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ABSTRACT 
 
The papers deals with a numerical 3D study of natural convection in a finned Rayleigh-Benard (RB) 
cubical enclosure.  A single fin with a thickness of 10% of the cavity side (and a height of 50%) is placed 
vertically on the bottom hot wall at TH. The working fluid is air with Prandtl number Pr = 0.71 and the 
Rayleigh number (Ra) varies from 103 to 105. The solid-to-fluid thermal conductivity ratio ( kR ) was fixed 
at 7000kR = , corresponding to a metal of high conductivity. The top wall is at the temperature TC <TH 
and the remaining four surfaces are insulated. Inside the RB enclosure, the flow structure and the 
temperature distribution are presented in terms of mean velocity vector plots and isotherm plots. The 
effects of the Rayleigh number on the mean heat transfer rate through the cold wall are presented and 
discussed. A correlation between the averaged Nusselt number through the top wall and Ra is proposed.  
 
 
 

INTRODUCTION  
 
Investigations on heat transfer and fluid dynamics in fluid-filled enclosures with fins mounted on the active 
walls have expanded during the last years. The majority of works report simulations of steady, 2D flow 
and temperature fields. The interest is to control and/or optimize the heat transfer rate in the cavity by the 
addition of fins. 
Within the framework of 2D investigations, one can cite the publications of Frederick [1989], Tasnim and 
Collins [2004] and Arquis and Rady [2005]. For more realistic 3D numerical investigations less works are 
encountered in the literature. However, due to the recent developments of computer technologies, the 
works by Frederick [2007] and Frederick and Moraga [2007] are representative. 
In the present numerical investigation, a 3D “in-house” code was used to study the flow structure and heat 
transfer in a finned cubical enclosure. The physical model and coordinates are shown in figure1. A 
rectangular, conducting fin is centrally affixed to the hot wall at the temperature TH, whereas the cold wall 
at the temperature TC. The four remaining walls of the enclosure are kept insulated. The parameters of the 
problem are the Rayleigh number Ra, the Prandtl number Pr, the dimensionless fin length and width (s/H 
and e/H), and the thermal conductivity ratio, /k s fR k k= . 
In order to reduce the parameter combinations, we choose to vary only the Rayleigh number in the 
interval 3 510 10Ra≤ ≤ . The thermal conductivity ratio is fixed at 7000kR =  (metallic solid of high 
thermal conductivity). Six different values of Ra are considered, i.e., Ra=103, 104, 2.5×104, 5×104, 
7.5×104 and 105. The length and width ratios are kept constant, i.e., s/H=0.5 and e/H=0.1. 
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GOVERNING EQUATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Physical model and coordinates 

 
The governing equations of continuity (1), momentum (2)-(3) and energy (4) for unsteady laminar 
flow in Cartesian coordinates take the following dimensionless form: 
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Within the fin, the dimensionless energy equation is: 
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Eqs. (1)-(6) where obtained using H, α , ρ  and ( )H CT T−  as reference quantities. The non 
dimensional temperature is defined in terms of the wall temperature difference and a reference 
temperature as: 
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HT  is the temperature of the hot wall, and CT  is that of the cold wall. The Rayleigh number and 
Prandtl number are, respectively: 

αν
β 3)( HTTg

Ra CH −
=   and   Pr ν

α
=  where α  is the thermal diffusivity and ν  the kinematic 

viscosity. 
The enclosure boundary conditions consist of no-slip and no penetration walls, i.e., u=v=w=0 on all 
walls. The thermal boundary conditions on the bottom and top walls are: 

0
1
2z Hθ θ= = = +   and  1

1
2z Cθ θ= = = − . The remaining walls are adiabatic. 

Zero velocities (u=v=w=0) are specified on the fin faces. The base and tip fin are located at 0z =  

and /z s H= , respectively, while the left and right fin sides are located at 1
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Here, the subscripts f and s indicate that the gradients are evaluated at the fluid and at the solid side 
of the interface, respectively.   
 

 
NUMERICAL METHOD  

 
The unsteady Navier-Stokes and energy equations are discretized using staggered, non-uniform control 
volumes. A projection method is used to couple the momentum and continuity equations. A finite-volume 
method is used to discretize the Navier–Stokes and energy equations. The discretized momentum and 
energy equations are resolved using the red and black successive over relaxation method RBSOR. The 
Poisson pressure correction equation is solved using a full multigrid method as suggested by Ben Cheikh 
et al. [2007].  
 

