks,B
=

1−xb [CzC ]c

[BzB ]bxc

le classique coefficient de partage qui, en fait, est la loi d'action de masse appliquée à 
l'équilibre d'échange des ions qui sont en proportions variables dans ABb(1-x)Ccx ( [BzB ] et
[CzC]).

Même  si  les  deux  équations  sont  publiées,  il  n'est  pas  vraiment  clair  dans  la 
littérature ou les manuels de cours de géochimie, qu'il faille deux équations et non 
une  seule,  ou  du  moins  que  ces  deux  équations  sont  simultanément  vérifiées. 
Naturellement, il y a plusieurs variantes dans la littérature, puisque la combinaison d'un 
système de deux équations, peut donner des systèmes de deux équations équivalents. 
L'un des plus connus est le système

[AzA ] [BzB ]b

1−x b
= Ks,B

[AzA ][CzC ]c

xc = Ks,C 

On trouve aussi des écritures équivalentes où 1-x et x sont remplacés par les fractions 
molaires de ABb et ACc dans le mélange solide. Même si ceci est parfaitement justifié, le 
mélange n'est pas une mosaïque des pôles purs; mais bien une répartition au hasard de 
B et C sur les sites d'échange d'ions : on ne retrouve pas les pôles purs dans la solution 
solide, cette écriture ne correspond pas à la géométrie,  elle représente une moyenne. 
Quelques auteurs donnent des démonstrations exactes de certaines de ces formules, en 
s'appuyant  sur  une  interprétation  correcte  de  la  loi  d'action  de  masse classique  telle 
qu'elle doit être appliquée à une solution solide ; mais les conditions d'application de la loi 
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d'action de masse, sont assez subtiles dans ce cas là (voir par exemple la discussion de 
Lippmann, dans le texte en anglais) et la plupart  des justifications publiées, sans être 
nécessairement fausses, restent floues, intuitives et peu convaincantes. 

Ceci a d'importantes  implications pratiques. La co-précipitation peut, en effet, être un 
moyen de  piégeage de radio-nucléides par des minéraux naturels,  encore faut-il  faire 
admettre que les équations pour prévoir cette rétention, sont bien établies et non, plus ou 
moins empiriques. Les agences chargées de la gestion des déchets radioactifs ont ainsi 
récemment soutenu un travail de compilation des modélisations géochimiques existantes 
dans ce domaine (évoqué dans le texte en anglais).

Comme elle devait faire le point de ce qui est publié sur cette question pour des minéraux 
relativement simples (rapport non publique), j'ai proposé à Marie-Hélène Fauré de ne pas 
se contenter  de trier  des formules utilisées par les géochimistes ;  mais d'en chercher 
aussi les justifications théoriques ou expérimentales. Elle en a ainsi testé un bon nombre 
sur des systèmes simples, ce qui a permis de se rendre compte que souvent une seule 
des équations ci-dessus est utilisée, puis une autre plus ou moins empirique, de forme 
variée  suivant  les  auteurs,  est  éventuellement  rajoutée  pour  interpréter  des  résultats 
expérimentaux.  Ces  derniers  sont  malheureusement souvent  trop  imprécis  sur  la 
composition de la  solution  aqueuse pour  pouvoir  calculer  l'influence des réactions  en 
solution aqueuse, concurrentes à la co-précipitation : les vérifications expérimentales sont 
alors peu convaincantes quand elles nécessitent l'ajustement de paramètres ad hoc. Le 
pseudo produit de solubilité variable est, en particulier, souvent un point de départ, puis 
sont parfois rajoutés des raisonnements (explicitement ou non) approximatifs pour trouver 
l'équation  manquante  qui  donnera,  par  exemple,  la  stoechiométrie  dans  le  solide  (la 
valeur de x). Une approximation mathématiquement simple est de supposer la dissolution 
stoechiométrique  (c'est-à-dire  à  x  constant) ;  mais  il  ne  semble  pas  qu'il  existe  de 
justification convaincante de cette hypothèse ou d'autres dans le même esprit. Examinant, 
en effet, ce type de démarche j'ai proposé que la valeur de x devrait correspondre à un 
minimum partiel  de solubilité ;  comme il  y a plusieurs espèces chimiques (A, B et  C) 
minimiser la solubilité (en fonction de x uniquement) signifie en fait trouver l'énergie libre 
de formation de la solution solide, la plus faible ; on se rend alors aisément compte que 
cela revient à minimiser son pseudo produit de solubilité variable. Effectivement, dérivant 
(par rapport à x uniquement) le log de son expression, on trouve exactement le log de la 
loi d'action de masse de  l'équilibre d'échange d'ions. C'est l'équation manquante. Cette 
approche a ensuite été appliquée au système NpO2

+ / Na+ / CO3
2- pour lequel il avait 

été (intuitivement) proposé, sur la base de résultats expérimentaux de solubilité, que la 
stoichiométrie pourrait  varier  dans le solide or l'allure des résultats  expérimentaux est 
finalement nettement différente de celle des courbes de solubilité théorique de solutions 
solides dans le domaine où des traces d'un des cations serait incorporé dans la phase 
pure de l'autre. Inversement, si les proportions des deux cations sont du même ordre 
dans le solide, la différence des solubilités aqueuse contrôlée soit par la solution solide 
soit  par  une  phase  pure,  est  de  l'ordre  de  grandeur  de  la  précision  expérimentale 
[99VIT/BEA, 03VIT/CAP].

Serge Maillard est à l'origine de la généralisation de la démonstration de la loi d'action de 
masse que nous donnons (pour un équilibre à double degré d'avancement). Il a, en effet, 
trouvé  que  la  réaction  de  dissolution  de  la  solution  solide  ne  correspond  pas  à  un 
équilibre satisfaisant aux conditions d'application de la loi d'action de masse tel qu'on la 
démontre classiquement dans les manuels de cours (c'est évident puisque la réaction en 
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question n'est pas caractérisée par une constante d'équilibre, mais par un pseudo produit 
de solubilité variable, encore fallait-il y penser). La démonstration passe, en effet, par une 
minimisation de de l'enthalpie libre du système, ainsi on annule 

dG = ∑
i
i dni

avec dni = i d

où ξ est le degré d'avancement et i un coefficient stoechiométrique : quand ce dernier 
varie,  la  formule  dni = i d n'est  évidemment  plus  valable.  Une fois  rendus à  cette 
évidence, il  suffit  alors de généraliser la démonstration de la loi d'action de masse en 
utilisant

dni = ∂ni

∂ x
d∂ni

∂ x dx

On retrouve et démontre ainsi toutes les formules correctes publiées sur le sujet. Cette 
démonstration est bien plus compliquée que celle de Lippmann , qui est vraiment plus 
élégante, surtout si on y rajoute la façon qu'a Michard de généraliser cette approche à 
des ions de charges différentes. Inversement, comme nous re-démontrons directement la 
loi  d'action de masse dans le cas particulier  qui  nous intéresse, la justification en est 
explicite et immédiate.

Les équations trouvées peuvent être combinées de différentes manières pour en mettre 
en évidence le sens physique ou chimique. Comme il s'agit d'équations équivalentes à 
celles de Lippmann et  Michard,  au moins dans l'esprit,  nous avons, dans le texte en 
anglais, présenté ces commentaires comme discussion des équations de Lippmann et 
Michard. Ceci a l'avantage de ne pas faire porter le débat sur la validité des équations 
(puisqu'elles viennent d'auteurs reconnus) ; mais uniquement leur signification. Dans le 
même esprit il n'y a pas, à cet endroit, de souci de démonstration mathématique. Celle-ci 
vient  à la  fin,  ce qui  permet  de ne pratiquement  pas y  mêler  de commentaire  sur la 
signification physique ou chimique des équations.

Gil Michard m'a fait d'utiles remarques. Je me souviens de celle sur le fait qu'on utilise 
les produits de solubilité des pôles purs dans les calculs sur leur solution solide (pour 
rattacher  cette  dernière  à  l'état  standard) ;  mais  que  les  pôles  purs  ne  peuvent,  en 
général, pas être thermodynamiquement stables si la solution solide l'est.

J'ai souvent sollicité Patrick Lovera pour qu'il vérifie certains des calculs (présentés ici et 
bien  d'autres).  Il  m'a,  en  particulier,  fait  remarquer  que  je  n'utilise  pas  (ou  plus)  les 
fractions molaires. J'ai d'abord considéré que c'était pour simplifier les calculs et que mes 
unités  de  concentration  (dans  le  solide)  devaient  être  équivalentes  aux  fractions 
molaires ; en voulant vérifier j'ai finalement vu qu'il n'en est rien et ç'a aussi permis de me 
rendre compte que les fractions molaires ne sont pas des variables intensives et donc pas 
des unités de concentration dans le cas où les ions échangés ( [BzB ] et [CzC]) sont de 
charges différentes. Les unités de concentration que j'utilise sont, en effet, ramenées à la 
quantité de matrice (représentée par le nombre de moles de A dans ABb(1-x)Ccx) et non au 
nombre total de moles qui change au cours de l'échange de B et C, sauf quand ils sont de 
même charge  (alors  b = c).  Les  unités  de  concentration  que  j'utilise,  préservent  une 
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certaine symétrie entre les rôles de B et C ; c'est vraisemblablement ce qui permet de 
résoudre  ce paradoxe (relevé par  Michard dans l'édition de 1989 de son livre)  qu'en 
utilisant les fractions molaires, on peut trouver des équations non équivalentes suivant la 
façon de faire les calculs. Cela rejoint aussi une remarque de Dominique You, sur le fait 
que les concentrations doivent être des variables intensives,  ce qui  est assez évident 
(mais ça ne dispense pas d'y faire attention), en fait nécessaire pour démontrer G = n μ. 
Pour cette raison il  y  a problème a utiliser  des concentrations de surface,  ce qui  est 
également  évident  puisqu'il  faut  effectivement  connaître  le  lien  entre  variation  de  la 
surface et taille du système ; or ce lien peut prendre des formes très variées.

Dominique You, m'a également donné un éclairage complémentaire des solutions solides, 
en  utilisant  l'approche  mélange  de  solides  purs,  plutôt  que  solution  solide.  Les  deux 
approches sont équivalentes. Chacun avec ses avantages et inconvénients. Les solutions 
solides présentent la difficulté d'isoler un des constituants pour en faire le solvant (ou la 
matrice) qui représente la taille du système, les solutés n'interviennent pas dans la taille 
du  système.  Ca  peut  être  pris  en  compte  comme  écart  à  l'idéalité.  L'avantage  des 
solutions solides est qu'on peut plus facilement faire intervenir les ions réellement mis en 
jeux (ce qui peut être indispensable pour traiter l'écart à l'idéalité), alors que les mélanges 
ne connaissent que les pôles purs comme espèces chimiques. Je n'ai pas spécialement 
développé ce genre de discussion.

Comme Michard a montré que les calculs ne sont pas beaucoup plus compliqués quand 
les ions échangés sont de charges différentes, j'ai surtout traité ce cas. On peut toutefois 
se  demander  comment  les  changements  de  coordination  et  stoechiométrie 
accompagnant alors forcément l'échange d'ions, peuvent être compatibles avec la rigidité 
de la matrice. La réponse est dans la nature. Les métallurgistes connaissant bien, aussi, 
ce genre de problème. Dominique You m'en a expliqué un exemple... mais je n'ai pas 
inclus d'exemple dans ce texte, je m'en suis toutefois inspiré pour traiter les lacunes. En 
fait, ce n'est pas si simple, car il faut faire intervenir des lacunes, plus précisément une 
maille élémentaire généralement plus grande que celle de constituants purs et souvent 
vue de façon différente. On s'efforce alors d'avoir le même réseau pour les deux pôles 
purs en laissant éventuellement des sites vacants. Cela suppose donc de bien examiner 
les  structures.  Il  peut  y  avoir  plusieurs  descriptions  géométriques  possibles, 
particulièrement si on accepte de petites distorsions de structures parfaites. Ces petites 
distorsions sont physiquement réalistes en raison des lacunes et surtout de l'échange 
d'ions  de  types  différents.  Ceci  met  en  évidence  que  trouver  la  (ou  les)  façon(s) 
pertinente(s)  d'écrire  la  stoechiométrie  de  la  solution  solide,  peut-être  délicat.  Déjà  le 
choix de l'écriture ABb(1-x)Ccx n'est pas immédiat.

