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ABSTRACT.    At high temperature, the circulation of fluid in heat exchangers provides a tendency 

for fouling accumulation to take place on the internal surface of tubes. This paper shows an 

experimental process of thermophysical properties estimation of the fouling deposited on internal 

surface of a heat exchanger tube using genetic algorithms (GAs). The genetic algorithm is used to 

minimize an objective function containing calculated and measured temperatures. The experimental 

bench using a photothermal method with a finite width pulse heat excitation is used and the estimated 

parameters are obtained with high accuracy.  

 

 

NOMENCLATURE 

 

a Thermal diffusivity (m
2
.s

-1
)  *

2 ( , )T t β

 

Reduced temperature   

Cp Heat capacity (J.kg
-1

.K
-1

)  Tmeasured Measured temperature (K) 

e sample thickness (m)  tc Heating time  (s) 

 

h Heat transfer coefficient (W.m
-2

.K
-1

)  Greek letters 

 

P Initial population  β Vector of estimated parameters                                  

p Laplace parameter (s
-1

)  θf Laplace temperature on the front 

face of the sample (K.s
-1

) 

Q(t) Crenel excitation (W.m
-2

)  θ r Laplace temperature on the rear 

face of the sample (K.s
-1

) 

Rc thermal contact resistance (W
-1

.K.m
2
)  λ Thermal conductivity (W.m

-1
.K

-1
) 

Rfoul fouling thermal resistance (W
-1

.K.m
2
)  ρ Density (Kg.m

-3 
) 

T1  Calculated temperature on the front 

face(K)                         

 Ψ Heat flux density (W.m
-2

) 

T2  Calculated temperature on the rear 

face(K)                         
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1. INTRODUCTION 

 

Fouling generally exists in the nature and all kinds of industry process, especially in the heat 

transfer process. The harm is very huge; it causes losses to reach as high as the industrial production 

resultant 0.3 percent [Yang Shanrang 2004]. So many researches have been done in the past years. 

Researches on the heat exchanger fouling are progressing along three directions, that is, fouling 

prediction, fouling monitoring and fouling countermeasure [SUN Lingfang 2008].  And some 

investigation demonstrated that the fouling has been a major barrier to the wide application of 

enhanced surfaces, so there is an urgent need to determine its properties that affect the performance 

of heat exchange surfaces.  

 

In this work, we present an experimental study allowing the identification of the thermophysical 

properties of the fouling deposited on heat transfer surfaces. In the literature, lots of researchers 

have used different optimization methods to identify thermophysical properties of materials. Among 

them, we mention Zied et al. [2008], Faugeroux et al. [2004], Mzali et al. [2003] and Jarny et al 

[1991]. Their identification procedures use classical optimization methods that generate a 

deterministic sequence of computation based on gradient-type method which has to evaluate 

derivatives of an objective function. The methods are applied to a single point in the search space. 

The point is then improved along the deepest descending direction gradually through iterations 

[Mitsuo Gen 2008]. This point-to-point approach embraces the danger of failing in local optima. 

Besides, when used with models that contain correlated or nearly correlated properties, these 

methods can show instabilities resulting in non-convergence. Indeed, correlation or near-correlation 

among parameters is known to be a limiting factor for the converged application of gradient-based 

estimation procedures [Garcia. S 1999]. In addition, in some cases, when we don’t have an order of 

magnitude of thermophysical properties, gradient methods become incapable to estimate them.    

For these reasons we investigate the feasibility of using genetic algorithms (GA) which are 

powerful means to handle correlation problems and to estimate parameters which are known with 

less accuracy, and whose operation does not require any knowledge of derivatives, or sensitivity 

study. In this work a genetic algorithm is used to estimate thermophysical properties of fouling 

deposited onto internal surface of a heat exchanger. The estimation procedure is based on the 

minimization of a fitness function that expresses the sum-square of the error between a measured 

temperature and a calculated one. The system under investigation is submitted to a finite width heat 

flux excitation using a photothermal method. The temperature response, during and after irradiation, 

is measured at the opposite face using a thermocouple. Results show the efficiency of the developed 

genetic algorithm to estimate all unknown thermophysical parameters of fouling without requiring 

information on their initial values.   

