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ABSTRACT    We numerically study the effect of an externally-evanescent magnetic field on 

total entropy generation in conducting and non-reactive fluid enclosed in a square cavity. The 

horizontal walls of the enclosure are assumed to be insulated while the vertical walls are kept 

isothermal. A control volume finite element method is used to solve the conservation equations at 

Prandtl number of 0.71. The values of relaxation time of the magnetic field are chosen, so that the 

Lorentz force acts only in the transient state of entropy generation in natural convection. The total 

entropy generation was calculated for fixed value of irreversibility distribution ratio, different 

relaxation time varying from 0 to 1/5 and Grashof number equal to 10
5
.  

 

 

NOMENCLATURE 

 

a     thermal diffusivity (m
2
s

-1
) 

B0  initial magnetic field (T) 

B  magnetic field (T) 

E  electrical force (N) 

Fm      magnetic force (N) 

g       acceleration due to gravity (m
2
s

-2
) 

Gr   thermal Grashof number  

Ha0  initial Hartman number ( 0 0Ha B L σ µ= )  

Ha  Hartman number 

J  current density (A m
-2

) 

k       conductivity  (J m
-1

s
-1

K
-1

) 

L      cavity length (m) 

p      pressure (Nm
-2

) 

P     dimensionless pressure 

Pr    Prandtl number 

q  heat flux 

t       time (s)  

T     temperature (K) 

T0    bulk temperature ( ( )0 h cT T T / 2= + ) 

∆T   temperature difference (∆ h cT T T= − )  

w        velocity (m/s) 

W       dimensionless velocity    

u,v     velocity components in x,y directions (ms
-1

) 

U,V    dimensionless velocity, components in x,y directions 

x, y     Cartesian coordinates (m) 

X, Y   dimensionless Cartesian coordinates 
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Greek symbols 

α     magnetic field inclination angle (°) 

β  coefficient of thermal expansion (K
-1

) 

θ  dimensionless temperature 

µ  dynamic viscosity (kg m
-1

s
-1

) 

ϕ  electrostatic potential  

σ  dimensionless entropy generation 

σe     electrical conductivity of the fluid 

ξ  relaxation time (s
-1

) 

ν  cinematic viscosity (m
-2

s
-1

) 

τ  dimensionless time  

χi     irreversibility distribution ratio (i =1, 2) 

Ω  system volume 

 

Subscripts 

a dimensionless 

c  cold wall 

h     hot wall 

 

1. INTRODUCTION 

 

In recent years, many studies are focalized on the characteristics of transfer phenomena and their 

optimum that can be attained by minimizing entropy generation. Different sources of irreversibility 

are responsible for entropy generation, for example heat and /or mass transfer, viscous dissipation 

effect, magnetic field effect…etc. The literature on the subject is well-reviewed by Bejan and his 

coworkers (see Bejan [1-3] and Bejan et al. [4]). Similarly, Arpaci and his coworkers also partook in 

the discussion (see Arpaci [5], Arpaci and Selamet [6], Arpaci and Selamet [7], Arpaci and Selamet 

[8], Arpaci [9], Arpaci and Esmaeeli [10] and Arpaci [11]). Further, for a mixed convective flow, 

recent works cited in Mahmoud et al. [12]. A detailed analysis of the entropy generation in a vertical 

non-porous channel with transverse hydromagnetic effect is given. Mahmud and Fraser [13] 

investigated first law and second law aspects of fluid flow and heat transfer inside a vertical porous 

channel with a transverse magnetic field. Haddad et al. [14] conducted a study on entropy 

generation through a single rectangular microchannel with constant heat flux boundary condition. 

They numerically modelled microchannel in order to find velocity and temperature distributions 

along the coolant flow and channel width directions.  

Al-Odat et al. [15] investigated the magnetic field effect on local entropy generation in a steady two-

dimensional laminar forced-convection flow past a horizontal plate. 

In all these contributions, the magnetic field is generally kept constant. In the present 

magnetohydrodynamic investigation our primary objective is to study the magnetic field effect on 

the total entropy generation evolution in transient natural convection, without disturbing the steady 

one. This imposes the employment of evanescent magnetic field, which has not been tried yet. 