Les  équations  permettant  de  traiter  les  solutions  solides  AnO2+x [02VIT/CAP]  ont  été 
corrigées par Thomas Vercouter ; mais je n'ai pas considéré de lacune dans ces solides. 
Cette description permet toutefois de se faire une idée qualitative de l'influence de la 
formation  de  solutions  solides  ou  de  composés  stoechiométriques  intermédiaires,  de 
montrer comment calculer le potentiel d'oxydo-réduction contrôlé par la solution solide et 
donc de modéliser des résultats électrochimiques.

Philippe Jean-Baptiste m'a signalé la publication de Sillén dont j'utilise la méthode pour 
montrer qu'on rajoute un degré de liberté du système.

Pascal Reiler m'a forcé à terminer ce texte.
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 1 Introduction.

Coprecipitation  is  often  understood  as  the  incorporation  of  elements  at  trace 
concentrations into  -initially pure- solid compounds. It is rather believed to be observed, 
when the trace element is a chemical analogue of an element at macro-concentration of 
the  -initially  pure- solid  compound.  It  has  typically  been  used  to  identify  radioactive 
isotopes [1898CUR/CUR]. Co-precipitation can result in lowering solubility as compared 
to the solubility, when controlled by pure compounds. For this reason it is also important 
for Geochemistry, waste management and (de)pollution studies. 

The solid resulting from co-precipitation is a new homogeneous solid phase called Solid 
Solution  or  Mixture,  where  the  original  pure  compound  now  contains  variable 
concentrations  of  the  co-precipitated  impurities.  These  two  terms  (Solid  Solution  or 
Mixture) reflect two different approaches for the thermodynamic descriptions: these two 
approaches use slightly different ways for describing the same system. Mixtures are built 
from pure solid compounds (namely end-members or equivalently pure components) in 
various  proportions  -none  of  them  specially  at  trace  concentration-,  while  for  solid 
solutions one of the pure compounds is identified as the matrix, in which various elements 
are soluble. The later description is actually also used for aqueous solutions, it is more 
convenient  for  handling  chemical  equilibria  written  with  the  actual  chemical  species 
-including ions- and this is needed to identify ideal systems. 

Aqueous solubilities can be calculated by using classical chemical thermodynamics for 
the solid and ideal aqueous phases. These equations are also well known, and typically 
implemented in geochemical computer codes for the case of ideal solid solutions (see 
typically  Ref.[PHREEQC]).  Extension  to  diluted  (ionic  strength  less  than  typically 
0.1 mol.L-1)  real  aqueous  solutions  can be performed by using  activity  coefficients  as 
calculated  with  the  Davies'  equation,  or  other  empirical  formula.  For  this,  the 
stoichiometries and thermodynamic stabilities -i.e. ·ΔrG values or equivalently equilibrium 
constants- are needed for all  the chemical species at each temperature and pressure. 
Mass  balance  equations  are  also  needed.  They  are  written  for  concentrations,  while 
equilibrium constants are for activities. The later are equivalent to concentrations for ideal 
systems,  which is the case for  chemical  species diluted at  very low concentrations in 
solutions or solid matrix. This is relevant for coprecipitation of trace elements. However, 
such theoretical  description is still  valid for  any concentration,  providing the system is 
ideal, unless further approximations are introduced for neglecting trace concentrations in 
typically  mass  balance  equations.  For  this  reason  we  will  essentially  describe  ideal 
systems, giving only a few indications on the way to use it as the starting point for real 
(non-ideal) systems. On the other hand, it is interesting to start with trace concentrations 
for understanding how solid solutions can be formed, and to get qualitative pictures. We 
will start with such simple cases for pointing out more general features. Thermochemical 
equations  are  widely  used  for  calculating  aqueous  speciation,  including  aqueous 
solubilities as controlled by pure compounds, while it is often a bit confusing for aqueous 
solubilities controlled by solid solutions, despite the basic thermodynamic equations for 
solid mixtures are well known for a long time (see typically Textbook [52GUG]). As an 
example of this complexity for modelling coprecipitation, one can cite a recent compilation 
published by the AEN-TDB, where many equations used by geo-chemists are reviewed.

The simplest solid solutions are certainly pure compounds with several isotopes: there is 
no problem to qualitatively imagine the (isotopic) equilibrium for such compounds, when 
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equilibrated with aqueous solutions. One of the isotopes can further be replaced with a 
chemical analogue. We first examine isotopic exchange equilibria in an aim to point out 
qualitative features, when using the law of mass action for solubility equilibria -namely the 
solubility product equation-. This is supported by a few equations given without rigorous 
demonstration. Finally demonstrations are given for general cases, including exchanges 
of  ions  with  different  charges  inside  the  solid  phase.  Before  these  mathematical 
demonstrations we point out that vacancies can allow exchanges of ions with different 
charges still accommodating electro-neutrality.

We take the example of the simple ABb(s) solid made with Ions Az A and BzB of charges 
zA and zB. For electro-neutrality zA and zB are of opposite signs, and

b=−
zA

zB
.  (1)

Ks,B=[AzA ] [BzB ]b  (2)

is the solubility product of ABb(s), where [i] is the concentration of Species i. [i] is the usual 
notation for molar concentrations (mole per litre of solution), while molal concentrations 
(mole  per  kg  of  water  -water,  not  solution)  should  be  used  as  thermodynamic  unit; 
furthermore,  activity  should be used instead of  concentrations.  This  will  be done only 
when demonstrations will  be given (Section 4.).  Going from activities to molalities and 
then to molarities is classically done by introducing molar activity coefficients ,  then 
molar  to  molal  correction  factors ϱ. These  corrections  are  included  in  equilibrium 
constants (here Ks,B)  -they must be small corrections (less than an order of magnitude)- 
which finally does not change the formula (here Eq.2): the equilibrium "constant" (here 
Ks,B)  -which  actually  is  not  a  constant:  it  is  a  function  of  the  pressure  (P)  and  the 
temperature (T)- slightly depends on the medium, essentially ionic strength (for  ) and 
density (for ϱ). Ks,B, the solubility product is the constant of Equilibrium

ABb(s)  Az A + b BzB  (3)

Since Az A can form a solid  compound with BzB , it  might  very well  also form soluble 
complexes with BzB  : [AzA ] is not necessarily the total aqueous concentration of A zA .
For this reason, we focus only on the law of mass action (for the solid): not on the mass 
balance equations in the aqueous solution. Calculating the exact aqueous speciation is 
now easily done with popular computer codes, it is usually well done in the literature, and 
well understood. Classical approximations can also be useful. Typically, when an excess 
of BzB is  used, ABn

z A−n zB is  the  major  chemical  species  of  A,  and [ABn
z A−n zB] is 

approximately its total concentration. In that case the relevant equilibrium and equation 
are

ABb(s)  ABn
z A−n zB +(b-n) BzB  (4)

Ksn,B = [AzA ][ABn
zA−n zB]b-n

 (5)
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This points out that we have written actual aqueous species by using the corresponding 
stoichiometric  coefficients  (as  typically  n  in ABn

z A−n zB), while  in  the  solid  phase  the 
stoichiometric coefficient (here b for ABb(s)) is only for electro-neutrality: b does not give 
any (direct) indication on coordination chemistry. This illustrates that both phases are not 
treated in the same way; while we will see that the solid solution approach attempt to treat 
the solid phase as any solution. 

 2 The law of mass action for an isotopic equilibrium.

We first  examine a simple example:  #B, a radioactive isotope,  is  added to the above 
ABb(s) / Az A / BzB system, where B is also one isotope. In equilibrium conditions the 
isotopic ratio of #B to B is identical for any of their chemical species. #B is here considered 
as  a  new  chemical  species  with  virtually  the  same  properties  as  B:  the  equilibrium 
constants  with  #B  are  virtually  the  same  as  those  with  B.  Namely,  the  solid  is  now 
A(B1-x

#Bx)b or equivalently ABb(1-x)
#Bbx, where

r =
[ BzB# ]
[BzB ]

=
x

1−x  (6)

is the isotopic ratio in the solid. The species in the solid are over-lined. The isotopic ratio 
is the same in the aqueous solution:

[ BzB# ]
[BzB ] =

[ BzB# ]
[BzB ]

= r. (7)

From Equation 7

[BzB ] [ BzB# ]
[BzB ] [ BzB# ] = 1 (8)

which can be interpreted as the constant of the

BzB + BzB#  BzB + BzB#  (9)

exchange  equilibrium,  where  we  are  using [Bz B] and [ BzB# ] , the  concentrations  (of
BzB and BzB# ) inside the (ABb(1-x)

#Bbx)  solid.  For this reason, it  is more convenient to 
write:

ABb(1-x)
#Bbx = Az A + b(1-x) BzB + b x BzB# .  (10)

The
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A =
1

1b , B = b 1−x
1b and  B# =

b x
1b  (11)

mole fractions are usual concentrations, but we will use the concentrations obtained by 
multiplying the mole fractions by the (1+b) constant term:

[AzA ] = 1, [Bz B] =
B

A
= b(1-x) and [ BzB# ] =

 B#

A
= b x (12#B)

These  definitions  of  the  concentrations  are  relative  to Az A, which  concentration  is 
constant, consistently with the ABb(1-x)

#Bbx notation: Az A is considered as the amount of 
solid  matrix,  namely  the  solvent,  in  which BzB and BzB# are  dissolved  and  can  be 
exchanged. Definition of concentrations are part of the definition of the reference state 
[91STO]:  the  standard  state  is  the  matrix,  here  represented  by Az A at  constant 
concentration, in the same way as the standard state for aqueous solutions is pure liquid 
water,  where  molal  concentrations,  the  concentrations  used  for  thermo-chemistry  are 
relative to water  -not solution contrary to molal concentrations-. For this reason, we will 
see later that these definitions of the concentrations in the solid allow generalisations.

When BzB# is at trace concentration the system is still quite simple: the concentration of
BzB# is lower than the solubility limit  of the A Bb

# s pure compound. [ BzB# ] can be 
neglected as compared to [Bz B] : x << (1-x) or equivalently r << 1, and the solid phase 
now  contains  a  few  traces  of BzB# , nevertheless  the  solubility  product  law  is 
approximately valid:

Ks,B ≈ [AzA ] [BzB ]b  2

from which the concentration of BzB# can be estimated from Eq.2 and 7 using the above 
x << 1 approximation:

[AzA ] [ BzB# ]b ≈ Ks,B rb = Ks,B
xb

1−x b
≈ Ks,B xb  (13)

Note that since x ≈ r << 1, [AzA ] [ BzB# ]b << Ks,B = Ks , B# , which consistently means that we 

are well below the solubility of A Bb
# s . Eq.13 can be rearranged as Ks,B ≈

[AzA ] [ BzB# ]b

[ BzB# ]b

which can be divided by [Az A ] ≈ 1 to interpret 

Ks , B# ≈ Ks,B ≈
[AzA ] [ BzB# ]b

[AzA ] [ BzB# ]b
= [AzA ][ BzB# ]b

xb
= KA- B#  (14)
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as KA- B# , the constant of Equilibrium

Az A + b BzB#  Az A + b BzB# .  (15)

Ks,B,  the solubility product  of the pure ABb(s) compound appears to be an estimate of
KA- B# , the  partition  equilibrium  constant  of A Bb

# between  the  solid  and  aqueous 
phases.  However,  it  was  obtained  only  for  trace  concentrations  (x << 1).  It  is  not  a 
demonstration, it only points out that the isotopic partition equilibrium of BzB# also gives 
the above partition equilibrium, and the corresponding law of mass action, when using the 
concentrations inside the solid phase. 