 

2. SYSTEM DESCRIPTION 

 

Fouling of heat transfer surfaces is a serious problem that affects the design and efficiency of heat 

exchangers, and stills one of the unresolved problems in thermal science. It is generally defined as 

the accumulation of unwanted materials onto the heat transfer surface during the lifetime of the heat 

exchanger that may undergo a decline in its ability to transfer heat. In fact, the additional fouling 

layer has a low thermal conductivity that increases the resistance to heat transfer and reduces the 

performance of heat exchangers.  Figure 1 shows a deposited fouling upon the internal surface of a 

heat exchanger: 
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Figure 1. Fouling deposited onto a heat exchanger's internal surface 

To determine the thermophysical properties of the added fouling layer of thickness e1, a section of a 

heat exchanger with fouling is studied (figure 2):   

 

Figure 2. System under investigation  

The system under investigation, composed of two layers of copper and the fouling deposited on of 

thickness e2 and e1 respectively, is submitted at t = 0 on the upper face to a finite width pulse heat 

flux Q(t) during a short time tc as shown in figure 3. The sample is initially assumed at uniform 

temperature T0. The expression of the heat flux excitation is given by the following equation: 

0
( )

0

c

c

t t
Q t

t t

Ψ ≤ ≤
= 

>
                                                                       (1)   

The heat transfer on the two faces with the surrounding environment is taken into account and it is 

represented by two heat transfer coefficients h1 and h2.  

 

Figure 3. Principle of the finite width pulse heat flux method 

Deposited Fouling 

Copper 
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In the one-dimensional experimental design shown in Fig. 4, the sides of the sample were insulated 

while an imposed heat flux was applied across the entire top surface: 

 

Figure 4. One dimensional boundary  condition 

 

3. MATHEMATICAL MODEL 

 

The model assumes one-dimensional heat flux through a two-layer sample constituted by two 

materials of thickness e1 and e2. Their interface is characterized by an imperfect contact (thermal 

contact resistance Rc). The thermal properties and densities of both layers are assumed to be 

uniform and constant. The convective and radiative heat transfers on the two faces with the uniform 

environment are expressed by two heat transfer coefficients h1 and h2 [ Albouchi 2005]. 

The transient temperature distribution in the sample can be obtained by solving the one dimensional 

heat equation for each layer: 
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Where Ti is the temperature of layer i. 

Coupled to initial and boundary conditions:  
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To solve the system of equations (2-7), the thermal quadrupoles formalism is used. The entire 

system can be described in Laplace space as: 
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Here θf and θr are the Laplace transforms of the sample’s front and rear face temperatures, 

respectively. The coefficients Ai, Bi, Ci and Di depend on the Laplace parameter p,   on the thickness 

ei of the layer i, and on the thermophysical properties of the material. Their expressions are given by 

the following equations: 

( ) ( ) ( )
1

cosh , sinh , sinh ,i i i i i i i i i i i i i

i i i

p
A D e C e B e

a
α λα α α α

λα
= = = = =

                      

(9) 

In the Laplace space, the rear face temperature is given by: 

[ ]( ) 1 exp( )r cp pt
pC

θ
Ψ

= − −                                                           (10) 

Where Ψ is the density of the crenel heating flux (Figure 3). 

With dimensional parameters, the rear face temperature, θr(p), is a function of several dimensional 

parameters given by the following expression:  

θr(p) = f(p, tc, a1, λ1,ρ1,Cp1, e1, h1, a2, λ2, ρ2,Cp2, e2, h2, Rc, Ψ)                         (11)                         

Due to the large number of parameters encountered in the mathematical model, this study is 

presented in dimensionless space with dimensionless parameters. Taking into account that we work 

at ambient temperature, we have used the approximation of equal heat transfer coefficient on the 

two sample faces (h1 = h2 = h). The rear face temperature in Laplace space for a crenel heating 

excitation is given by:  
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The dimensionless parameters are defined by: 
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The variation of the reduced temperature T2
*
(t,β) with time in the usual space domain is calculated 

using the numerical algorithm proposed by Graver-Stehfest of θr [F. Albouchi 2005] : 

*

2

1

(2) (2)
( , )

n

i r

i

Ln iLn
T t V

t t
β θ

=

 
=  

 
∑                                          (17) 

Where Vi are the Graver-Stehfest function’s coefficients, and β = [β1, β2, β3, β4, β5] is the vector of 

the unknown parameters to be estimated using an inverse problem based on genetic algorithm.   