Table 1 
Comparison between the present results and those of Frederick [2007] 

 
Ra  Nu   

  Present work Frederick [2007] Difference 
410   2.6791 2.6360 1.64 % 
510   5.7901 5.7997 -0.17 % 
610   11.5348 11.4806  0.48 % 

 
The computer code was first validated with a test problem related to a work of Frederick [2007]. It 
consists of a differentially heated cube with a horizontal fin situated on the right hot wall. The left wall is 
cold while the four remaining surfaces are insulated. Table 1 lists our numerical values along with those of  
Frederick [2007] relatively to the overall heat transfer (Nusselt number) through the cold wall for 

4 610 10Ra≤ ≤ and 7000kR =  and good agreement is evident. 
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RESULTS AND DISCUSSION 
 
In this paragraph, the Prandtl number is equal to 0.71, and the Rayleigh number varies from 103 to 
105. The dimensionless time step varies from 65 10t −∆ = × to 75 10t −∆ = ×  depending on the Rayleigh 
number. The grid size is 64×48×64 with non uniform spaces near the active walls and the boundaries 
of the fin. Steady state was considered as achieved according to the following criterion: 
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Here, X represents the variable u, v, w or θ, the superscript n refers to the iteration number and (i,j,k) 
refers to the space coordinates. 
Figure 2 represents the vector fields in the mid plane x-z for the different considered Rayleigh 
numbers. 

 
 

 

 

It is observed that in the range 3 510 10Ra≤ ≤ , the flow is symmetric to both mid-planes x=0.5 and 
y=0.5 and dominated by two rolling cells situated on the right and the left of the fin. When the 
Rayleigh number increases, the intensity of the rotating cells elevates and natural convection 
becomes dominating. It is also noted that high vertical velocities are situated near the top edges of the 
fin and close to the lateral walls parallel to the fin. The temperature distribution illustrated by Figure 3 

Fig. 2. Vector fields in the mid plane x-z for (a) : Ra=103, (b) : Ra=104, (c) : Ra=2.5×104 ,  
(d) : Ra=5×104 , (e) : Ra=7.5×104  and (f) : Ra=105. 
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shows that for Ra=103, the heat transfer is mostly conductive.  For 410Ra ≥ , the flow is dominated by 
natural convection mechanism and a large amount of heat is dragged from the lateral sides of the fin 
up to the cold wall due to the sweeping rolls situated there. 
 
 

 
 

 

 
It is easier to study the heat transfer rate through the cold wall instead the hot wall. To accomplish 
this, we define the local and mean Nusselt numbers by their respective expressions: 
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The local Nusselt number distribution is reported in Fig. 4. It is observed that maximum values of Nu 
are localized at the coordinates (x=0.5;y=0.5) for Ra=103, Ra=104, Ra=2.5×104  and Ra=105. 
However, when Ra=5×104 and Ra=7.5×104, two locations where the local heat transfer is maximum 
are observed, i.e., (x=0.5;y=0.256) , (x=0.5;y=0.744) and (x=0.5;y=0.209), (x=0.5;y=0.791), 
respectively. 
 

Fig. 3. Isotherm plots for (a) : Ra=103, (b) : Ra=104, (c) : Ra=2.5×104 , (d) : 
Ra=5×104 , (e) : Ra=7.5×104  and (f) : Ra=105. (kr=7000). 
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As far as the mean heat transfer rate is concerned, the averaged Nusselt number is plotted in Fig. 5 
versus the Rayleigh number. 
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As expected, the heat transfer rate increases with the Rayleigh number. For Ra=103, Nu  is close to 

unity, which means that the heat transfer mechanism is almost due to conduction. For 410Ra ≥ , (in 

Fig. 4. Local Nusselt number for (a) : Ra=103, (b) : Ra=104, (c) : Ra=2.5×104 , (d) : 
Ra=5×104 , (e) : Ra=7.5×104  and (f) : Ra=105. 
 
 
 

Figure 5.  Averaged Nusselt number versus Rayleigh number 
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the interval where convection predominates) a correlation between Nu  and Ra has been 
constructed. This correlation is given by the following expression: 
 

3.72 log 13.04Nu Ra= × −  
 

CONCLUSION 
 
In this work, a numerical three dimensional investigation was carried on to study natural convection in a 
finned cubical enclosure of Rayleigh-Benard type. The numerical method is based on the finite volume 
technique and a multigrid acceleration. The results showed that the flow is specially dominated by two 
contra rotating cells for which the intensity increases with Ra. High values of kinetic energy are 
localized near the top of the fin and the lateral walls. For specific values of Ra, two locations 
indicative of maximum local heat transfer through the top wall are observed. For 3 510 10Ra≤ ≤ , a 
correlation between the averaged Nusselt number and the Rayleigh number has been determined. 
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