Lippmann demonstrated equations similar to Eq.14. For this, he correctly deduced Eq.14 
as the law of mass action for Equilibrium  15 assuming that the solid phase is an ideal 
solid  solution.  This  is  always the  case  for  isotopic  exchanges:  the  standard  chemical 
potentials are independent of the isotopic ratio. Similarly the law of mass action is readily 
obtained for the following equilibrium

Az A + b BzB  Az A + b BzB  (16)

namely

KA-B =
[A zA ] [BzB ]b

[A zA ] [BzB ]b
≈

K s,b

[AzA ]x=0 [BzB ]x=0

b ≈
K s,b

1×1b = Ks,b (17)

where now only macro-concentrations are used, however this is again valid only for BzB#

at trace concentrations. Again Ks,B is also an estimate of KA-B, the constant of a partition 
equilibrium.

 3 Using the law of mass action for co-precipitation.
 3.1 Introduction.

For  the  above  (Eq.9)  isotopic  exchange  (Section  2)  we  have  used  the  following 
descriptions that will be generalized to other ionic exchange reactions:

● We have  written  -and  used- [Bz B] and [ BzB# ], the  concentrations  (of BzB and
BzB# ) inside the (ABb(1-x)

#Bbx) solid. 
● Consistently, we have written ABb(1-x)

#Bbx = Az A + b(1-x) BzB + b x BzB# (Eq.10).
● b, the stoichiometric coefficient (inside ABb(s)) is determined by electro-neutrality 

(Eq.1),
● while  we  have  written  actual  aqueous  species  by  using  the  corresponding 

stoichiometric coefficients (as typically n in ABn
z A−n zB),

● we have  written  the  law of  mass  action  (Eq.14 and  17) for  partition  equilibria 
between the solid and aqueous phases (Equilibria 15 and 16).

Such approach can be generalized now considering CzB instead of BzB# , where C is a 
chemical analogue of B; for this reason they have the same charge (zB).  Namely,  the 
example of BzB# / BzB isotopic exchange can be generalized to CzB / BzB. This has 
typically  been  done  by  Lippmann  [77LIP].  Furthermore,  the  equations  are  not  much 
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complicated  when  B  and  C  have  different  charges,  as  typically  shown  by  Michard 
[02MIC]. In this part we recall these equations using our own notations and concentration 
units, because usual mole fractions are not always intensive variables (see below Eq.22). 
We  do  not  attempt  to  give  demonstrations,  we  rather  focus  on  classical  published 
equations  and  their  meaning  as  already  outlined  by  Lippmann  for  many  of  them. 
Demonstrations  will  be  given  later  (Section 4.).  We  are  still  using  aqueous  molar 
concentration units, including medium effects in the equilibrium constants for the same 
reasons as already explained above (Section 1.).

 3.2 Lippmann's remarks.

After a brief history of solubility products, Lippmann indicated that they very well account 
for solubilities of pure compounds providing a few complications are taken into account: 
"electrolytic  dissociation,  notably  in  solutions containing additional  dissolved ions"  and 
"ionic activities". He then pointed out a few general features of solid solutions interesting 
for their thermodynamic descriptions, even though he finally treated only simple specific 
cases:

● "the [solubility] product is constant under certain conditions. The most important of  
these  are  [...]  "chemical  purity"  of  the  solid  phase.  [...]  binary  compounds  are  
indeed  chemically  pure,  because  [...]  their  stoichiometry  is  determined  by 
electroneutrality." This to insist that solubility products are only valid for constant 
compositions  of  the  solid  phases,  because  to  derive  it  "from  the  principle  of  
thermodynamics [...] chemical purity [...] postulate is indispensable in formulating  
the  law  of  mass  action".  Indeed,  the  law  of  mass  action  is  demonstrated  by 
minimising  Gibbs  energy,  hence  by  differentiating  it  assuming  constant 
stoichiometric  coefficients.  This  will  be  explained  below  (Section  4.3.):  the 
derivative  of  variable  stoichiometric  coefficients  -as  typically  b(1-x)  and  bx  in 
ABb(1-x)

#Bbx- introduces  new  terms.  Furthermore,  the  activity  of  the  (pure)  solid 
phase  is  constant:  "In  the  derivation  of  the  constancy  of  the  solubility  product  
starting from the law of mass action, a fixed composition of the solid is required [...]  
In the same way, the procedure followed in derivations based on thermochemical  
potentials [...] is realistic only if the solid composition is invariant."

● The previous remarks and other ones point out that the solubility product has no 
reason to be valid for "minerals [...] in which [...ions] may replace each others in  
varying  degrees."  or  any  "mixed  crystals  (or  solid  solutions)  [...]  described  by 
continuously variable stoichiometric  coefficients.  [...]  The pertinent  equilibria are  
appropriately described in terms of Nernst's distribution (or partition) coefficients". 
Indeed,  we  wrote  partition  equilibria  (Eq.9,  15 and  16)  and  their  equilibrium 
constants (Eq.8, 14 and 17 respectively).

● There are "additional degrees of freedom resulting from variable composition of the 
solid".  One  new variable  is  introduced  in  a  two  component  solid  solution  -the 
continuously  variable  ratio  of  the  two  components  in  the  solid,  typically  x  in 
ABb(1-x)

#Bbx- and  this  will  need  an  additional  equation:  namely  instead  of  one 
solubility  product  for  a  pure  compound,  two equations  are  now needed.  Since 
equivalent sets of equations can be derived by combining a set of two equations, 
there are different equivalent ways to present the results.

● "crystalline minerals contain non fractional multiples of their chemical formulae in 
the unit cell [...] because a set of atomic sites [(equipoints)...] is either completely  
filled or completely vacant [...]  Fractional occupation [...is] equivalent to variable  
composition". Actually, vacancies can explain how ions with different charges can 
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be  exchanges  in  solid  solutions  without  important  structural  changes  and  still 
keeping electro-neutrality:  a (big enough)  pertinent  elementary cell  needs to be 
identified.

● "Each chemical species is bonded by the crystal in its own characteristic manner  
distinguished by [...] a preferred coordination number." As pointed out above, the 
stoichiometry in the solid is given by the electro-neutrality, while from a chemical 
point  of  view,  it  is  well  known  that  characteristic  coordination  geometries  are 
expected for  each type  of  ion.  For  example  a cation  is  surrounded by several 
anionic ligands, which can be shared by two cations: this explains how electro-
neutrality stoichiometry can accommodate usual coordination numbers. This again 
can be possible (without much structural  changes) for big elementary cells with 
vacancies.

● Solid solutions are supposed to be built from "End-members". This often results in 
using mole fractions of the end-members as concentration unit, typically CaCO3

in 
a mixture with CO3

2- as common anion,  and where Ca2+ can (continuously)  be 
exchanged  with  other  di-cations.  However,  in  simple  cases  it  is  also  -or  it  is 
proportional to- the concentration of the exchanged ion, in our example CaCO3

(=
Ca2+ = [Ca2+ ] /2 ) is rather used in the mixture approach, while [Ca2+ ] is rather 

used in the solid solution approach, where the system is described with the actual 
chemical species -as in aqueous solutions- rather than with (neutral) compounds. 
Note  that  solution  chemists  do  not  use  end-members  to  describe  aqueous 
solutions.

● "mixed crystals" of the CaCO3 and MnCO3 "end member[s]" are "represented by a 
series  of  solid  solutions  [...]  characterised  by  their  common  anion  [...]  Any  
composition may be characterised either by the mole fraction CaCO3

of the calcite  
end  member  or  by  [...] MnCO3

"=  1- CaCO3
. "Under  equilibrium  conditions  ... 

[Ca2+ ] [CO3
2- ] ... must be smaller than the solubility product Kcalcite [...] The activity 

of  CaCO3 in  the  solid  solution  may  now  be  defined  in  such  a  way  that  [...] 
[Ca2+ ] [CO3

2- ] = Kcalcite CaCO3
CaCO3

". This writes

[Ca2+ ] [CO3
2- ] = Ks,calcite [Ca2+] [CO3

2-] = Ks,calcite (1-x) (18)

with our concentrations units, where constant concentration factors are included in 
the  equilibrium  constant,  as  well  as  activity  coefficients  as  usual  in  solution 
chemistry. "Similarly [Mn2+ ] [CO3

2- ] = Krhodochrosite MnCO3
MnCO3

" and

[Mn2+ ] [CO3
2- ] = Ks,rhodochrosite [Mn2+] [CO3

2- ] = Ks,rhodochrosite x. (19)

Eq.18 and 19 are Eq.14 and 17 respectively.

Lippmann gave (correct) indications and remarks to write the law of mass action for any 
solid solution, but he actually gave examples essentially for mixtures made from two end-
members  with  similar  structures,  where  zC =  zB.  However,  the  formula  are  not  much 
complicated, when zC ≠ zB, a case we start to examine in the next section.
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 3.3 Published equations.

In his text book, Michard gave equations for the

(1-x)ABb + x ACc = ABb(1-x)Ccx = Az A + b(1-x) BzB + c x CzC  (20)

solid [02MIC], where now the BzB and CzC exchanged cations are of different charges. 
This can be considered as a generalization of Lippmann's approach -to the cases where 
zC is not necessarily equal to zB-. Instead of Isotope BzB# we are now generalizing Eq.10 
with the CzB analogue ion or any CzC .  Similarly to Eq.1

c=−
zA

zC
.  (21)

Michard used mole fractions for concentration units:

A=
1

1+b+(c-b)x
, B=

b 1−x 
1+b+(c-b)x

and C=
c x

1+b+(c-b)x
(22)

They  cannot  be  considered  as  actual  -intensive- concentration  units,  since  the  total 
amount of solid depends on the advancement of the ion exchange reaction, when b ≠ c, 
or equivalently zB ≠ zC (Eq.1 and  21, note that zB and zC are of same sign for electro-
neutrality): the total amount of solid is not constant, it is proportional to (1+b+(c-b)x) as 
reflected  in  the  value  of  the  mole  fractions  (Eq.22).  This  actually  points  out  it  is  not 
straightforward  to  decide  which  stoichiometry  should  best  be  used  to  describe  solid 
solutions.  Such problem is  well  known  -and correctly  handled- for  aqueous  solutions: 
molar  concentrations  (mole  per  litre  of  solution)  are  commonly  used  for  aqueous 
solutions, while molal concentrations (mole per kg of water: water, not solution) are used 
for  thermodynamic  theoretical  calculations  as  already  noted  in  Section 1. In  aqueous 
solutions,  the  major  component  (water  including  liquid  bulk  water  and  all  the  water 
molecules hydrating the solutes) gives the size of the system, in which solutes are added. 
The corresponding "solvent" of the solid solution is not exactly the major solid component 
(= end-member): it is rather the matrix, the pure component, where all the ionic exchange 
sites are imagined vacant, or equivalently homo-ionic (depending on the reference state) 
i.e. all the sites are occupied by the same ion.