The identification procedure of all parameters βi allows us to calculate the unknown thermophysical 

properties of the first layer of fouling which are the thermal diffusivity a1, the thermal conductivity 

λ1, the volumetric heat capacity (ρ1Cp1), the heat transfer coefficient (h), and the contact resistance 

Rc between the fouling and the copper.    

 

4. PARAMETERS ESTIMATION: USE OF GENETIC ALGORITHM 

 

The parameters βi, to be estimated, are regarded as unknown while the measured temperature 

profile at a set of discrete points is available [Swati Verma 2007]. The unknown parameters are 

estimated from adjusting the theoretical temperature history obtained from the mathematical model 

T
*

2(t,β) to the measured temperature history Tmeasured. This can be achieved from the minimization of 

the fitness function S which calculates the sum-square of the gap between the measured and the 

calculated temperature as shown below: 

* 2

2

1

min( ( )) ( ( , ))
N

measured

i

S T T tβ β
=

= −∑                                                      (18) 

To minimize this fitness function there are many methods, among them we mention the gradient 

methods which are the most used by many researchers. The principle of these methods requires the 

evaluation of the derivatives in the fitness function and may also need information on an initial 

solution vector β for the searched parameters.  In these approaches, the use of a bad starting point 

may result in the solution getting trapped in a local optimum [M. Tamer Ayvaz 2007]. Besides, 

when the parameters to be estimated are correlated or nearly correlated, the minimization of the 

fitness function S using a common gradient-based method such us the Gauss linearization method, 

the Gauss-Newton method or the Levenberg-Marquardt method becomes very difficult [S. Orain   

2001].  

Therefore, in the solution of the inverse problems, heuristic algorithms are usually preferred due 

their ability of finding global or near global optimum solutions without the necessity of working 

with gradients, as well as requiring information on an initial solution. The most widely used 

heuristic algorithm is the genetic algorithm, which is a stochastic global search procedure based on 

the mechanics of natural selection and natural genetics [Holland 1975, Goldberg 1989].  

For the present study, a genetic algorithm is used to search for optimal values of the vector β 

composed of five unknown parameters [β1, β2, β3, β4, β5], called chromosomes or individuals, of the 

model *

2 ( , )T t β . 

A genetic algorithm is a stochastic search algorithms based on the survival mechanism of the fittest 

concepts. It, differing from conventional search techniques, starts randomly with an initial 

generated solution population of n individuals satisfying boundary and system constraints.  
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Each row in the population is called a chromosome or individual, representing a solution to the 

problem at hand. Optimal parameters are obtained by exchanging genetic information between 

individuals to reproduce improved solutions from one generation to the next by three genetic 

operators, which are selection, crossover and mutation (Figure 5): 

 

Figure 5. Genetic algorithm flowchart 

 The chromosome evolves through successive generations. During each generation, every 

chromosome is evaluated by measuring its fitness in the population and assigning to it a score. To 

create the next generation, new chromosomes, called offspring, are formed by either merging two 

chromosomes from the current generation using a crossover operator or modifying a chromosome 

using a mutation operator. The crossover operator takes two selected individuals and combines them 

about a crossover point thereby creating two new individuals. The mutation operator randomly 

modifies the genes ( j

iβ ) of a chromosome, introducing further randomness into the population. A 

new generation is formed by selection, according to the fitness values, some of the best parents and 

offspring are kept, the others are rejected to keep the population size constant. Fitter chromosomes 

have higher probabilities of being selected.  After several generations, the algorithms converge to 

the best chromosome, which hopefully represents the optimum or suboptimal solution that gives the 

most minimal fitness function.  

