Magnetic Anisotropy of UFe₆Al₆

Alexander V. Andreev

Institute of Physics ASCR, Na Slovance 2, 18221, Prague, Czech Republic

 $RFe_{12-x}Al_x$ intermetallic compounds (*R* is a rare-earth or actinide metal) with the tetragonal crystal structure of the ThMn₁₂ type attract much attention due to their interesting magnetic properties. In particular, an extensive study of a UFe₆Al₆ single crystal (the refined composition was UFe_{5.8}Al_{6.2}) by X-ray and neutron diffraction, ⁵⁷Fe Mössbauer spectroscopy and magnetization measurements has shown that it is a ferromagnet with spontaneous magnetic moment $M_s = 10.4 \mu_B/f.u.$ and Curie temperature $T_C = 300 \text{ K}$ [1]. It was also shown that the compound exhibits large magnetic anisotropy of the easy-plane type. In the present work, the magnetic anisotropy of UFe₆Al₆ was studied in detail, such as the temperature evolution in the ferromagnetic and paramagnetic state, the anisotropy within the basal plane and a comparison with LuFe₆Al₆, Lu being a non-magnetic analogue of U.

Single crystals of UFe₆Al₆ and LuFe₆Al₆ were prepared by arc melting the pure elements (99.9% U, Lu, 99.98% Fe and 99.999% Al) in a tri-arc furnace on a water-cooled copper crucible under a protective argon atmosphere. The single crystals were grown from these molten buttons by the Czochralski method using a tungsten rod as a seed with 10 mm/hour pulling speed. X-ray Laue patterns showed good quality of the crystals. Phase purity and lattice parameters were determined by standard X-ray diffractometry with Cu K_{α} radiation on powders prepared from the single crystals. Both compounds crystallize in the ThMn₁₂-type crystal structure with lattice parameters a = 8.663 Å, c = 5.009 Å and a = 8.593 Å, c = 5.021 Å for UFe_{5.8}Al_{6.2} (a = 8.674 Å, c = 5.014 Å) correlate well with a slightly higher Fe content at the expense of Al (with larger atomic radius than of Fe). Magnetization curves were measured at 2–600 K along the principal axes of the single crystals using a PPMS-9 magnetometer (Quantum Design) in fields up to 9 T.

Results of magnetization measurements are presented in Figs. 1–5. The values of M_s = 9.7 $\mu_B/f.u.$ and T_C = 320 K agree roughly with Ref. 1. The very strong magnetic anisotropy of easy-plane type can be described by the anisotropy constants K_1 = -7.3 MJ m⁻³, K_2 = 1.25 MJ m⁻³ at 2 K, determined in a Sucksmith-Thompson analysis of the *c*-axis curve. K_1 = -5.7 MJ m⁻³ and K_2 = 1.5 MJ m⁻³ are extracted in the same way from the *c*-axis curve at 5 K presented in Ref. 1. So, the large anisotropy originates clearly from the U sublattice because in LuFe₆Al₆ K_1 equals only -0.73 MJ m⁻³ and K_2 does not exceed 0.04 MJ m⁻³ (Figs. 4 and 5). The very strong anisotropy of UFe₆Al₆ persists in the paramagnetic state up to 500 K, i.e., far above T_C (Fig. 1), again due to the U sublattice because it is not observed in LuFe₆Al₆. Other evidence for the U contribution to the magnetism is the observed modest but clear anisotropy in the basal plane with the [110] axis as easy-magnetization direction, the [100] curve saturates in fields above 1 T (Fig. 2). The in-plane anisotropy vanishes at T_C . On the other hand, direct comparison of M_s of UFe₆Al₆ and LuFe₆Al₆ (Fig. 3) gives a practically zero U magnetic moment M_U . This is in accord with impossibility to determine the M_U value by neutron diffraction [1] and suggests a mutual cancellation of the spin and orbital components.

References

[1] A.P. Gonçalves, P. Estrela, J.C. Waerenborgh, J.A. Paixão, M. Bonnet, J.C. Spirlet, M. Godinho, M. Almeida, J. Magn. Magn. Mater. **189** (1998) 283.

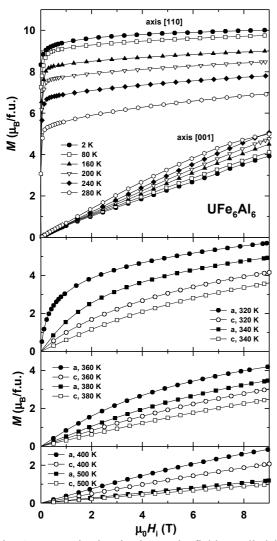


Fig. 1. Magnetization isotherms in fields applied in the basal plane and along the c axis of UFe₆Al₆.



Fig. 2. Magnetization isotherms in fields applied along the a and b axes in the basal plane.

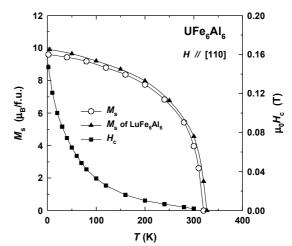


Fig. 3. Temperature dependence of M_s of UFe₆Al₆ and LuFe₆Al₆ and coercive field of UFe₆Al₆.

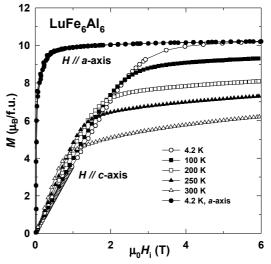


Fig. 4. Magnetization isotherms in fields applied in along the *c* axis of $LuFe_6Al_6$. The *a*-axis curve at 4.2 K is presented as well.

Fig. 5. Temperature dependence of anisotropy constants of UFe₆Al₆ and LuFe₆Al₆. Squares represent K_1 and K_2 values calculated from M(H) of Ref. [1].

The work has been supported by the research project AVOZ10100520, the grant GACR 202/06/0185 and the project OC144 of the COST P16 program.