However,  we  do  not  here  consider  vacancies  (this  will  be  outlined  in  Section  3.6.), 
because the description of the stoichiometry would become quite complicated: in a first 
step, we consider exchanges of ions with different charges, which is interesting to avoid 
simplifications introduced by isotopic exchanges and exchanges of homo-ions (ions with 
the same charge). Typically, by considering hetero-ion exchanges Michard pointed out 
there  is  a  problem:  depending  on  the  way  he  performed  the  calculations,  he  found 
different non-equivalent equations [89MIC]. The problem might have been in using mole 
fractions. For this reason we rather use our concentration units. Lippmann's approach is 
to write the
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Az A + b BzB  Az A + b BzB  (23)

Az A + c CzC  Az A + c CzC  (24)

partition equilibria between ABb(1-x)Ccx and the aqueous phase (similar to Eq.15 and 16). 
As  for  Eq.14 and  17, KA-B and KA-C are  the  constants  of  their  equilibrium,  and  the 
values of these constants are obtained in the limiting cases where x = 0 or 1 respectively, 
which gives the solubility products of the pure (end-member) compounds:

KA-B =
[AzA ] [BzB ]b

[AzA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
= Ks,B (25)

KA-C =
[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc = Ks,C (26)

where we have used Eq.12 as definitions of the concentrations inside the solid phase. 
Combining Eq.25 and 26 give other equivalent equations corresponding to other chemical 
equilibria: we give below the corresponding -actually classical- equations.

 3.4 Remarks on published approaches.
 3.4.1 Concentration units  

We already pointed out that the

A=
1

1+b+(c-b)x
, B=

b 1−x 
1+b+(c-b)x

and C=
c x

1+b+(c-b)x
(22)

mole  fractions  are  not  -intensive- concentration  units,  since  the  total  amount  of  solid 
depends on the advancement of the ion exchange reaction, when b ≠ c, or equivalently zB 

≠ zC (Eq.1 and  21):  the  total  amount  of  solid  is  not  constant,  it  is  proportional  to 
(1+b+(c-b)x). We use the

[A zA ] = 1, [Bz B] =
B

A
= b(1-x) and [CzC ] =

C

A
= c x (12)

concentration units. With these definitions AzA can represent the matrix, for this reason 
its concentration is constant, here taken equal to 1, in the same way -and with the same 
chemical meaning- as the activity of water is chosen to be 1 for solution chemistry at 
given P and T.

Other  definitions  are  possible,  and  are  typically  needed  when Az A can  also  be 
continuously  exchanged  in  the  solid  phase:  in  that  case Az A geometrical  sites  can 
typically be chosen for the matrix. Such definition can also be used when Az A vacancies 
need to be considered: in that case the matrix is indeed represented by all the sites that 
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could be occupied by Az A.

 3.4.2 Number of equations needed  

We wrote two law of mass action equations (Eq.25 and 26) for equilibria of the ABb(1-x)Ccx 

solid  phase  with  aqueous  solutions.  Two  -and  only  two- such  equations  are  indeed 
needed. This can be qualitatively understood using the Sillén's approach [67SIL]: 

● Imagine  an  aqueous  solution  equilibrated  with  the  ABb(s)  pure  compound,  the 
solution  is  described  with  mass  balance  and  law  of  mass  action  equations, 
including Ks,B, the solubility product of ABb(s) (Eq.2)

● Now allow the solid  be a solid  solution.  This allows variations  of  the chemical 
composition of the solid, typically x. A new variable (x) is added: an extra equation 
is now needed.

Finally, two -and only two- law of mass action equations are indeed needed to describe 
the  equilibration  of  aqueous  solutions  with  the  ABb(1-x)Ccx solid  phase,  where  x  can 
continuously vary. This result is now familiar when using computer solubility codes, where 
it  is  needed  to  indicate  the  exact  number  of  mass  balance  and  law  of  mass  action 
equations: this is equivalent to the above Sillén's approach. This of course gives Gibbs' 
phase rule [1876GIB]. However, a direct demonstration of this result will also be given: 
while  the  dissolution  of  the  ABb(s) pure  compound  is  a  normal  reaction  with  one 
advancement variable, the dissolution of ABb(1-x)Ccx appears to be a "reaction" with two 
advancement variables.

 3.5 A dissolution reaction with two advancement variables
 3.5.1 Advancement variables  

ξ, the advancement variable of the reaction corresponding to Equilibrium

ABb(s)  Az A + b BzB  (3)

is defined such as
d[i]= i,ABb

d  (27)

where i,ABb
is the stoichiometric coefficient of Species i (in Equilibrium 3): AzA ,ABb

= 1 
and BzB,ABb

= b, namely

d [AzA ] = AzA ,ABb
dξ = dξ (28)

d [BzB ] = BzB,ABb
dξ = b dξ (29)

Now,  generalizing  Equilibrium 3,  the  equilibrium  corresponding  to  the  dissolution  of 
ABb(1-x)Ccx is often written

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

where
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ABb(1-x)Ccx = Az A + b(1-x) BzB + c x CzC ,  (20)

a notation already used for isotopic exchanges (Eq.10). Eq.28 still stands, which means 
that ξ can still be interpreted as the advancement variable for the dissolution (Eq.30) of 
the matrix -as represented by Az A - while Eq.29 is no more valid because BzB can now 
be exchanged with CzC . The 

b BzB + c CzC  b BzB + c CzC (31)

corresponding ion exchange equilibrium -similar to isotopic exchange (Eq.9)- is obtained 
by typically varying [CzC] at constant [AzA ] -or equivalently constant ξ (Eq.28)- in the 
(Eq.30)  solubility  equilibrium.  For  this  reason the  (Eq.31)  ion  exchange equilibrium is 
actually already included in the (Eq.30) solubility equilibrium, which appears to have two 
advancement variables: one (ξ) for the dissolution of the matrix (at constant x) and the 
other one for the ion exchange (at constant [AzA ]). For the (Eq.30) solubility equilibrium 
Eq.28 is still  valid: d [A zA ] = AzA ,xd = dξ (since AzA ,x = 1),  while Eq.29 is no more 
valid, because d [BzB ] now corresponds to two independent variations:

d [BzB ] =  ∂ [BzB ]
∂ [AzA ] x d [AzA ] ∂ [Bz B]

∂ x 
[AzA ]

dx = BzB,x d
dBzB,x

dx
dx = BzB,x ddBzB,x =

BzB,x d−b dx , where i,x is  the  stoichiometric  coefficient  of  Species  i  in 

Equilibrium 30, and where we used BzB,x = b(1-x) from which
dBzB,x

dx
= -b. Similarly the 

other d[i] terms can be calculated for i = AzA ,x (= 1) and C zC,x (= c x). Furthermore, as 
expected

i,x  '=i,B-C ,  (32)

where i,x  '=
di,x

dx
, and  where i,B-C is  the  stoichiometric  coefficient  of  Species  i  in 

Equilibrium 31:

- d [AzA ] = d [A zA ]  = dξ = AzA ,xdAzA,B-C dx (33)

- d [BzB ] = d [BzB ] = b(1-x)dξ- b dx = BzB,x dBzB ,B-Cdx (34)

- d [CzC ] = d [CzC ] = c x dξ+ c dx = C zC,x dCzC,B-C dx (35)

for the reaction corresponding to Equilibrium 30. The two advancements variables are ξ 
and  x,  corresponding to  the  stoichiometric  coefficients i,x and i,x  ' respectively,  of 
Equilibrium30 with fixed x or [AzA ] (= ξ) respectively: this confirms that Equilibrium 30 
corresponds to a two advancement variable reaction including Equilibrium 31.

This is unusual and actually misleading: Lippmann strongly insisted that the usual form of 
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the  law of  mass  action  should  not  be  written  for  equilibria  "where  the  stoichiometric 
coefficients are not  whole numbers".  This is indeed the case of Equilibrium 30, where 
some of the stoichiometric coefficients can continuously vary with x:

AzA ,x = - AzA ,x = 1 (36)

BzB,x = - BzB,x = b(1-x) (37)

C zC,x = - C zC,x = c x (38)

Note that the stoichiometric coefficients appear to be also the concentrations in the solid 
phase:

AzA ,x = - AzA ,x = 1 = [A zA ] (36)

BzB,x = - BzB,x = b(1-x) = [BzB ] (37)

C zC,x = - C zC,x = c x = [CzC] (38)

A  reaction  with  two  advancement  variables,  stoichiometric  coefficients  that  are  also 
concentrations (in the solid phase): all this is well known, but easily misleading. Indeed it 
is well known that the law of mass action is not valid for Equilibrium 30, namely

Qx =
[A zA ] [BzB ]b(1-x) [CzC]cx

[A zA ] [BzB ]b(1-x) [CzC]cx  (39)

is not constant.

 3.5.2 The non-constant solubility quotient of the solid solution.  

The value of Qx can be obtained as follows. ABb(1-x)Cx is considered as an ideal mixture of 
its end-members:

ABb(1-x)Cx = (1-x)ABb + x ACc (40)

For this reason the two law of mass action equations write

[A zA ] [BzB ]b

[A zA ] [BzB ]b
= [A zA ] [BzB ]b

1−x b
= Ks,B (25)

[AzA ] [CzC]c

[AzA ] [CzC]c
= [A zA ] [CzC]c

xc = Ks,C (26)
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The linear Eq.40 suggests to consider (1-x)log Ks,B + x log Ks,C, or equivalently

Ks,B
1-x Ks,C

x =
[AzA ] [BzB ]b(1-x) [CzC]cx

[AzA ] [BzB ]b(1-x) [CzC]cx = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  = Qx (41)

which confirms that Qx is not constant. Note that this equation is often considered alone, 
while two equations are needed. The second equation can typically be Eq.25, 26 or

Ks,C

Ks,B
=

[BzB ]b [CzC]c

[BzB ]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
= KC-B (42)

the constant of Equilibrium 31: the law of mass action is the set of Eq.s 25 and  26, or 
equivalently the set of Eq.s 41 and 42, or any equivalent set of two equations, while one 
of the Eq.s 41 or 42 is sometime considered alone in the literature. Similarly, starting from 
any pair of the above law of mass action equations the other equations can be obtained 
by linear combinations of the log of their equilibrium constants. Such linear combinations 
can  correspond  to  thermodynamics  cycles.  However,  the  coefficients  of  the  linear 
combination should be constant, which is not the case, when Qx is involved: as already 
pointed  out  introducing  Qx is  indeed  misleading  despite  it  is  here  correct  as  will  be 
demonstrated below (Section 4.).

 3.5.3 Ionic exchange as derivative of dissolution and conversely  
 3.5.3.1 Ionic exchange as derivative of dissolution.  

Each  stoichiometric  coefficient i,B-C of  the CzC / BzB ion  exchange  Equilibrium 
(Eq.30) is obtained from the corresponding one i,x in the solubility equilibrium (Eq.31):

i,B-C =
di,x

dx
= i,x  '  (32)

where f' is for df/dx; which we summarize

Equilibrium 30 = (Equilibrium 31)' (43)

Consistently, Ks,C /  Ks,C = KC-B is the constant of Equilibrium 30 (Eq.69) and Ks,B
1−x  Ks,C

x = 
Qx the quotient for Equilibrium 31 (Eq.41): it appears that:

d lnQx
dx

= ln
Ks,C

Ks,B
= ln KC-B (44)

namely
(ln(Eq.41))' = ln(Eq.69) (45)
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Ionic exchange (31) is included in the solubility  equilibrium (30).  Furthermore  (Eq.43), 
Equilibrium 31 can be consider as the "derivative" of Equilibrium 30, and this is even the 
case for their equilibrium constants (45). 

 3.5.3.2 Matrix as integral of ionic exchange.  

Conversely, many ionic exchanges are well known and interpreted with the law of mass 
action (Eq.69) for Equilibrium 30. The equilibrium constant of the ionic exchange can very 
well be interpreted as the ratio of the solubility products of the end-members (Eq.69) of 
the  ion  exchanger  matrix.  By  integrating  (Eq.43)  the  solubility  equilibrium  of  the  ion 
exchanger matrix (Equilibrium  31) is obtained.  They are several  possible matrix,  each 
corresponding to a different integrating constant (Eq.45), which provides the equilibrium 
quotient (Eq.41) of the resulting equilibrium (Equilibrium  30). Thus one obtains the two 
solubility products needed to describe the system.