 

2. MATHEMATICAL FORMULATION 

 

In figure 1, we are considering a problem of a Newtonian fluid enclosed in heated square cavity, 

acted upon by an imposed evanescent magnetic field.  
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Fig. 1: Schematic confined diagram of the problem under consideration. 

 

This fluid is modelling as a Boussinesq incompressible fluid, whose properties are described by its 

kinematics viscosity ( ν ), thermal diffusivity (a) and thermal volumetric expansion coefficient ( Tβ ). 

The induced magnetic field is negligible in comparison to the imposed field. The electric field must 

be irrotational ( )E 0∇× =  and can be written as: E ϕ= −∇ , where ϕ  is the electrostatic potential. 

The divergence of electric field leads to the following expression: ( )2

e e
J W B 0σ ϕ σ∇ = − ∇ + ∇ ⋅ × = , 

as it is given by Davidson [16]. We assume that there is no imposed electric field, therefore the 

electrostatic potential is equal to zero and the electric force is negligible compared to the magnetic 

force ( )W B× as it is given in Woods [17]. Consequently, the electric field is reduced 

to ( )eJ W Bσ= ×  and the magnetic force can be written as:  

 

 ( )m eF J B V B Bσ= × = × ×   (1)  

 

Under the above assumptions, the conservation equations for mass, momentum and energy in a two-

non-dimensional form are as follows: 

 

U V
0

X Y

∂ ∂
+ =

∂ ∂
   (2) 

 

( ) ( )2 2U P
div U .W gradU Ha V .sin .cos U .sin

t x
α α α

∂ ∂
+ − = − + −

∂ ∂
   (3) 

 

( ) [ ] ( )2 2

T

V P
div V .W gradV Gr . Ha U .cos .sin V .cos

t y
θ α α α

∂ ∂
+ − = − + + −

∂ ∂
  (4) 

 

1
div .W grad 0

t Pr

θ
θ θ

∂  
+ − = 

∂  
  (5) 

 

Where the dimensionless variables are defined by: 
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x
X

L
= ; y

Y
L

= ; uL
U

a
= ; 

vL
V

a
= ; 0

h c

T T

T T
θ

−
=

−
; 

2

2

pL
P

aρ
= ;  

ν

3

T
T 2

gβ ∆TL
Gr = ; 

2

at

L
τ = ; 

2 2
2 B L

Ha
σ

µ
=   (6) 

 

The boundary conditions are: 

U V 0= =  for all walls ; 0.5θ =  on plane X 0=  and 0.5θ = − on plane X 1=  

0
Y

θ∂
=

∂
 on planes Y 1=  and  Y 0=  

 

The initial conditions are:  

At 0τ =  ; U V P 0= = =  and 0.5 Xθ = −  for whole space. 

 

3. ENTROPY GENERATION 

 

The irreversibility involved in the system due to momentum and energy transport between the 

vertical walls of the enclosure sets the fluid in non-equilibrium state and induces a continuous 

entropy production in the system.  In two-dimensional coordinates system and using the 

dimensionless variables listed in equation (6), the dimensional local entropy generation (Woods 

[17]) can be simplified and made dimensionless as: 

 

l ,a l ,a ,H l ,a ,F l ,a ,Mσ σ σ σ= + +   (7) 

 

with : 
2 2

l ,a ,H

θ θ

X Y
σ

∂ ∂   
= +   

∂ ∂   
  (8) 

 
2 2 2

l ,a ,F 1

U V U V
2 2

X Y Y X
σ χ

 ∂ ∂ ∂ ∂     
= + + +      

∂ ∂ ∂ ∂       
  (9) 

 

[ ]
2

l ,a ,M 2 U .sin V .cosσ χ α α= −   (10) 

 

In the equation (7), the first term represents the entropy generation due to heat transfer, the second is 

due to viscous dissipation and the third term is due to magnetic field. Dimensionless terms denoted 

i
χ (i=1,2) are irreversibility distribution ratios given by: 

 

( )

2

0
1

µT a
χ

k L ∆T

 
=   

 
and  2

2 1Haχ χ=  (11) 