 

5. EXPERIMENTAL SETUP AND RESULTS 

 

The experimental apparatus is schematically shown in Fig. 6. It involves a stabilized power, a heat 

source, a sample to be characterized, a thermocouple, a data acquisition system and a computer.  
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The investigated sample, composed of two layers, is a section of a heat exchanger with fouling 

deposited on. The first layer of fouling has a thickness e1 of 0.1 mm; the second layer is the copper 

of the heat exchanger of thickness e2 equal to 1mm.  

In order to be put under the conditions of the one dimensional heat transfer, the sample’s sides were 

insulated (Fig. 4) while an imposed heat flux with a finite width was applied across the entire top 

surface using a halogen lamp, which provides a uniform heat flux equal to 1kw.m
-2

, during 15 s. 

The thermal characterization consists in analyzing the temperature evolution measured by a K-type 

thermocouple, located on the central rear face of the sample, immediately after the absorption of the 

heat flux density delivered by the halogen lamp.  The measurement is performed for 250s, and the 

sampling interval is set as 0.25s throughout the entire temperature recording. After the thermal 

excitation, the temperature reaches a maximum and then decreases due to the heat diffusion. The 

electrical signal, being proportional to the temperature variation
measuredT , and depending on the 

various thermophysical properties to be identified is read and recorded with a data acquisition unit 

(Agilent 34970A) which allows transferring data to a computer via an RS-232 interface.  

 

 

 

 

Figure 6. Experimental device 

In this parameters’ estimation, the thermophysical parameters of the second layer of copper are 

fixed. Its thermal diffusivity a2 and thermal effusivity 2 2 2P
Cλ ρ are fixed at known values of 1.16 

10
4 

m
2
.s

-1
 and 37.039 Kw.m

-2
.k

-1
s

-1/2
, respectively.  

The estimation was carried on with a genetic algorithm with a population of 100 chromosomes, 

each one of five genes (five parameters), and in 250 generation steps with the same procedures. The 

initial population defined above is generated in a large domain. Each parameter βi is delimited by an 

upper and a low bound, that is β1 ∈[0, 200 s
-1

], β2∈[0,1], β3 ∈[0, 50], β4 ∈[0, 10], β5 ∈[1, 100].  
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Figure 7 shows a comparison between measured temperature and the calculated one using ten 

chromosomes of the initial population. According to this figure, we notice that these initial 

chromosomes are not potential solutions but the importance is that they must just provide an answer 

until this stage, even bad.  
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a
x

 

 

calculated Temperature

measured Temperature  

 

Figure 7. Comparison between measured temperature and calculated temperature for the initial 

population 

The rank-based selection is used in this algorithm. The new population is chosen from the old based 

on the rank, the highest fitness member in the old population is rank #1, the second-best solution is 

rank #2, etc. Seventy five percent of the new population is chosen from the top thirty percent of the 

old population, and the other twenty five percent chosen from the bottom seventy percent. This 

ensures that selective operator maintains the genetic diversity. 

Two-point crossover is used; its technique is illustrated in Fig 8. Two points are chosen along the 

length of the chromosome, and the parameters between those two points are then swapped on each 

parent chromosome to make the two children.  

 

Figure 8. Principle of the crossover operator 

Finally, to satisfy the diversity of the population every individual is subject to random change by 

using a mutation operator.  
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The performance of the genetic algorithm was performed averaging five runs with different initial 

populations; the genetic algorithm converges to the average parameters given in table 1:  

Table 1. Estimated paramaters                  

Parameters  β1 β2 β3 β4 β5 

Estimated values 87 9,44 10
-04

 4,83 0,36
 

19,18 

Standard deviation σβi 2.44 10
-2

 1.57 10
-6

 5.23 10
-2

 9.76 10
-3

 0.23 

Relativeuncertainty % 0.0723 0.428 2 .79 6.98 3.09 

Using the definition given in equation (16), the unknown dimensional parameters of the fouling can 

be calculated. These parameters are the thermal diffusivity (a1), the thermal conductivity (λ1), the 

volumetric heat capacity (ρ1Cp1), the heat transfer coefficient (h), and the contact resistance Rc ; 

their values are given in Table 2. The results in table 2 clearly indicate that the genetic algorithm 

allows the simultaneous estimation of all the unknown parameters βi.   