 3.5.3.3 Surface or liquid ion exchangers  

As pointed out  in  the previous sections,  integrating an ion exchange reaction (Eq.43) 
gives  the  dissolution  reaction  of  its  matrix  from  the  aqueous  solution.  This  can  be 
generalized to those ion exchanges, where the matrix can be prepared by precipitation 
from aqueous solutions,  as typically  minerals  and their  surface;  but  in  the later  case, 
supplementary pieces of information are needed to know the amount of surface created 
for a given quantity of reactants, namely the volume / surface ratio  -hence transforming 
surface "concentrations" into intensive variables. For solid mineral ion exchangers, it is 
indeed  well  known  that  the  dissolution  reaction  of  the  matrix  can  control  the 
concentrations of some aqueous soluble species, and these aqueous species should be 
taken into account when interpreting experimental ion exchange data.

 3.5.4 Using mass action law equations.  
 3.5.4.1 The equilibrium stoichiometry  

There  are  sometimes  discussions  in  the  literature  on  how  to  obtain  the  (variable) 
stoichiometry  of  a  solid  solution  equilibrated  with  an  aqueous  solution  of  known 
composition.  For  this,  "stoichiometric  dissolution"  or  other  approaches  are  typically 
proposed.  This  is  surprising:  no  supplementary  hypothesis  seems  needed,  since 
thermodynamics gives the concentrations of all  the species in all  the phases for ideal 
systems,  from mass balance and equilibrium constants.  Note  that  no new equilibrium 
constant is needed for solid solutions: only the solubility products of the pure components 
are  needed.  Typically,  x,  the  stoichiometry  in  the  solid  can  be  calculated  from  the 
concentrations of two of the aqueous species by using one of the following equations:

Ks,B = [A zA ] [BzB ]b

1−x b
 (25)

Ks,C = [AzA ][CzC ]c

xc  (26)
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KC-B =
1−xb [CzC ]c

[BzB ]bxc
 (42)

 3.5.4.2 The saturation indexes of the end-members  

Rearranging Eq.25 and 26 as

(1-x)b = [AzA ] [BzB ]b

K s,B

 (25)

xc = [AzA ] [CzC]c

K s,C

 (26)

it appears that the left members of the above equations are the saturation indexes of the 
end-members: their values are (1-x)b and xc. Consistently, they are smaller than 1, since 0 
≤ x ≤ 1, and the values of 0 and 1 correspond to the end-members.

 3.5.4.3 Slope analysis of solubility curves  

The  law  of  mass  action  is  classically  used  to  interpret  experimental  data,  extracting 
equilibrium constants and stoichiometric coefficients from them. For Equilibrium 3 this can 
be done as follows. Eq.2 is rearranged

lg Ks,B = lg [AzA ] + b lg [Bz B] (2)

similarly, Eq.5 can be rearranged:

lg Ks,n,B = lg [AzA ] +(b-n) lg [ABn
zA−n zB] (5)

the log-log plot of the solubility of B is a straight line of slope (b-n), and the intercept gives 
the equilibrium constant, when ABn

z A−n zB is the major aqueous species of B. When the 
solid is known this provides the stoichiometries of aqueous species. Conversely this can 
provide the stoichiometry of the solid phase. In this later case:

b = −
d lg [Az A ]
d lg [B zB ]  (46)

(Eq.2).  Similarly,  for  solid  solutions the stoichiometry  is  obtained by deriving Eq.25 at 
constant [CzC] , a constraint given by deriving Eq.26:
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 ∂ lg [BzB ]
∂ lg [AzA ] [C zC]

=
−1

c 1−x


1
c
−

1
b  (47)

this result is similar to Eq.46 only when b = c. In that case  -c(1-x) =  -b(1-x) is both the 
stoichiometric coefficient of B and the slope of its solubility curve. Conversely, when this 
(b = c) simplification does not stand, the simple stoichiometric meaning of the slope does 
not stand any more. This, actually because when dissolving the solid at constant [CzC] ,
the x value change in the remaining solid solution when zB ≠ zC (this is equivalent to b ≠ c), 
namely  in  this  case  "stoichiometric  dissolution"  at  constant [CzC] is  not  possible  for 
electro-neutrality reason. Similarly

∂ lg [CzC]
∂ lg [AzA ][BzB]

=
−1
b x


1
b
−

1
c  (48)

lead to similar conclusions.

 3.5.4.4 Slope analysis for ion exchange equilibria  

Equation

KB-C =
Ks,C

Ks,B
=

[BzB ]b [CzC]c

[BzB ]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 (69)

is classically used to interpret the corresponding

b BzB + c CzC  b BzB + c CzC (31)

ion exchange equilibrium. Typically, the ion exchange matrix can initially be prepared in 
homo-ionic form, here saturated with the ion BzB. Now, if the ion exchanger is a natural 
mineral this saturation preparation can as well be used to characterise the natural ions 
initially present in the ion exchanger. For this, one can typically use repeated lixiviations 
with concentrated aqueous solutions of BzB. It can easily be shown that log [CzC ] varies 
linearly with the number of lixiviations by aqueous solutions of same concentrations of

BzB in well chosen range of chemical conditions, and this gives the equilibrium constant 
of the corresponding ion exchange [83VIT page 91]. This saturation experiment can also 
give  the  ion  exchange  capacity  providing  the  affinity  of BzB is  high  enough.  This 
exchange capacity is needed to determine relevant concentrations in the ion exchanger. 
Now when this is done, Eq.69 is classically rearranged as

c logKd,C = b logKd,B - log KB-C (49)

where
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Kd,Y =
[ Y ]
[Y ]  (50)

is measured form the aqueous concentrations and mass balance equations. Eq.49 can 
then be used for slope analysis, which provides the c/b ratio of stoichiometric coefficients, 
here it is also the ratio of the charges of the exchanged ions.

 3.5.5 Comparison with pure compounds.  

Both  ABb(s) and ACc(s) pure compounds can be simultaneously stable, when no solid 
solution is formed. As already pointed out (Section 3.4.2.) adding a new solid phase -and 
the corresponding solubility product (Eq.2 for ABb(s) and ACc(s))- decreases by one the 
number of degrees of freedom of the system: Ratio

[CzC ]s,B,C
c

[BzB ]s,B,C

b =
Ks,C

Ks,B
 (51)

is  constant,  where  subscript  s,B,C  is  to  stress  that  both  ABb(s)  and  ACc(s)  pure 
compounds are formed.  The ratio of two equilibrium constant is the constant of a new 

equilibrium (their difference):
Ks,C

Ks,B
(Eq.51) is the constant for Equilibrium

ACc(s) + b BzB  ABb(s) + c CzC  (52)

Using Eq.51

[CzC ]s,B,C
c

[BzB ]s,B,C
b =

Ks,C

Ks,B
= KC-B =

[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 (69)

It can be rearranged as

[BzB ]b

[C zC]c
= 1−xb

xc =
[BzB ]b

[CzC ]c
Ks,C

Ks,B
=

[BzB ]b [CzC]s,B,C
c

[Cz C]c [BzB ]s,B,C

b =

 [Bz B ]
[Bz B ]s,B,C 

b

 [CzC]s,B,C

[CzC] 
c

:  

(69)

the ( [BzB ]b /[CzC]c and [Bz B]b/ [CzC]c) ratios of exchanged ions are usually not the same in 
the solid and aqueous phases:

● This ratio in the solid phase can be obtained from that in the aqueous solution in 
equilibrium conditions and conversely.

● The  so  called  "stoichiometric  dissolution"  does  not  specially  correspond  to 
equilibrium conditions.
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● The constants of Equilibria 31 
(b BzB + c CzC  b BzB + c CzC ) and 52 
b BzB  + (ACc(s)  ABb(s) + c CzC ) have  the  same  value,  consequently  it  is 
tempting to write that the difference between these two (31 and 52) equilibria is an 
equilibrium with an equilibrium constant of 1; but this interpretation is not correct 
because the result of this mathematical difference is not an equilibrium, since the 
solid phases involved in both equilibria cannot be simultaneously stable, namely 
the achievement of equilibrium conditions would typically result in the dissolution of 
the incorporation of impurities by the end-members transforming them in the solid 
solution.  The  common  aqueous  ions (BzB or CzC ) have  not  the  same 
concentrations when equilibrated with these different solid phases. Furthermore, 
using our notations inside the solid phases Equilibrium 52 writes exactly the same 
way as Equilibrium 31 assuming Az A can be simplified,  despite it  is  in the two 
different  (ACc(s)  and  ABb(s))  end-members,  this  assumption  is  correct  for  end-
members  that  can form an  ideal  solid  solutions  in  any proportion  (0  ≤  x  ≤  1): 
Notations Az A, BzB and CzC are  relevant  in  the  whole  range  of  chemical 
compositions for the solid solution including the end-members. Consequently the 
constants  of  Equilibria  31 and  52 have the same value.  However,  this  is  a  bit 
misleading.

Conversely,
[BzB ]b [CzC]s,B,C

c

[Cz C]c [BzB ]s,B,C

b = 1 = 1−xb

xc provides a value of x, typically when b = c this 

value of x is 0.5, corresponding to a mixture where none of the two end-members is at 
trace concentration. This x value -hence when the solid solution is stable- corresponds to 
the value of the [Bz B ]b /[Cz C]c ratio identical  to that when the two pure compounds are 
simultaneously  stable.  However,  the concentrations are not  identical  in both situations 
-ideal  solution or two pure components- as typically shown by the saturation indexes. 
Namely, introducing the [i]s,C,B notations in Eq.25 and 26

(1-x)b =
[Az A ]

[AzA ]s,C,B
 [BzB ]
[BzB ]s,C,B


b

 (25)

xc =
[ Az A ]

[A zA ]s,C,B
 [CzC]
[CzC ]s,C,B


c

 (26)

for  a  given  aqueous  concentration  of Az A the  concentrations  of BzB and CzC are 
divided by the same factor (1-x)b = xc. Thess decreases again illustrate that 

● The  -single solid phase- mixture is less soluble  -more stable- than the two end-
members. This is the well known: pure compounds "should not be stable",  only 
mixtures  are  stable.  However,  this  is  true  only  for  ideal  mixtures.  Most  of  the 
mixtures  cannot  be  ideal  for  straightforward  geometrical  reasons.  Nevertheless 
according to the entropy principle "pure" compounds always include impurities.

● The decrease in solubility is not very important because x is neither close to zero, 
neither close to 1 when (1-x)b = xc. 

● Conversely, the decrease in solubility is important only when x is close to zero or 
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one corresponding to a solid solution virtually identical to end-member ABb(s) or 
ACc(s) respectively, and there is a dramatic decrease in the solubility of C (by xc) or 
B  (by  (1-x)b)  respectively  in  the  solid  solution  as  compared  to  the  solubility 
controlled by the ACc(s) or ABb(s) pure compound respectively.  This is possible 
only for high enough concentrations of A.

● Now looking for conditions where the solubilities of both B and C are decreased, it 
is natural to restrict ourself to conditions where the same value is imposed for the 
saturation indexes of both pure compounds, namely (1-x)b = xc, which is actually 
where we started from in this section. For this reason it can also be considered as 
the maximum decrease of solubility for the solid solution as compared to the two 
pure components. This can as well be deduced from Eq.41.