 

The dimensionless total entropy generation over the system volume is defined by integrating 

Equation (7):  

 

t l ,ad
Ω

σ σ Ω= ∫  (12) 
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4. NUMERICAL PROCEDURE 

 

A modified version of the Control Volume Finite-Element Method (CVFEM) of Saabas and 

Baliga [18] is adapted to the standard staggered grid in which pressure and velocity components are 

stored at different points. The SIMPLER algorithm was applied to resolve the pressure-velocity 

coupling in conjunction with an Alternating Direction Implicit (ADI) scheme for performing the 

time evolution. From the known temperature and velocity fields at any instant τ given by solving 

equations (2 – 5), the local entropy generation l ,aσ  is evaluated at any node of the domain by Eq. 

(7). The dimensionless total entropy generation for the entire cavity tσ  is easily obtained by 

equation (12). The shape function describing the variation of the dependant variable ψ (= U, V, θ) is 

needed to calculate the flux across the control-volume faces. We have followed Saabas and Baliga 

[18] in assuming linear and exponential variations respectively when the dependant variable ψ is 

calculated in the diffusive and in the convective terms of the conservation equations. More details 

and discussions about CVFEM are available in the works of Prakash [19], Hookey [20], Elkaim et 

al. [21], Saabas and Baliga [18]...etc. The numerical code used here is described and validated in 

detail in Abbassi et al. [22] and Magherbi et al. [23]. 

 

5. RESULTS AND DISCUSSION 

 

All industrial systems induce entropy generation and, thus, destroy system available work and 

reduce its efficiency. We are also convinced that a part of total entropy generation is at the origin of 

gradual deterioration of mechanical system (principally at the starting operation). Numerous 

investigations were carried out with an aim of optimizing entropy generation. In several real cases, 

we believe that optimizing entropy generation in the stationary state can often change the desired 

product characteristics, which is generally disagreeable. This leads us to optimise the entropy 

generation only in transient state by applying an evanescent magnetic field (Equation (13)) on the 

fluid enclosed in a square cavity. This can make profit of available work, minimize the potential 

damage at the beginning of the operation system and additionally maintain the characteristics of the 

end product.  

 
t

0B B e
γ−=  ( )IRγ +∈    (13) 

 

Using Equation (6), the Hartman number is a decreasing function versus time and can be written as: 

 
2L

a

0Ha Ha e

γ
τ

 
−  
 =    (14) 

 

The parameter γ  was selected so the inverse of the magnetic field relaxation time ( )2
1 L aξ γ=  

takes prime numbers. Therefore, the Hartman number can be written as:  

 

0Ha Ha e

τ

ξ
−

=     (15) 

 

In this study, the Prandlt and the Grashof numbers are equal to 0.71 and 10
5
, respectively. The 

magnetic field inclination angle is equal to zero. The initial Hartman number (Ha0) is equal to 100. 

The irreversibility distribution ratio 1χ  is kept constant and equal to 10
-3

.  It is important to note 

that, for higher values of relaxation time ξ , the magnetic field takes practically constant value and 
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can therefore disturb the stationary state. The values of parameter ξ  are chosen so that the magnetic 

field acts only in the transient state of natural convection. This is illustrated in figure 2, which shows 

the variation of the entropy generation and Hartman number versus time. It can be concluded from 

figure 2, that the dimensionless total entropy generation increases suddenly and takes maximum 

value ( t ,Maxσ ) at the very beginning of natural convection. Thereafter, it decreases with oscillatory 

behaviour to finally reach a constant value in the steady state. Fluctuations of the total entropy 

generation at high Grashof numbers indicate that the flow exhibits oscillatory behavior which 

depends on the boundary conditions. This result is consistent with the finding of Ivey [24], 

Schladow [25] and magherbi et al. [23]. These latter explained, from a thermodynamic viewpoint 

that, for higher Grashof numbers, the steady state is relatively far from the equilibrium state. 

Therefore, a rotation around the steady state is possible and the system is in the case of a spiral 

approach towards this state corresponding to an oscillation of the total entropy generation. 