Table 2.  Calculated dimensional parameters 

Parameters a1(m
2
.s

-1
) ρ1Cp1 

(KJ/m
3
.K) 

λ1(W.m
-1

.K
-1

) h (W.m
-2

.K
-1) Rc (W.m

-2
.K

-1
) 

values 0.87 10
-6

 2070 1.8 17 2 10
-5

 

Relative uncertainty % 2.072 4.790 6.862 8.29 14.842 

The quality of the estimation is analyzed, by comparing the experimental response and the 

calculated temperature using the best chromosomes estimated by the genetic algorithm. Figure 9 

presents comparisons between the measurements and the optimal model using the estimated 

parameters. The figure shows a good agreement between the measured and calculated temperatures. 

 

Figure 9. Comparison between measured and calculated temperature at the convergence of the GA 
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These results show that the proposed solution algorithm is effective in the determination of the 

unknown thermophysical of the fouling accumulated onto the internal surface heat exchanger. It 

should be emphasized that one of the advantages of the proposed solution algorithm is that there is 

no need to define an initial solution to start the optimization process.  

 

6. EFFECT OF THE DEPOSITED FOULING ON THE HEAT TRANSFER 

 

Whatever the cause or exact nature of the fouling, an additional resistance to heat transfer is 

introduced and the operational capability of the heat exchanger is correspondingly reduced. If we 

knew both the thickness and the thermal conductivity of the fouling, we could treat the heat transfer 

problem simply as another conduction resistance in series with the wall as shown in Fig 10. 

 

In general, we know neither of these quantities, but in the present work we have identified 

experimentally all thermophysical properties of the deposited layer which allows us to know its 

additional thermal resistance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Schematic view of the fouling thermal resistance 

The fouling thermal resistance can be expressed as a function of the thickness of the fouling layer 

(e1) and its thermal conductivity (λ1): 

2

1 1

1
( )

2
foul

R
R Ln

L Rπλ
=                                                             (20) 

Where R2 – R1 =e1 is the thickness of the fouling layer and L is the length of the heat exchanger 

tube. 

Let's recall that, before the accumulation of fouling deposits and without circulation of any coolant, 

the thermal resistance is equal to the one of metal (copper) that constitute the heat exchanger: 

 3

2 2

1
( )

2
copper

R
R Ln

L Rπλ
=                                                                   (21) 

Where R2 and R3 are the inner and the outer tube radius of the heat exchanger, respectively, and L is 

its length.  

 

 

Foulin

Copper  
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As mentioned above the first layer of fouling has a thickness e1 of 0.1mm, the second layer is the 

copper constituting the heat exchanger of thickness e2 equal to 1mm and knowing that the heat 

exchanger outer radius tube is equal to 7mm and its thermal conductivity is equal to 398 W.m
-1

.K
-1

, 

we remark thus during the operational lifetime the thermal resistance increases until one hundred 

and fifteen times of its initial value as shown in Eq (22): 

2

2 1

31

2

( )

115

( )

foul

copper

R
Ln

R R

RR
Ln

R

λ

λ
= �                                              (22)  

Thus the designer of a heat exchanger must take into account the effect of fouling upon heat 

exchanger efficiency during the operational lifetime and make previsions in his design for a 

sufficient extra capacity to insure that the heat exchanger will meet process that will perturb its 

primordial role. So, the designer has to select which material that does not readily corrode or 

produce much deposit of corrosion products such as copper-bearing alloys which can minimize 

chemical fouling and eliminate biological one.  

 

7. CONCLUSION 
 

In this study, an estimation procedure of thermophysical properties of the fouling deposited on 

internal surface of heat exchangers tube is presented. This procedure is based on a stochastic 

method using genetic algorithm. The experimental results show, on the one hand, the capability of 

the genetic algorithm to identify a large number of unknown parameters with high accuracy, on the 

other hand, it allows us to determine the deposited fouling’s thermal properties. It has been shown 

the harmful effects of the fouling thermal resistance that reduces the efficiency of the heat 

exchanger which impose the necessity of the maintenance of heat exchanger tubes.  
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