Indeed,  in  this  part  we  introduced  the  [i]s,C,B notations in  the  definition  of  several 
equilibrium constants. This can as well be done for

Qx =
[A zA ] [BzB ]b(1-x) [CzC]cx

[A zA ] [BzB ]b(1-x) [CzC]cx = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  = Ks , B
1−x Ks , C

x =

[AzA ]s,B,C [BzB ]s,B,C
b(1-x) [CzC]s,B,C

cx

(41)

which can be rearranged as

1-xb(1-x) xcx = [AzA ] [BzB ]b(1-x) [CzC]cx =
[Az A ] [BzB ]b(1-x)[CzC ]cx

[A zA ]s,B,C [Bz B]s,B,C

b(1-x) [CzC ]s,B,C

cx (41)

 3.5.6 Summary of equations  

Az A + b BzB  Az A + b BzB  (23)

Ks,B = [AzA ]s,C,B [BzB ]s,C,B
b =

[A zA ] [BzB ]b

[A zA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
 (25)

Az A + c CzC  Az A + c CzC  (24)

Ks,C = [A zA ]s,C,B [CzC]s,C,B
c =

[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc  (26)

b BzB + c CzC  b BzB + c CzC (31)

Ks,C

Ks,B
=

[CzC ]s,B,C
c

[BzB ]s,B,C
b =

[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 (69)

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)
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Ks,B
1−x Ks,C

x = [AzA ]s,B,C [BzB ]s,B,C
b(1-x) [CzC]s,B,C

cx =
[A zA ] [BzB ]b(1-x) [CzC]cx

[A zA ] [BzB ]b(1-x) [CzC]cx =

[A zA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  = Qx 
(41)

 3.5.7 Approximations for trace concentrations  

When C is at trace concentrations:

Ks,B = [A zA ]s,C,B [BzB ]s,C,B
b =

[A zA ] [BzB ]b

[A zA ] [BzB ]b
≈ [AzA ] [BzB ]b  for x<<1 (25)

Ks,C = [A zA ]s,C,B [CzC]s,C,B
c =

[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc  (26)

Ks,C

Ks,B
=

[C zC ]s,B,C
c

[B zB ]s,B,C

b =
[BzB]b [CzC]c

[BzB]b [CzC]c
≈

[CzC]c

[BzB ]b xc
 for x<<1 (69)

Ks,B Ks,C
x ≈ [A zA ]s,B,C [BzB ]s,B,C

b [CzC ]s,B,C
cx ≈

[A zA ] [BzB ]b [CzC]cx

[A zA ] [BzB ]b [CzC]cx ≈

[AzA ] [BzB ]b [CzC]cx

xcx ≈ Qx for x<<1
(41)

Ks,C

Ks,B
=

[CzC ]s,B,C
c

[BzB ]s,B,C
b =

[BzB ]b [CzC]c

[BzB ]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
 for x<<1 (69)

It  essentially  appears  that  the  partition  equilibria  equation  is  not  changed  for  ACc(s) 
(Eq.26), while the solubility product equation (Eq.25) is now virtually valid for ABb(s). This 
can be checked experimentally as follows. C is introduced (at trace concentrations) in an 
aqueous solution  used to precipitate  ABb(s).  The solubility  product  law is  checked by 
classical slope analysis (Section 3.5.4.3.). When the uptake of C (by ABb(s)) is important, 
the remaining C aqueous concentration also gives precisely the amount of C in the solid, 
namely  x,  which  finally  allows  to  check  Eq.s 26 and  69:  log-log  plot  gives  c,  the 
stoichiometric coefficient and the equilibrium constant. Note that this involves free  -not 
total- aqueous concentrations, which need to be deduced from independent studies in 
homogeneous aqueous solutions or from published complexing constants (see typically 
Eq.4). 

C can also be introduced in an aqueous solution already equilibrated with ABb(s). A rapid 
uptake of C by the ABb(s) surface is expected, while further penetration of C into the 
ABb(s) bulk is much slower. The amount of C that has penetrated inside the solid can still 
be known, but it is difficult to deduce x, its concentration, because it must be divided by 
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the total surface or the total volume (of ABb(s) contaminated by C), which are not easily 
known. However, the surface or the volume factor cancels out when considering several 
analogue trace elements (typically including a radioactive isotope of B) for checking they 
actually  have similar  behaviours  by observing ratios  of  their  concentrations.  This  also 
allows to use surface concentrations, despite they are not intensive variables.

 3.6 Toward real solid solutions.
 3.6.1 Vacancies  

Up to now, we considered ideal solid solutions of stoichiometry ABb(1-x)Ccx without paying 
much attention to their microscopic structures, since their thermodynamics descriptions 
only require the solubility products of their (ABb(s) and  ACc(s)) end-members, and their 
stoichiometries -these stoichiometries are given by electro-neutrality-. Ideal (or near ideal) 
solid  solution  means  that  substituting  B  by  C  does  not  much  modify  the  matrix,  the 
chemical potentials of the other atoms and finally the chemical potentials of B and C; 
hence their geometric environments are virtually the same in the solid solution and in the 
end-members. This is clearly possible when C is an isotope of B, or at least a chemical 
analogue, namely an ion with same charge and similar size and coordination chemistry. 
Conversely,  this might appear impossible when B and C are ions of different charges. 
Nevertheless, exchanges in minerals are known for ions with different charges. This is 
typically the case for clays. In clays, a few Si4+ tetra-cations are substituted with Al3+ tri-
cations in matrix layers, charge compensation is obtained by exchanging cations in inter-
layers. It is still debated whether the inter-layer cations are fixed on specific anionic sites 
of  the  matrix  layer  surface,  or  less  ordered.  Other  ion  exchanger  minerals  can  be 
described with typically O2- matrix, where only some of the cationic sites are occupied. We 
here give one generic example based on such idea. We imagine a matrix,  where the 
minimum cell contains nA atoms A. For simplicity, we assume that all the matrix sites that 
can be occupied by A are indeed occupied by A. Conversely, some of the sites that could 
be occupied by B or C could be vacant. For electro-neutrality, the stoichiometry of the unit 
cell is still given by b and c, it is now 

nA ABb(1-x)Ccx = AnA
BnA b(1-x) CnA cx

= nA Az A + nA b(1-x) BzB + nA c x CzC +(n-A - nA(b+(c-b)x)) v
(53)

where v are vacancies in the solid, nv = n-A - nA(b+(c-b)x) the number of vacancies and 
n-A the  total  number  of  sites  for  A  counter-ions. AnA

BnA b(1-x) CnA cx is  rather  a  mean 
stoichiometry: A and B -hence vacancies- are placed at random in the sites of A counter-
ions. This disorder allows continuous variations of x. Conversely,  when virtually all  the

AnA
BnA b(1-x) CnA cx cells are exactly the same, it  rather appears as a new stoichiometric 

compound  for  each  x  value,  and  in  this  case  there  are  only  a  limited  number  of 
possibilities for the x values, because nA is a fixed finite integer. The concentrations in the 
solid are chosen as follows

[AzA ] = 1 (36)

[Bz B] = b(1-x) (37)
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[AzA ] = 1 (36)

[CzB ] = c x (38)

[v ] = a-b+(b-c)x (54)

where

a=
n-A

nA
(55)

Note that when a = b or a = c there is no vacancies in ABb(s) or ACc(s) respectively: when 
B  and  C  are  of  different  charge  a =b =c  is  not  possible,  and  there  are  necessarily 
vacancies in the solid solution and at least in one of the end-members. The end-members 
are 

nA ABb(s) = AnA
BnA b (s) = nA Az A + nA b BzB + nA(a-b) v  (56)

nA ACc(s) = AnA
CnA c (s) = nA A z A + nA c CzC + nA(a-c) v (57)

The stoichiometric coefficients are integers, specially (n-A - nA b) = nA(a-b) and (n-A - nA c) = 
nA(a-c). Previous equations (their numbers are italicized) are changed as follows

Az A + b BzB +(a-b) v  Az A + b BzB  (23) (58)

Ks,B (a-b)a-b=
[Az A ] [BzB ]b

1−x b a-b+(b-c)xa-b  (25) (59)

Az A + c CzC +(a-c) v  Az A + c CzC  (24) (60)

Ks,C (a-c)a-c=
[Az A ] [CzC]c

x ca-b+(b-c)x a-c  (26) (61)

b BzB + c CzC +(b-c) v  b BzB + c CzC (31) (62)

Ks,C (a-b)a-b

Ks,B(a-c)a-c =
1−xb [CzC]c

[BzB ]bxc
a-b+(b-c)xc-b  (69) (63)

Az A + b(1-x) BzB + c x CzC +(a-b+(b-c)x) v

 Az A + b(1-x) BzB + c x CzC       (30)
(64)

Ks,B (a-b)a-b1−x Ks,C (a-c)a-c x = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcxa-b+(b-c)x a-b+(b-c)x  (41) (65)

For qualitative  discussion,  let  us simplify to the case,  where there are no vacancy in 
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ABb(s), while there are still vacancies in ACc(s): in this case a = b (Eq.56), Eq.59 is now 

identical to Eq.25, while Eq.61 is simplified into Ks,C (b-c)2(b-c)=
[AzA ] [CzC ]c

x b ; which is still 

different  from Ks,C=
[AzA ] [CzC ]c

x c (Eq.26):  the  exponent  of  x  is  changed  from  b  to  c. 

Similarly,  Eq.63 simplifies  into
Ks,C

Ks,B
= 1-x

x 
b [CzC ]c

[BzB ]b
, which  is  different  from

Ks,C

Ks,B
=

1−xb [CzC]c

x c [BzB ]b
(Eq.69). This illustrates that introducing vacancies really changed the law 

of  mass action  equation,  and the  corresponding  slope analysis  as typically  based on 
Eq.49. However,  this needs confirmations:  to our knowledge such equations does not 
seem  to  have  been  published.  As  already  pointed  out,  the  exponent  stoichiometric 
coefficients are classically determined experimentally by slope analysis of log-log plot for 
relevant  experimental  partition or  solubility  measurements.  Nevertheless,  several  other 
physical and chemical phenomena can also change such slopes:

● Complexation in the aqueous phase, this can be qualitatively taken into account by 
writing the chemical equilibria with the major species (see typically Eq.4 and 5) or 
quantitatively  by  aqueous  equilibrium  calculations,  namely  by  calculating  the 
concentrations of the free aqueous species from the chemical composition of the 
aqueous  solution.  This  is  classical  and  there  is  no  need  to  include  these 
complications in the present paper. Note that this results in different stoichiometries 
for the ions in the aqueous and solid phases.

● Chemical reactions with the water HO- or H+ ions.
● Non-ideality, which explains that most of the solid solutions are not formed, while 

as already pointed out, the saturation indexes of the end-members are always less 
than 1 if an ideal solid solution can form. Pure compounds would not exists, only 
solid  solutions.  This  is  actually  the  entropy  principle,  which  explains  there  are 
always default and impurities in real solids.

Furthermore,  when  a = c  Eq.63 simplify  into
Ks,C

Ks,B
c-b 2(c-b) = 1-x

x 
c [CzC]c

[BzB ]b
, which  is 

different from
Ks,C

Ks,B
=

1−xb

xc

[CzC]c

[BzB ]b
(Eq.69): again the exponent of x is changed, it is no 

more controlled by electro-neutrality. The same remark can be deduced from Eq.41 and 
65.

Excepted in these particular cases (a = b or c) and in cases closed to them (a ≈ b or c, i.e. 
only  very  few vacancies  in  one  of  the  end-members  as  compared  to  the  number  of 
occupied B or C sites), vacancies do not seem to induce major changes: in the above 
equations equilibrium constants are multiplied by constant ((a-b)a-b or (a-c)a-c) terms and by 
a term originated in the concentration of vacancies, which now does not vary much. The 
concentration of vacancies is [v ] = a-b+(b-c)x (Eq.54): it linearly varies between a-b and 
a-c, since 0 ≤ x ≤ 1. Instead of lg [v ] we use its mean value <lg v> = [lg(a-b) + lg(a-c)]/2 
with the corresponding uncertainty δlg v = |lg(a-b) - lg(a-c)|/2. With this approximation,

● Eq.59 is Eq.25, where Equilibrium Constant Ks,B, is no more exactly constant: lg Ks,B 

is changed to [lg Ks,B +(lg(a-b)+<lg v>± δlg v)(a-b)].
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● Eq.61 is Eq.26 where Ks,C is changed to [lg Ks,C +(lg(a-c)+<lg v>± δlg v)(a-c)]
and similarly for Eq.63 and 65.