Consequently, the system evolves in the non-linear branch of irreversible phenomena, since the 

Prigogine’s theorem of minimum entropy production is unproven.  

 

 
Fig. 2: Hartman number for different relaxation times ξ  and entropy production distribution for 

3

1 10χ −=  Ha = 0, Gr = 10
5
 and 0α = °  all in function of dimensionless time. 

  

The effect of Hartmann number on entropy generation fluctuations for relatively high values of 

Grashof number is illustrated in figure 3 (the X-axis is given in logarithmic scale). From this figure, 

it is clear that the value reached by entropy generation at the steady state of natural convection is the 

same for all considered relaxation time. This result is very logical since the magnetic field takes 

zero value at the steady state. Therefore, at steady state and for relatively high values of Grashof 

number (10
5
), the flow structure is the same as that obtained in the absence of magnetic field, which 

consists in a double spiral configuration and viscous boundary layers in close proximity to the active 

walls. Similar observations regarding the evolution of the dimensionless total entropy generation to 

the ones given in figure 2 can be conducted from figure 3, except the influence of the relaxation 

time on the magnitude and the number of oscillations of total entropy generation. As seen in figure 

3, total entropy generation begins to increase at the very start of the transient state due to the initial 

conditions of the fluid temperature and velocity. Insignificant influence of the relaxation time 

(except for zero magnetic field) on the dimensionless total entropy generation was seen for 

dimensionless time 0.002τ ≤  since curves of entropy generation practically coincide. This is 

because the entropy generation at the very beginning of transient state is mainly due to the relatively 

important Hartman number and, therefore, magnetic irreversibly. As time proceeds, a bifurcation of 

the total entropy generation depending on the values of the relaxation time was observed. From the 
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bifurcation point, as shown in figure 3, the maximum of total entropy generation decreases with the 

increase of the relaxation time. Also, the number and the amplitude of oscillations of the total 

entropy generation decrease. This can be explained by the fact that the internal thermal and viscous 

waves, resulting from the transition from one to double configuration in the whole cavity, are 

gradually suppressed by the Lorentz force when the relaxation time increases.  

 

 
Fig. 3: Entropy production distribution as function of logarithmic coordinate dimensionless time for 

different values of ξ  at 3

1 10χ −= , Ha0 = 100, Gr = 10
5
 and  0α = ° . 

 

Notice that no oscillation can be observed at critical relaxation time equal or superior to 1/10. 

Accordingly, the total entropy generation tends towards asymptotically the steady state. This is due 

to the adequate value of the Hartmann number throughout the transient regime and precisely when 

the transition to the double configuration occurs. So, the Lorentz force is always able to eliminate 

internal thermal and viscous waves. From a thermodynamic viewpoint, for relaxation time 

1 / 10ξ ≥ , the asymptotic behavior of the total entropy generation in function of time shows that the 

system returns directly towards the steady state.  

 

6. CONCLUSION 

 

Imposed evanescent magnetic field acting on Newtonian Boussinesq incompressible fluid enclosed 

in heated square cavity was investigated in this study. The values of relaxation time of the magnetic 

field are chosen so that the magnetic field acts only in the transient state of natural convection. The 

total entropy generation was calculated only in transient state by applying the considered magnetic 

field with the aim of keeping constant the desired product characteristics. Results show that the 

dimensionless total entropy generation increases abruptly and takes maximum value at the very 

beginning of natural convection. Thereafter, it decreases with oscillatory behavior and finally 

reaches a constant value in the steady state. The effect of Hartmann number on entropy generation 

fluctuations for relatively high values of Grashof number was also studied. Results show that the 

influence of the relaxation time (except for zero magnetic field) on irreversibility is insignificant for 

dimensionless time 0.002τ ≤ , corresponding to a bifurcation point of total entropy generation. 

Results also show that, from the bifurcation point, the number and the amplitude of oscillations of 

the total entropy generation decrease when the relaxation time is increased. It was remarked that no 

oscillation can be observed at critical relaxation time equal to 1/10 corresponding to an asymptotic 

behaviour of the total entropy generation towards the steady state. The Prigogine’s theorem of 

minimum entropy production is therefore verified.  
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