Finally,  except  for  very  specific  cases,  it  does  not  seem  that  introducing  vacancies 
qualitatively changes the equations. This  a posteriori justify not to have taken them into 
account at the beginning of this paper. Nevertheless, introducing vacancies pointed out 
the importance of correctly describing the structure of the solid solution  -and this is not 
straightforward- to  obtain  the  correct  stoichiometric  coefficients.  Indeed,  stoichiometric 
coefficients correspond to the actual number of exchanged ions, they are also linked to 
electro-neutrality  and  reasonable  coordination  chemistry.  All  these  properties  where 
merged in the simplified stoichiometric  description we used before taking into account 
vacancies.

 3.6.2 Non-ideal solid solutions.  

Adding a solute (or exchanging it) in an ideal system do not modify the rest of the system. 
This is a usual starting point to treat a real system considered as an ideal system with 
small modifications. Conversely, when such an ideal system cannot be identified  -trying 
various unit cell of different stoichimetries and geometries-, there is no special reason to 
use the law of mass action.

 3.6.3 Distortion of the matrix and identification of the geometry.  

Adding new ions in vacant sites of the matrix, or exchanging ions of different sizes more 
or  less  modifies  the geometry of  the matrix.  As a result,  the  same geometry can be 
considered as deriving from different  ideal  geometries,  and it  is  not  straightforward to 
identify the most relevant basic cell -and corresponding stoichiometries- to describe solid 
systems.

 3.7 Comparing aqueous and solid solutions
 3.7.1 Introduction  

The description of our  ABb(1-x)Ccx solid solutions did not specially seem to use that the 
matrix of this solution is solid:  one can wonder to which extend this approach can be 
generalized. On the other hand, stoichiometries are given by the electro-neutrality, which 
is not specially the case for aqueous solutions. It seems we essentially had to define the 
stoichiometry of the reaction to write the corresponding law of mass action equations. This 
seems to be possible in any type of solutions: bulk solids, surfaces, liquid. In this part we 
consider  such  comparisons.  For  this  we  essentially  compare  our  solid  solution  with 
aqueous  solutions,  outlining  a  few  usual  chemical  concepts  as  typically  solvation, 
complexation,  coordination  chemistry...  that  actually  all  more  or  less  deal  with  the 
stoichiometric description of the system.

 3.7.2 Solvation and complexation  

In aqueous solutions, water molecules are usually not written in chemical reactions and 
the corresponding equilibria, because the activity of water is constant (= 1): it must not be 
written in the law of mass action. They are a few specific exception when writing H2O in an 
equilibrium is needed for mass balance or when considering ionic strength corrections: in 
that case the activity of water is no more 1 (the activity of the solvent is 1; but the solvent 
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is no more pure water), it can be measured by  typically measuring its partial pressure 
equilibrated with the aqueous solution. We do not consider these specific cases.

Notation BzB is for BzB(aq), where (aq) is often omitted (as we did here for simplicity) 
despite one or even two hydration layers of the BzB central ion can usually very well be 
identified. One can typically admit that the number of water molecules more or less fixed 
by BzB is negligible and this does not change the size of the system -determined by the 
total number of water, while intuitively one would rather consider only bulk water- neither 
the mean activity of water. Actually, when this approximation does not stand any more, 
this is classically taken into account by activity coefficients, since the activity of water can 
be calculated from the mean activity coefficient. Again we do not consider here such small 
corrections.

In our solid solution, the equivalent of water -the solvent- is the matrix. In our description it 
is represented by Az A. Note that for the BzB/CzC ion exchange equilibrium (Eq.31) we 
indeed did not write Az A because it cancels out, despite the matrix is implicitly here. As a 
consequence  -for  mass balance- we neither  wrote Az A. Conversely,  for  all  the  other 
equilibria  we had to write Az A: this  because they actually  correspond to reactions  of 
dissolution  of  the  matrix,  namely AzA is  dissolved.  This  is  a  difference with  aqueous 
solutions.

This is a bit misleading: when A zA is in the solid phase it is the solvent for BzB, while in 
aqueous  solution Az A can  very  well  be  a  ligand  for BzB to  form  a  complex  (Eq.4). 
Coordinations are usually different between aqueous and solid phases, nevertheless they 
are the same in some special  cases as typically aqueous limiting complexes and well 
chosen solid compounds, and this is experimentally used. For this reason, it is tempting to 
write ABn

z A−n zB instead of BzB, where n is the number of A ligands in the solid. This can 
very well  be done for  Equilibrium 31, hence writing ABn

z A−n zB and ACp
z A−p zC instead of

BzB and CzC respectively, where mass balance is obtained by adding (n-p)AzA . This 
does not introduce any new term in the corresponding equilibrium constant since [AzA ] = 
1. It is clear that such procedure is possible only for equilibria that do not correspond to 
any dissolution / precipitation of the matrix. In this later case stoichiometric coefficients are 
controlled by electro-neutrality as for pure compounds.

 3.7.3 Coordination chemistry  

BzB and CzC are  coordinated  to Az A in  the  solid,  but  this  is  not  reflected  in  the 
stoichiometry,  because Az A also  stands  for  the  matrix,  as  explained  in  the  previous 
section. Furthermore, in our relatively simple solid solution Az A is necessarily the only -or 
at  least  the  major- ligand  of BzB and CzC . Nevertheless,  several  coordinations  are 
possible, corresponding to different sites for BzB or CzC : see the next section.

 3.7.4 Several types of sites for the same ion  

Several  types  of  sites  can  exist  for BzB or CzC : typically BzB1 and BzB2 for BzB,
where it is not needed to indicate the corresponding coordination chemistry, namely the 
number of Az A ligand, despite this number is certainly different for each site, because
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Az A also stands for  the matrix  (see Sections 3.7.2. and  3.7.3.).  Equilibrium between 
these two sites simply writes BzB1  BzB2 . The corresponding equilibrium constant is 
K = [ BzB1 ] /[ Bz B2 ] . This ratio is constant. For this reason it does not seem specially needed 
to writes equilibrium constants with two sites: [Bz B] = [ BzB1 ][ BzB2 ] can be used, in the 
same way as in aqueous solution [†CO2] is usually written for [CO2(aq)] + [H2CO3(aq)].

 4 Law of mass action for solid solutions, a demonstration.
 4.1 Introduction.

We have seen that the law of mass action has correctly been used in the literature, and 
demonstrated  by  typically  Lippmann,  who  also  already  gave  most  of  the  comments 
needed to understand the chemical meaning of such a thermodynamic description. One 
important point is that for a two end-members mixtures the law of mass action is a set of 
two  equations.  Consequently,  combining  such  equations  give  equivalent  sets  of 
equations: the law of mass action does not have a unique form. As usual, the scientific 
basis  of  these  equations  are  often  forgotten.  Furthermore,  the  non-constant  solubility 
product equation became quite popular despite, as pointed out, it is a quite unusual, a bit 
misleading  equations  with  two  advancement  variables,  non-constant  stoichiometric 
coefficients, stoichiometric coefficients that are also concentrations... we choose to start 
directly from this equation to give a demonstration of law of mass action. Before this we 
briefly recall the most simple correct demonstrations already published by Lippmann and 
Michard.  However  we  will  use  our  own  notations  and  concentrations  units,  specially 
because mole fraction are intensive variable only in particular cases: in several cases they 
are  not  concentration  units.  It  is  first  important  to  obtain  a  correct  description  for  the 
stoichiometry of the solid solution. This is not given by thermodynamics. This specially 
provides what is the matrix, whether all its anionic and cationic sites are occupied, if not 
vacancies should be taken into account. We already showed that above. Nevertheless, for 
simplicity, we here only consider the simple ABb(1-x)Cx solid solution. 

 4.2 A quick way to write the law of mass action for solid solutions.

We use Notation

(1-x)ABb + x ACc = ABb(1-x)Ccx = Az A + b(1-x) BzB + c x CzC  (20)

which  means  we  know  -usually  from  structural  observation- that  the  ABb(1-x)Cx 

stoichiometry corresponds to a unique structure for 0  ≤ x  ≤ 1, specially the ABb(s) and 
ACc(s) end-member must be in this structure with eventually vacancies that should then 
be explicitly written (Eq.53). The law of mass action for Equilibria

ABb(s) = Az A + b BzB  Az A + b BzB  (66)

ACc(s) = Az A + c CzC  Az A + c CzC  (67)

writes
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KA-B =
[AzA ] [BzB ]b

[AzA ] [BzB ]b
= [AzA ] [BzB ]b

1−x b
= Ks,B (25)

KA-C =
[Az A ][CzC ]c

[Az A ][CzC ]c
= [AzA ][CzC ]c

xc = Ks,C (26)

where  equilibrium  constants KA-B and KA-C appear  to  be  the  Ks,B and  Ks,C solubility 
products of the end-members for the limiting cases x = 0 and 1 respectively. From Eq.25 
and 26 the two classical equations

Ks,B
1-x Ks,C

x =
[A zA ] [BzB ]b(1-x) [CzC]cx

[A zA ] [BzB ]b(1-x) [CzC]cx = [AzA ] [BzB ]b(1-x) [CzC]cx

1-x b(1-x) xcx  (41)

Ks,C

Ks,B
=

[BzB]b [CzC]c

[BzB]b [CzC]c
=

1−xb [CzC ]c

[BzB ]bxc
(42)

are deduced. They correspond to Equilibria

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

b BzB + c CzC  b BzB + c CzC (31)

In this part, we will demonstrate the law of mass action for Equilibrium 30. For this we will 
first demonstrate the usual form of law of mass action for pure solids, namely solubility 
products.

 4.3 Law of mass action for pure compounds.

The thermodynamic demonstration of the law of mass action is obtained by minimising the 
Gibbs Energy of the system at constant P ant T ((dG)P,T = 0):

0 = µAzA dnA zA + µBzB dnBzB + µABB (s)dnABB (s)  (68)

for the Az A / BzB / ABb(s) system, where µi is the chemical potential of species i, and ni 

its number of moles. For Equilibrium

ABb(s)  Az A + b BzB,  (3)

dnAz A = dξ (28)

dnBz B = b dξ (29)
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dnAz A = dξ (28)

dnABb(s) = -dξ (69)

Reporting Eq.28, 29 and 69 into Eq.68

0 = µAzA + b µBzB - µABb (s)  (70)

the definition of ai, the absolute activity of species i, is

µi = µi
o + R T ln ai (71)

with the supplementary definitions in the reference state ai =1 hence µi = µi
o . µi

o is 
another notation for  f Gi

o , the molar Gibbs energy of formation of species i. For ideal 
systems ai = mi/mi

o , where mi is the molal concentration of species i, and 1 = mi
o is the 

value of mi in the reference state when i is an aqueous species. mi
o is often omitted. 

Similar definitions stand for species in each phase. However, the chemical potential and 
activity of the solid are constant:

µABB (s) = µABB (s)
o  (72)

Reporting Eq.71 and 72 into Eq.70

0 = r Gs,b
o + R T lnKs,B

o  (73)

where
r Gs,b

o = µAzA

o + b µBzB

o - µABB (s)
o  (74)

Ks,B
o = aAzA  aBzB

b  (75)

which is the solubility product law. It is Eq.(2) taking into account non-ideality, namely

Ks,B
o = Ks,B AzA  BzB

b  ϱ1+b  (76)

where YzY , the activity coefficient of Yz Y is defined as 

aYzY =
mYzY

mYzY

o YzY  (77)

and ϱ = V/m is the factor for the conversion of molar to molal concentrations: V is the 
volume (dm3) of solution containing m kg of water. Medium effects are thus included in 
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Ks,B. Classically, constant high concentration of a strong electrolyte is used to obtain a 
constant aqueous medium, where the values of ϱ and i are virtually constants. In that 
case  a  new ideal  aqueous  solution  is  obtained,  which  indicates  that  Ks,B has  similar 
thermodynamics meaning as Ks,B

o : the only difference is the reference state.

 4.4 Law of mass action for solid solutions.
 4.4.1 A demonstration  

We use the same type of demonstration as for the solubility product of the ABb(s) pure 
compound (Section 4.3.). The main difference is at the beginning when calculating dni, 
(Eq.28,  29 and  69): for this reason we give more details on these equations, while the 
following ones are only mathematical consequences. Note that

i,B-C =
di,x

dx
 (32)

where i,x is the stoichiometric coefficient of Species i in Equilibrium

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC , (30)

and i,B-C is the stoichiometric coefficient of Species i in Equilibrium

b BzB + c CzC  b BzB + c CzC (31)

Typically, dnBz B, 0 = BzB, 0d = b dξ for Equilibrium 3 is only the first term of dnBz B when 
x varies as typically in Equilibrium 30: for Equilibrium 30 this first term is indeed ∂nBzB, x x
= ∂nBzB,x

∂ 
x
d = BzB, x d =  b(1-x) dξ.  Similarly dnAz A,0 = AzA ,0 d =  dξ  and

∂nAzA , xx = AzA , x d =  dξ:  it  appears  that  ξ  is  an  advancement  variable  for  both 
equilibria, and in both cases it corresponds to nAz A . Consequently, the second term of

dnBz B, x can be obtained as ∂nBzB, x  = ∂nBzB, x n
A

zA
= dBzB, x = -b dx. Note that (Eq.32)

dBzB, x = BzB, B-Cdx. Such calculation is performed for each species: we here reproduce 
the equations already given for pure compounds, we italicize them, and we add the new 
equations modified for taking into account variable stoichiometry in the solid. 
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ABb(s)  Az A + b BzB  (3)

Az A + b(1-x) BzB + c x CzC  Az A + b(1-x) BzB + c x CzC (30)

dnAz A, 0 = dξ (28)

−dnAzA , x = dnAz A, x = ∂nAzA , x

∂ 
x
d∂nAzA , x

∂ x 

dx = AzA , x dAz A, B-Cdx

= dξ

(33)

dnBzB , 0 = b dξ (29)

−dnBzB , x = dnBz B, x = ∂nBzB,x

∂ 
x
d∂nBzB,x

∂ x 

dx = BzB, x dBzB ,B-C dx

= b(1-x)dξ - b dx 
(34)

Similarly

−dnC zC, x = dnCzC , x = ∂nCzC , x

∂ 
x
d∂nCzC , x

∂ x 

dx = C zC, x dC zC, B-Cdx

= c x dξ + c dx 
(78)

Eq.(69) is now included in Eq.33, 34 and 78. Equation

0 = µAzA dnA zA + µBzB dnBzB + µABB (s)dnABB (s)  (68)

now writes
0 = µAzA dnA zAµBzB dnBzBµCzC dnCzC−µAzA dnAzAµBzB dnBzBµCzC dnCzC  (79)

Substituting Eq.33, 34 and 78 into Eq.79, and using Notation

δY = µYzY−µYzY ,  (80)

 0 = AzA AzA , x ddAzA , xBzB BzB ,x ddBzB, x CzC CzC , x ddCzC , x

= ∑
i=A,B,C

i,xid ∑
i=A,B,C

i,B-C idx

= AzAb(1-x)BzBc xCzCd-bBzBcCzC dx

(81)

Since ξ and x are two independent variables Eq.81 is actually a set of two equations, 

{0=AzAb(1-x)BzBc xCzC

0=-bBzBcC zC
  (82)

consistently  the first  one corresponds to the law of  mass action for  Equilibrium 30 (of 
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stoichiometric coefficients i,x) and the second one for Equilibrium 31 (of stoichiometric 
coefficients i,B-C ). Indeed,  the  law of  mass  action  is  classically  obtained  as  follows. 
Reporting Equation

µi = µi
o + R T ln ai (71)

into Eq.82

{0=r Gx
oR T lnKx

o

0=r GB-C
o R T lnKB-C

o   (83)

Is obtained, where
r Gx

o=AzA

o b(1-x)BzB

o c xCzC

o  (84)

r GB-C
o =-bBzB

o cC zC

o  (85)

Kx
o=

aAzA aBzB

b(1-x) aCzC

cx

aAzA aBzB

b(1-x) aCzC

cx  (86)

KB-C
o =

aBzB

-b aC zC

c

aBzB

-b aC zC

c  (87)

Eq.86 and 87 are the law of mass action for Equilibria 30 and 31 respectively. Note that 
Kx

B-C is constant (Eq.85), while Kx
o is not, since it depends on x (Eq.86). 

 4.4.2 Number of thermodynamics constants.  

We have introduced three thermodynamics constants: AzA

o , BzB

o and CzC

o ; but we will 
see  that  two  are  enough. r GB-C

o already  depends  on  only  two  of  these  constants 
(Eq.85);  but r Gx

o indeed  depends  on  the  three  AzA

o , BzB

o and CzC

o constants 
(Eq.84); to demonstrate that r Gx

o depends only on two constants Eq.84 is rearranged 
as follows:

- R T lnKx
o

= r Gx
o=AzA

o b(1-x)BzB

o c xCzC

o

= (1-x)A zA

o bBzB

o x AzA

o cC zC

o 
= (1-x)rGA-B

o xr GA-C
o

= -R T ln KA-B
o 1-x KA-C

o x  

(84)

Where - R T lnKA ,B
o =r GA-B

o =AzA

o bBzB

o  (88)

- R T lnKA ,C
o =r GA-C

o =AzA

o c CzC

o  (89)
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This calculation actually demonstrates that the Kx
o function of x writes 

Kx
o = KA-B

o 1-x KA-C
o x  (84)

and that Kx
o -or equivalently r Gx

o - depends on only two constants: KA-B
o and KA-C

o ;
despite  we  had  initially  introduced  three  constants: AzA

o , BzB

o and CzC

o . Of  course,
KB-C

o depends also of  the same parameters.  To demonstrate  this,  the same type of 
rearrangement can be made for Eq.85:

- R T lnKB-C
o

= r GB-C
o =-bBzB

o cC zC

o

= AzA

o cCzC

o −AzA

o bBzB

o 
= r GA-C

o −r GA-B
o

= -R T ln
KA-C

o

KA-B
o  

(85)

namely

KB-C
o =

KA-C
o

KA-B
o  (85)

 4.4.3 Partition equilibria.  

Reporting Eq.86 and 87 into Kx
o = KA-B

o 1-x KA-C
o x (Eq.84) and KB-C

o =
KA-C

o

KA-B
o (Eq.85):

KA ,B
o =

aAzA aBzB

b

aAzA aBzB

b  (90)

KA ,C
o =

aAzA aCz C

c

aAzA aCz C

c .  (91)

KA-B
o and KA-C

o appear to be the constants for the partition equilibria

Az A + b BzB  Az A + b BzB  (66)

Az A + c CzC  Az A + c CzC  (67)

Eq.90 and  91 are  the  law of  mass  action  for  Equilibria  66 and  67,  and  this  can  be 
demonstrated exactly in the same way as Eq.85 for Equilibrium 31.
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Note that KB-C
o =

KA-C
o

KA-B
o (Eq.85) merely reflects that Equilibrium

b BzB + c CzC  b BzB + c CzC (31)

can be obtained by the Equilibirum 31 = Equilibirum 67 - Equilibirum 66 thermodynamic 
cycle from Equilibria 66 and 67. Now, the same type of mathematical calculation for Kx

o

= KA-B
o 1-x KA-C

o x (Eq.84)  would  give Equilibirum 30 =  (1-x)Equilibirum 66 + 
x Equilibirum 67, which is not a thermodynamic cycle since  1-x and x are not constant, 
they actually represent concentrations. This explains why Kx

o is not constant: it does not 
correspond to a classical chemical equilibrium or reaction. 

Note that we started from Equilibria 66 and 67 characterized Kx
o and KB-C

o . Conversely, 
following a Lippmann type approach one can start from KA-B

o and KA-C
o to obtain Kx

o =

KA-B
o 1-x KA-C

o x (Eq.84)  and KB-C
o =

KA-C
o

KA-B
o (Eq.85);  namely, KA-B

o and KA-C
o have 

actually be obtained as

KA-B
o =

K x
o

KB-C
o x

 (92)

KA-C
o =Kx

o KB-C
o 1-x  (93)

 4.4.4 Standard state.  

The standard state of aqueous solutions is the pure solvent. A similar definition would not 
be convenient for solid solutions, since it would correspond to the "pure matrix", which is a 
concept far from any real solid. Anyhow, we have not the choice of standard state for 
solids, it is already defined through the standard solubility products. Namely, when the 
solid solution has the composition of an end-member the solid solution description must 
be consistent with the standard state as reflected in the solubility product. In such limiting 
conditions, there has two ways to describe the solid solution, one way is the solubility 
product, typically for End-member ABb

Ks,B
o = aAzA , ABb

aBzB, ABb

b  (75)

where subscript  ABb is to stress that  the aqueous solution is saturated with  ABb.  The 
second way is to use Eq.86 where x = 0 which appears to be Eq.90:

KA ,B
o =

aAzA , ABb
aBzB , ABb

b

aAzA , ABb
aBzB , ABb

b  (90)
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from which

KA ,B
o =

K s,B
o

aAzA , ABb
aBzB , ABb

b  (90)

Similarly for x = 1

KA ,C
o =

K s,C
o

aAzA , ACc
aCzC , ACc

c  (91)

It is now needed to define the values of ai , Ajq the activities in the solid solution when it 
corresponds to one of the pure compounds. As in liquid solutions, this is defined with the 
concentration  units.  This  because  the  standard  state  is  an  ideal  solution  where 
concentrations can be used as activities. The concentration units we have used up to now 
are

[AzA ] = 1, [Bz B] = b(1-x) and [CzC ] = c x (12)

namely  for  x = 0, aAzA , ABb
=  1, aBzB, ABb

=  b, aCzC , ABb
=  0,  while  for  x = 1, aAzA , ACc

=  1,
aBzB, ACc

= 0, aCzC , AC c
= c. Using these definitions:

KA ,B
o =

Ks,B
o

bb  (90)

KA ,C
o =

Ks,C
o

cc  (91)

 4.4.5 Activity coefficients.  

i , the activity coefficient is classically defined as 

ai =
mi

mi
o i  (77)

for aqueous species i, where mi is its molal concentration, and 1 = mi
o is the value of mi 

in  the  reference  state. mi
o is  often  omitted.  The reference  state  is  an  ideal  solution, 

where ai = mi/mi
o , or equivalently i = 1. Similarly in the solid solution

ai = aY=
[Y ]
[Y ]o

Y  (94)

where
[AzA ] = 1, [Bz B] = b(1-x) and [CzC ] = c x (12)
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Using these concentration units:

Ks,B
o = bbKA,B

o = Ks,B,m Ks,B
exc (90)

Ks,C
o = cc KA,C

o = Ks,C,m Ks,C
exc  (91)

where

Ks,B,m =
mAzA mBzB

b

b(1-x)b (90)

Ks,C,m =
mAzA mC zC

c

c xc  (91)

are the molal solubility products, and

Ks,B
exc =

Az ABzB

b

Az ABzB

b  (95)

Ks,C
exc =

Az ACzC

c

Az ACzC

c  (96)

When species i is an aqueous species, i is a molal activity coefficient, while in the solid 
the activity coefficient is related to the concentration units we have defined, which are not 
mole fractions when b ≠ c. Note that we have written AzA , the activity coefficient of the 
matrix.  It  can  vary,  in  the  same  way  as  the  activity  of  water  varies  in  concentrated 
aqueous solutions.  AzA , can typically be interpreted as corresponding to the distortion 
of the matrix, however it is equivalent to the mean activity coefficients of the solutes in the 
same way as in aqueous solutions.
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